Descriptional Complexity of Multi-Continuous Grammars

Alexander Meduna *

Abstract

The present paper discusses multi-continuous grammars and their descriptional complexity with respect to the number of nonterminals. It proves that six-nonterminal multi-continuous grammars characterize the family of recursively enumerable languages. In addition, this paper formulates an open problem area closely related to this characterization.

Key Words: multi-continuous grammars; descriptional complexity; non-terminals; recursively enumerable languages.

1 Introduction

The language theory has intensively and systematically investigated the descriptional complexity of grammars (see Chapter 4 in [1] and references therein). This investigation has achieved several characterizations of the family of recursively enumerable languages by various grammars with a reduced number of nonterminals (see [4] through [6]).

The present paper discusses the descriptional complexity of multi-continuous grammars (see [3]). It proves that six-nonterminal multi-continuous grammars characterize the family of recursively enumerable languages. In its conclusion, this paper points out some open problems closely related to this characterization.

2 Definitions

This paper assumes that the reader is familiar with the formal language theory, including selective substitution grammars (see Chapter 10 in [1])).

Let Σ be an alphabet. The cardinality of Σ is denoted by $Card(\Sigma)$. Σ^* represents the free monoid generated by si under the operation of concatenation. The unit of Σ^* is denoted by ε . Set $\Sigma^+ = \Sigma^* - \Sigma^* - \{\varepsilon\}$; algebraically, Σ^+ is the free semigroup generated by Σ under the operation of concatenation. For $w \in \Sigma^*$, |w| denotes the length of w and *subword(w)* is defined as *subword(w)* = $\{x : x \in V^* \text{ and } x \text{ is a} \text{ subword of } w\}$.

^{*}Computing Center at Technical University of Brno, Udolni 19, Brno 60200, Czech Republic

The **bold** symbols have special meaning hereafter. If a is a symbol, then a means that the original symbol, a, is *activated*. Analogously, for an alphabet Σ ,

$$\Sigma = \{ \mathbf{a} : a \in \Sigma \} \text{ and } \{ \mathbf{x} : x \in \Sigma^+ \}.$$

Define the homomorphism, ι , from $(\Sigma \cup \Sigma)^*$ to Σ^* as

$$\iota(\mathbf{a}) = a \text{ and } \iota(a) = a$$

for all $a \in \Sigma$.

An EOS system is quadruple

$$E = (\Sigma, P, S, T),$$

where Σ is an alphabet, $T \subseteq \Sigma, S \in \Sigma - T$, and P is a finite substitution on $\Sigma + *$. An *EOS-based s-grammar*, G, is a quintuple

$$G = (\Sigma, P, S, T, K),$$

where Σ, P, S , and T have the same meaning as in an EOS system, and $K \subseteq (\Sigma \cup \Sigma)^*$. Let $u, v \in \Sigma^*$. G directly derives v from u, symbolically denoted as

 $u \Rightarrow v$,

if either u = S and $v \in P(S)$ or there exists a natural number, n, so

- 1. $u = a_1 \dots a_n$ with $a_i \in T$ for all $i = 1, \dots, n$
- 2. $w = b_1 \dots b_n, w \in K$, and $\iota(w) = u$
- 3. $v = x_1 \dots x_n$ with $x_i \in P(a_i)$ if $b_i \in \Sigma$, and $x_i = a_i$ if $b_i \in \Sigma$ for each $i = 1, \dots, n$.

Instead of $x \in P(a)$, this paper writes $a \to x$ hereafter. In the standard manner, extend \Rightarrow to \Rightarrow^n , where $n \ge 0$. Based on \Rightarrow^n , define \Rightarrow^+ and \Rightarrow^* . The language of G, L(G),

is defined as

$$L(G) = \{ w \in T^* : S \Rightarrow^* w \}.$$

Let *m* be a natural number, and let $G = (\Sigma, P, S, T, K)$ be an EOS-based *s*-grammar. *G* is an *m*-continuous grammar if for some $n \ge 1$,

$$K = K_1 \cup \ldots \cup K_n$$

so that for $i = 1, \ldots, n$,

$$K_i = \Omega_1 \Pi_1 \Omega_2 \dots \Omega_m \Pi_m \Omega_{m+1},$$

where

 $\Omega_j \in \{V^* : V \subseteq \Sigma\}$ for $j = 1, \dots, m+1$

 $\Pi_k \in \{W^+ : W \subseteq \Sigma\} \text{ for } k = 1, \dots, m.$

G is a multi-continuous grammar if G represents an m-continuous grammar for some $m \ge 1$. A queue grammar (see [2]) is a sixtuple, Q = (V, T, W, F, R, g), where V and W are alphabets satisfying $V \cap W = \emptyset$, $T \subseteq V$, $F \subseteq V$, $F \subseteq W$, $R \in (V-T)(W - F)$, and $g \subseteq (V \times (W - F)) \times (V^* \times W)$ is a finite relation such that for any $a \in V$, there exists an element $(a, b, x, c) \in g$. If there exist $u, v \in V^*W, a \in V, r, z \in V^*$, and $b, c \in W$ such that $(a, b, z, c) \in g$, u = arb, and v = rzc, then Q directly derives v from u, denoted by $u \Rightarrow v$. In the standard manner, define $\Rightarrow^n, \Rightarrow^+$, and \Rightarrow^* . A derivation of the form $R \Rightarrow^* wf$ with $w \in T^*$ and $f \in F$ is a successful derivation. The language of QL(Q), is defined as $L(Q) = \{w \in T^* : R \Rightarrow^* wf$ where $f \in F\}$.

3 Results

The present section demonstrates that the family of recursively enumerable languages equals the family of languages g 1 by six-nonterminal multicontinuous grammars.

Lemma 1 Let

$$Q = (V, T, W, FR, g)$$

be a queue grammar. Then, there exists a six-nonterminal multi-continuous grammar, G, satisfying

$$L(G) - \{\varepsilon\} = L(Q) - \{\varepsilon\}.$$

Proof: Let

$$Q = (V, T, W, F, R, g)$$

be a queue grammar. Without any loss of generality, assume that

 $(V \cup W) \cap \{0, 1, 2, 3, X, Y\} = \emptyset.$

Construction:

For some $n \geq 2^{\#(V \cup W)}$, introduce the following four mappings $-\beta, \rho, \sigma$, and δ :

- 1. Define an injection β from $(V \cup W)$ to $(\{0,1\}\{3\})^n$. In the standard manner, extend β so it is defined from $(V \cup W)^*$ to $((\{0,1\}\{3\})^n)^*$. β^{-1} represents the inverse of β .
- 2. Let ρ be the mapping from $(\{0,1\}\{3\})^n((\{0,1\}\{3\})^n \cup T)^*$ to $((\{0,1\}\{3\})^n \cup T)^*(\{0,1\}\{3\})^n$ defined as

$$\rho(ax) = xa$$

for all $a \in (\{0,1\}\{3\})^n$ and $x \in ((\{0,1\}\{3\})^n \cup T)^*$.

3. Let σ be the mapping from $(T \cup \{0, 1, 2, 3\})^*$ to $(T \cup \{0, 1, 3\})^*$ defined as

 $\sigma(a) = a$ for all $a \in T \cup \{0, 1, 3\}$ and $\sigma(2) = \varepsilon$.

4. Let δ be the mapping from $\{0,1,3\}^*$ to $\{X,Y,3\}^*$ defined as

$$\delta(0) = X, \delta(1) = X \text{ and } \delta(3) = 3.$$

 \mathbf{Set}

 $m = \max\{|\beta(x)| : (a, b, x, c) \in g \text{ and some } a \in W - F, c \in W, \text{ and } b \in V\} + 6n + 2.$ Define the following *m*-continuous grammar

$$G = (T \cup \{0, 1, 2, 3, X, Y\}, P, 2, T, K),$$

where

$$\begin{array}{ll} P &= \{2 \rightarrow \beta(b)2\beta(a)X^{m-2|\beta(b)\beta(a)|-2}2 : a \in V - T, b \in W - F, ab = R\} \\ \cup &\{a \rightarrow a : a \in T \cup \{0, 1, 2, 3\}\} \\ \cup &\{3 \rightarrow 32, 2 \rightarrow \varepsilon\} \\ \cup &\{i \rightarrow \delta(i) : i = 0, 1, 3\} \\ \cup &\{a \rightarrow \varepsilon : a \in \{X, Y, 3\}\} \\ \cup &\{2 \rightarrow X^j 2 : j = 1, \dots, m - 4n - 2\} \\ \cup &\{2 \rightarrow X^j : j = 1, \dots, m - 2n - 1\} \\ \cup &\{2 \rightarrow \beta(c)2 : c \in W\} \\ \cup &\{2 \rightarrow \beta(c)2 : c \in W\} \\ \cup &\{2 \rightarrow \beta(x)X^{m-|\beta(abcx)|-2}2 : x \in V^*, \text{ and } (a, b, x, c) \in g, \text{ where} \\ &a, c \in W - F \text{ and } b \in V\} \\ \cup &\{2 \rightarrow \beta(x)X^{m-|\beta(abcx)y|-2}2 : x \in V^*, y \in T^+, \text{ and } (a, b, xy, c) \in g, \text{ for some} \\ &a \in W - F, c \in W, \text{ and } b \in V\} \\ \cup &\{2 \rightarrow yX^{m-|\beta(abc)y|-2}2 : y \in T^*, \text{ and } (a, b, y, c) \in g, \text{ for some} \\ &a \in W - F, c \in W, \text{ and } b \in V\}. \end{array}$$

Furthermore,

$$K = K_1 \cup K_2 \cup K_3 \cup K_4 \cup K_5 \cup K_6$$

where K_1 through K_6 are constructed as follows. Initially, set

$$K_i = \emptyset$$

for i = 1, ..., 6. Then, extend K_1 through K_6 in the following way. A. If

$$(a, b, x, c) \in g$$
, where $b, c \in W, a \in V$, and $x \in V^*$

then

$$K_{1} := K_{1} \cup \{\{\mathbf{b}_{1}\}^{+}\{\mathbf{3}\}^{+}\dots\{\mathbf{b}_{n}\}^{+}\{\mathbf{3}\}^{+}\{\mathbf{2}\}^{+}\{\mathbf{a}_{1}\}^{+}\{\mathbf{3}\}^{+}\dots\{\mathbf{a}_{n}\}^{+}\{\mathbf{3}\}^{+} \\ (\{0, 1, 3\} \cup T)^{*}\mathbf{H}_{1}\dots\mathbf{H}_{\mathbf{m}-|\beta(\mathbf{b}\mathbf{a})|-2}\{\mathbf{2}\}^{+}\},$$

where $a_i, b_i \in \{0, 1\}$ for i = 1, ..., n $a_1 3 ... a_n 3 = \beta(a)$ $b_1 3 ... b_n 3 = \beta(b)$ $H_j = \{X\}^+$, for all j = 1, ..., m - 4n - 2 $K_2 := K_2 \cup \{\{\mathbf{b_1}\}^+ \{3\}^+ ... \{\mathbf{b_n}\}^+ \{3\}^+ \{\mathbf{a_1}\}^+ \{3\}^+ ... \{\mathbf{a_n}\}^+ \{3\}^+ \{2\}^+ (\{0, 1, 3\} \cup T)^* \mathbf{H_1} ... \mathbf{H_{m-|\beta(\mathbf{ba})|-2}} \{2\}^+\},$

where

 $\begin{array}{l} a_i, b_i \in \{0, 1\} \text{ for } i = 1, \dots, n \\ a_1 3 \dots a_n 3 = \beta(a) \\ b_1 3 \dots b_n 3 = \beta(b) \\ H_j = \{X\}^+, \text{ for all } j = 1, \dots, m - 4n - 2 \\ K_3 := K_3 \cup \{\delta\{(\mathbf{b}_1)\}^+ \{3\}^+ \dots, \{\delta(\mathbf{b}_n)\}^+ \{3\}^+ \{\delta(\mathbf{a}_1)\}^+ \{3\}^+ \dots \\ \{\delta(\mathbf{a}_n)\}^+ \{3\}^+ \{\mathbf{c}_1\}^+ \{3\}^+ \dots \\ \{\mathbf{c}_n\}^+ \{3\}^+ \{2\}^+ (\{0, 1, 3\}^* \{\mathbf{d}_1\}^+ \{3\}^+ \dots \\ \{\mathbf{d}_{|\mathbf{x}|}\}^+ \{3\}^+ \mathbf{H}_1 \dots \mathbf{H}_{\mathbf{m} - |\beta(\mathbf{bacx})| - 2} \{2\}^+ \}, \end{array}$

where

 $a_{i}, b_{i}, c_{i}, d_{i} \in \{0, 1\}, \text{ for } i = 1, \dots, n$ $a_{1}3 \dots a_{n}3 = \beta(a)$ $b_{1}3 \dots b_{n}3 = \beta(b)$ $c_{1}3 \dots c_{n}3 = \beta(c) \text{ for some } c \in V$ $d_{1}3 \dots d_{|x|}3 = \beta(x)$ $H_{j} = \{X\}^{+}, \text{ for all } j = 1, \dots, m - |\beta(bacx)| - 2.$

B. If

 $x \in V^*, y \in T^+$, and $(a, b, xy, c) \in g$ for some $b, c \in W$ and $a \in V$

then

$$\begin{split} K_4 &:= \quad K_4 \cup \{\{\delta(\mathbf{b_1})\}^+\{\mathbf{3}\}^+ \dots \{\delta(\mathbf{b_n})\}^+\{\mathbf{3}\}^+\{\delta(\mathbf{a_1})\}^+\{\mathbf{3}\}^+ \dots \\ \{\delta(\mathbf{a_n})\}^+\{\mathbf{3}\}^+\{\mathbf{c_1}\}^+\{\mathbf{3}\} \dots \\ \{\mathbf{c_n}\}^+\{\mathbf{3}\}^+\{\mathbf{c_1}\}^+\{\mathbf{3}\}^+\{\mathbf{d_1}\}^+\{\mathbf{3}\}^+ \dots \\ \{\mathbf{d}_{|\mathbf{x}|}\}^+\{\mathbf{3}\}^+\{\mathbf{e_1}\}^+ \dots \\ \{\mathbf{e}_{|\mathbf{y}|}\}^+\mathbf{H_1} \dots \dots \mathbf{H}_{\mathbf{m}-|\beta(\mathbf{bacx})\mathbf{y}|-2}\{\mathbf{2}\}^+\}, \end{split}$$

where

 $a_{i}, b_{i} \in \{0, 1\}, \text{ for } i = 1, \dots, n$ $a_{1}3 \dots a_{n}3 = \beta(a)$ $b_{1}3 \dots b_{n}3 = \beta(b)$ $c_{1}3 \dots c_{n}3 = \beta(c) \text{ for some } c \in V$ $d_{1}3 \dots d_{|x|}3 = \beta(x)$ $e_{1} \dots e_{|y|} = y$ $H_{i} = \{X\}^{+}, \text{ for all } j = 1, \dots, m - |\beta(x)| - |y| - 6n - 2.$ C. If

 $x \in T^*$ and $(a, b, x, c) \in g$ for some $b, c \in W$ and $a \in V$

then

$$K_5 := K_5 \cup \{\{\delta(\mathbf{b}_1)\}^+ \{3\}^+ \dots \{\delta(\mathbf{b}_n)\}^+ \{3\}^+ \{\delta(\mathbf{a}_1)\}^+ \{3\}^+ \dots \\ \{\delta(\mathbf{a}_n)\}^+ \{3\}^+ \{\mathbf{c}_1\}^+ \{3\} \dots \{\mathbf{c}_n\}^+ \{3\}^+ \{2\}^+ \{0, 1, 3\}^* \\ \mathbf{T}^+ \{\mathbf{e}_1\}^+ \dots \{\mathbf{e}_{|\mathbf{x}|}^+ \mathbf{T}^* \mathbf{H}_1 \dots \mathbf{H}_{\mathbf{m}-|\beta(\mathbf{bac})\mathbf{x}|-\mathbf{6n}-3} \{2\}^+ \},$$

where

 $a_{i}, b_{i} \in \{0, 1\}, \text{ for } i = 1, \dots, n$ $a_{1}3 \dots a_{n}3 = \beta(a)$ $b_{1}3 \dots b_{n}3 = \beta(b)$ $c_{1}3 \dots c_{n}3 = \beta(c) \text{ for some } c \in V$ $e_{1} \dots e_{|x|} = x$ $H_{j} = \{X\}^{+}, \text{ for all } j = 1, \dots, m - |x| - 6n - 3$

D. If

 $b \in F$

then

$$K_{6} := K_{6} \cup \{\{\delta(\mathbf{b_{1}})\}^{+}\{\mathbf{3}\}^{+} \dots \{\delta(\mathbf{b_{n}})\}^{+}\{\mathbf{3}\}^{+}\mathbf{H_{1}} \dots \mathbf{H_{m-2n-1}T^{+}T^{*}}\},$$

where
 $b_{i} \in \{0, 1\}$, for all $i = 1, \dots, n$
 $b_{1} 3 \dots b_{n} 3 = \beta(b)$
 $H_{j} = \{X\}^{+}$, for all $j = 1, \dots, m - |\beta(b)| - 1$.

Main Idea:

Observe that G derives no sentential form that contains a subword consisting of two identical nonterminals. Considering this essential property, examine the construction of G to see that every successful derivation simulates a successful derivation in Q. To give an insight into this simulation in greater detail, assume that Q makes this derivation step

 $avb \Rightarrow vxc$

according to $(a, b, x, c) \in g$. By using selectors constructed in A, G simulates $avb \Rightarrow vxc$ by making the following three steps.

$$\begin{split} \beta(b)2\beta(av)X^{m-|\beta(ba)|-2}2 &\Rightarrow \beta(ba)2\beta(ba)2\beta(v)X^{m-|\beta(ba)|-2}2\\ &\Rightarrow \delta(\beta(ba))\beta(c)2\beta(vx)X^{m-|\beta(bacx)|-2}2\\ &\Rightarrow \beta(c)2\beta(vx)X^{m-4n-2}2. \end{split}$$

By analogy with these steps, G uses selectors constructed in B and C to simulate Q's derivation steps that produce terminals appearing in the generated word. Finally, it uses a selector constructed in D to complete the simulation. As a result, L(Q) = L(G).

<u>Formal Proof</u> (Sketch): Hereafter, by

 $u \Rightarrow v [i]$

in G, where $i \in \{1, \ldots, 6\}$, this proof symbolically expresses that G makes $u \Rightarrow v$ by using a component from K_i . For brevity, the rest of this proof omits some details, which the reader can easily fill in. Examine K to see that in G, every successful derivation, $2 \Rightarrow^+ v$ with $v \in T^+$, has this form

2	$\stackrel{}{\rightarrow}, \stackrel{}{\rightarrow}$	-1	[1] [1]	⇒ 	$x_{1_{2}}$	[2]	⇒	x_{1_3}	[3]	
	: ↑ ↑ ↑ ↑	z_{1_1}	[1]		$\begin{array}{c} x_{t_2} \\ y_2 \\ z_{1_2} \end{array}$	[2]	↑ ↑ ↑ ↑	y_3	[3] [4] [5]	
	 ⇒ ⇒	${z_{h_1} \over r}$		\Rightarrow \Rightarrow	$v^{z_{h_2}}$	[2] [6],	⇒	z_{h_3}	[5]	

where

- (i) $x_0 = \beta(b)2\beta(a)X^{m|\beta(ba)|-2}2$ with ab = R
- (ii) t is a non-negative integer, and for all i = 0, ..., t, there exist $(a, b, v, c) \in g$ and $u \in V^*$ so that

$$\begin{array}{lll} x_{i_1} &=& \beta(ba)2\beta(u)X^{m-|\beta(ba)|-2}2\\ x_{i_2} &=& \delta(\beta(ba))\beta(c)2\beta(uv)X^{m-|\beta(bacv)|-2}2\\ x_{i_3} &=& \beta(c)2\beta(uv)X^{m-2|\beta(c)|-2}2 \end{array}$$

(iii) there exist $w \in V^*$ and $(a, b, vu, c) \in g$ where $v \in V^*$ and $u \in T^+$, so that

$$y_1 = \beta(ba)2\beta(w)X^{m-|\beta(ba)|-2}2$$

$$y_2 = \delta(\beta(ba))\beta(c)2\beta(wv)uX^{m-|\beta(bacv)u|-2}2$$

$$y_3 = \beta(c)2\beta(wv)uX^{m-2|\beta(c)|-2}2$$

(iv) h is a non-negative integer, and for all i = 0, ..., h, there exist $u \in V^*, w \in T^+$, and $(a, b, v, c) \in g$ with $v \in T^*$ so that

$$\begin{aligned} z_{i_1} &= \beta(ba)2\beta(u)wX^{m-|\beta(ba)|-2}2 \\ z_{i_2} &= \delta(\beta(ba))\beta(c)2\beta(u)wvX^{m-|\beta(bac)v|-2}2 \\ z_{i_3} &= \beta(c)2\beta(u)wvX^{m-2|\beta(c)|-2}2 \end{aligned}$$

(v) $r = \delta(\beta(b))vX^{m-|\beta(c)|-1}$ with $b \in F$.

Observe that there also exists the following derivation

$$R \Rightarrow \rho(\beta^{-1}(\sigma(x_{1_3}))) \dots \Rightarrow \rho(\beta^{-1}(\sigma(x_{h_3})))$$

$$\Rightarrow \rho(\beta^{-1}(\sigma(y_3)))$$

$$\Rightarrow \rho(\beta^{-1}(\sigma(x_{1_3}))) \dots \Rightarrow \rho(\beta^{-1}(\sigma(x_{h_3})))$$

$$\Rightarrow \rho(\beta^{-1}(\sigma(r)))$$

in Q. Notice that $\rho(\beta^{-1}(\sigma(r))) = v$. Thus, if in $G, 2 \Rightarrow^* v$ with $v \in T^+$, then $v \in L(Q)$; therefore,

$$L(G) - \{\varepsilon\} \subseteq L(Q) - \{\varepsilon\}.$$

Notice that in Q, every successful derivation, $R \Rightarrow^* vf$ with $v \in T^+$ and $f \in F$, has this form

 $\begin{array}{rcl} R & \Rightarrow^* & d_1 d_2 \dots d_n y_1 c_1 \\ & \Rightarrow & d_2 \dots d_n y_1 y_2 c_2 \\ & \dots \\ & \Rightarrow & d_n y_1 y_2 \dots y_n c_n \\ & \Rightarrow & y_1 y_2 \dots y_n f, \end{array}$

where

n is a natural number $d_k \in V, \text{ for } k = 1, \dots, n$ $v = y_1 y_2 \dots y_n$ $y_1 \neq \varepsilon$ $y_i \in T^*, \text{ for } i = 2, \dots, n$ $c_j \in W - F, \text{ for } j = 1, \dots, n$ $f \in F.$

Consider any derivation expressed in this way in Q, and demonstrate that there also exists

$$2 \Rightarrow^+ v$$

in G (a detailed version of this demonstration is left to the reader). Thus

$$L(Q) - \{\varepsilon\} \subseteq L(G) - \{\varepsilon\}.$$

As $L(G) - \{\varepsilon\} \subseteq L(Q) - \{\varepsilon\}$ and $L(Q) - \{\varepsilon\} \subseteq L(G) - \{\varepsilon\},$
$$L(Q) - \{\varepsilon\} = L(G) - \{\varepsilon\}.$$

Because G has only the six nonterminals 0, 1, 2, 3, X, and Y, Lemma 1 holds. \Box

Theorem 1 The family of languages generated by six-nonterminal multicontinuous grammars coincides with the family of recursively enumerable languages. **Proof:** Obviously, every language generated by a six-nonterminal multi-continuous grammar represents a recursively enumerable language. The rest of this proof demonstrates that every recursively enumerable language is generated by a six-non terminal multi-continuous grammar.

Let L be a recursively enumerable language. Then, there exists a queue grammar, Q, such that L(Q) = L (see Theorem 2.1 in [2]). By Lemma 1, there exists a six-nonterminal multi-continuous grammar,

 $G = (T \cup \{0, 1, 2, 3, X, Y\}, P, 2, T, K),$

satisfying $L(Q) - \{\varepsilon\} = L(G) - \{\varepsilon\}$. Consider the six-nonterminal multi-continuous grammar, G', defined as

$$G' = (T \cup \{0, 1, 2, 3, X, Y\}, P \cup P', 2, T, K)$$

with

$$P' = \{2 \to \varepsilon\}$$
 if $\varepsilon \in L(Q)$, and $P' = \emptyset$ if $\varepsilon \notin L(Q)$.

Observe that $L(G) - \{\varepsilon\} = L(G') - \{\varepsilon\}$. Because $L(Q) - \{\varepsilon\} = L(G) - \{\varepsilon\}, L(Q) - \{\varepsilon\} = L(G') - \{\varepsilon\}$. Furthermore, by the definition of $P', \varepsilon \in L(Q)$ if and only if $\varepsilon \in L(G')$. Therefore,

$$L(G') = L(Q).$$

As L(Q) = L,

$$L = L(G').$$

Therefore, this theorem holds.

Consider *i*-nonterminal multi-continuous grammars, where i = 1, ..., 5. What is their generative power?

Acknowledgement: The author is indebted to the anonymous referee for useful comments concerning the first version of this paper.

References

- [1] Dassow, J. and Paun, G.: Regulated Rewriting in Formal Language Theory. Springer, New York, 1989.
- [2] Kleijn, H. C. M. and Rozenberg, G.: "On the Generative Power of Regular Pattern Grammars," Acta Informatica, Vol. 20, pp. 391-411, 1983.
- [3] Kleijn, H. C. M. and Rozenberg, G.: "Multi Grammars," International Journal of Computer Mathematics, Vol.12, pp. 177-201, 1983.
- [4] Meduna, A. : "Six-Nonterminal Multi-Sequential Grammars Characterize the Family of Recursively Enumerable Languages," *International Journal of Computer Mathematics*, Vol. 65, pp. 179-189,1997.

Π

- [5] Meduna, A.: On the Number of Nonterminals in Matrix Grammars with Leftmost Derivations, in Paun, G. and Salomaa, A. (ed.), New Trends in Formal Languages, Lecture Notes of Computer Science 1218, 1997, 27 - 38
- [6] Paun, Gh.: "Six Nonterminals are Enough for Generating each R. E. Language by a Matrix Grammar," International Journal of Computer Mathematics, Vol. 15, pp. 23-37, 1984.

Received May, 1997