Descriptional Complexity of Multi-Continuous Grammars

Alexander Meduna *

Abstract

The present paper discusses multi-continuous grammars and their descriptional complexity with respect to the number of nonterminals. It proves that six-nonterminal multi-continuous grammars characterize the family of recursively enumerable languages. In addition, this paper formulates an open problem area closely related to this characterization.

Key Words: multi-continuous grammars; descriptional complexity; nonterminals; recursively enumerable languages.

1 Introduction

The language theory has intensively and systematically investigated the descriptional complexity of grammars (see Chapter 4 in [1] and references therein). This investigation has achieved several characterizations of the family of recursively enumerable languages by various grammars with a reduced number of nonterminals (see [4] through [6]).

The present paper discusses the descriptional complexity of multi-continuous grammars (see [3]). It proves that six-nonterminal multi-continuous grammars characterize the family of recursively enumerable languages. In its conclusion, this paper points out some open problems closely related to this characterization.

2 Definitions

This paper assumes that the reader is familiar with the formal language theory, including selective substitution grammars (see Chapter 10 in [1])).

Let Σ be an alphabet: The cardinality of Σ is denoted by $\operatorname{Card}(\Sigma) . \Sigma^{*}$ represents the free monoid generated by si under the operation of concatenation. The unit of Σ^{*} is denoted by ε. Set $\Sigma^{+}=\Sigma^{*}-\Sigma^{*}-\{\varepsilon\}$; algebraically, Σ^{+}is the free semigroup generated by Σ under the operation of concatenation. For $w \in \Sigma^{*},|w|$ denotes the length of w and $\operatorname{subword}(w)$ is defined as $\operatorname{subword}(w)=\left\{x: x \in V^{*}\right.$ and x is a subword of $w\}$.

[^0]The bold symbols have special meaning hereafter. If a is a symbol, then a means that the original symbol, a, is activated. Analogously, for an alphabet Σ,

$$
\boldsymbol{\Sigma}=\{\mathbf{a}: a \in \Sigma\} \text { and }\left\{\mathbf{x}: x \in \Sigma^{+}\right\} .
$$

Define the homomorphism, ι, from $(\Sigma \cup \Sigma)^{*}$ to Σ^{*} as

$$
\iota(\mathbf{a})=a \text { and } \iota(a)=a
$$

for all $a \in \Sigma$.
An $E O S$ system is quadruple

$$
E=(\Sigma, P, S, T)
$$

where Σ is an alphabet, $T \subseteq \Sigma, S \in \Sigma-T$, and P is a finite substitution on $\Sigma+*$. An EOS-based s-grammar, G, is a quintuple

$$
G=(\Sigma, P, S, T, K)
$$

where Σ, P, S, and T have the same meaning as in an EOS system, and $K \subseteq$ $(\Sigma \cup \Sigma)^{*}$. Let $u, v \in \Sigma^{*}$. G directly derives v from u, symbolically denoted as

$$
u \Rightarrow v
$$

if either $u=S$ and $v \in P(S)$ or there exists a natural number, n, so

1. $u=a_{1} \ldots a_{n}$ with $a_{i} \in T$ for all $i=1, \ldots, n$
2. $w=b_{1} \ldots b_{n}, w \in K$, and $\iota(w)=u$
3. $v=x_{1} \ldots x_{n}$ with $x_{i} \in P\left(a_{i}\right)$ if $b_{i} \in \Sigma$, and $x_{i}=a_{i}$ if $b_{i} \in \Sigma$ for each $i=1, \ldots, n$.

Instead of $x \in P(a)$, this paper writes $a \rightarrow x$ hereafter. In the standard manner, extend \Rightarrow to \Rightarrow^{n}, where $n \geq 0$. Based on \Rightarrow^{n}, define \Rightarrow^{+}and \Rightarrow^{*}. The language of $G, L(G)$,
is defined as

$$
L(G)=\left\{w \in T^{*}: S \Rightarrow^{*} w\right\}
$$

Let m be a natural number, and let $G=(\Sigma, P, S, T, K)$ be an EOS-based s grammar. G is an m-continuous grammar if for some $n \geq 1$,

$$
K=K_{1} \cup \ldots \cup K_{n}
$$

so that for $i=1, \ldots, n$,

$$
K_{i}=\Omega_{1} \boldsymbol{\Pi}_{\mathbf{1}} \Omega_{2} \ldots \Omega_{m} \boldsymbol{\Pi}_{\mathbf{m}} \Omega_{m+1}
$$

where

$$
\Omega_{j} \in\left\{V^{*}: V \subseteq \Sigma\right\} \text { for } j=1, \ldots, m+1
$$

$\Pi_{k} \in\left\{W^{+}: W \subseteq \Sigma\right\}$ for $k=1, \ldots, m$.
G is a multi-continuous grammar if G represents an m-continuous grammar for some $m \geq 1$. A queue grammar (see [2]) is a sixtuple, $Q=(V, T, W, F, R, g)$, where V and W are alphabets satisfying $V \cap W=\emptyset, T \subseteq V, F \subseteq V, F \subseteq W, R \in(V-T)(W-$ $F)$, and $g \subseteq(V \times(W-F)) \times\left(V^{*} \times W\right)$ is a finite relation such that for any $a \in V$, there exists an element $(a, b, x, c) \in g$. If there exist $u, v \in V^{*} W, a \in V, r, z \in V^{*}$, and $b, c \in W$ such that $(a, b, z, c) \in g, u=a r b$, and $v=r z c$, then Q directly derives v from u, denoted by $u \Rightarrow v$. In the standard manner, define $\Rightarrow^{n}, \Rightarrow^{+}$, and \Rightarrow^{*}. A derivation of the form $R \Rightarrow^{*} w f$ with $w \in T^{*}$ and $f \in F$ is a successful derivation. The language of $Q L(Q)$, is defined as $L(Q)=\left\{w \in T^{*}: R \Rightarrow^{*} w f\right.$ where $\left.f \in F\right\}$.

3 Results

The present section demonstrates that the family of recursively enumerable languages equals the family of languages g 1 by six-nonterminal multicontinuous grammars.

Lemma 1 Let

$$
Q=(V, T, W, F R, g)
$$

be a queue grammar. Then, there exists a six-nonterminal multi-continuous grammar, G, satisfying

$$
L(G)-\{\varepsilon\}=L(Q)-\{\varepsilon\} .
$$

Proof: Let

$$
Q=(V, T, W, F, R, g)
$$

be a queue grammar. Without any loss of generality, assume that

$$
(V \cup W) \cap\{0,1,2,3, X, Y\}=\emptyset
$$

Construction:
For some $n \geq 2^{\#(V \cup W)}$, introduce the following four mappings $-\beta, \rho, \sigma$, and δ :

1. Define an injection β from $(V \cup W)$ to $(\{0,1\}\{3\})^{n}$. In the standard manner, extend β so it is defined from $(V \cup W)^{*}$ to $\left((\{0,1\}\{3\})^{n}\right)^{*}$. β^{-1} represents the inverse of β.
2. Let ρ be the mapping from $(\{0,1\}\{3\})^{n}\left((\{0,1\}\{3\})^{n} \cup T\right)^{*}$ to $\left((\{0,1\}\{3\})^{n} \cup\right.$ $T)^{*}(\{0,1\}\{3\})^{n}$ defined as

$$
\rho(a x)=x a
$$

for all $a \in(\{0,1\}\{3\})^{n}$ and $x \in\left((\{0,1\}\{3\})^{n} \cup T\right)^{*}$.
3. Let σ be the mapping from $(T \cup\{0,1,2,3\})^{*}$ to $(T \cup\{0,1,3\})^{*}$ defined as

$$
\sigma(a)=a \text { for all } a \in T \cup\{0,1,3\} \text { and } \sigma(2)=\varepsilon
$$

4. Let δ be the mapping from $\{0,1,3\}^{*}$ to $\{X, Y, 3\}^{*}$ defined as

$$
\delta(0)=X, \delta(1)=X \text { and } \delta(3)=3
$$

Set
$m=\max \{|\beta(x)|:(a, b, x, c) \in g$ and some $a \in W-F, c \in W$, and $b \in V\}+6 n+2$.
Define the following m-continuous grammar

$$
G=(T \cup\{0,1,2,3, X, Y\}, P, 2, T, K)
$$

where

$$
\begin{aligned}
P= & \left\{2 \rightarrow \beta(b) 2 \beta(a) X^{m-2|\beta(b) \beta(a)|-2} 2: a \in V-T, b \in W-F, a b=R\right\} \\
\cup & \{a \rightarrow a: a \in T \cup\{0,1,2,3\}\} \\
\cup & \{3 \rightarrow 32,2 \rightarrow \varepsilon\} \\
\cup & \{i \rightarrow \delta(i): i=0,1,3\} \\
\cup & \{a \rightarrow \varepsilon: a \in\{X, Y, 3\}\} \\
\cup & \left\{2 \rightarrow X^{j} 2: j=1, \ldots, m-4 n-2\right\} \\
\cup & \left\{2 \rightarrow X^{j}: j=1, \ldots, m-2 n-1\right\} \\
\cup & \{2 \rightarrow \beta(c) 2: c \in W\} \\
\cup & \left\{2 \rightarrow \beta(x) X^{m-|\beta(a b c x)|-2} 2: x \in V^{*}, \text { and }(a, b, x, c) \in g,\right. \text { where } \\
& a, c \in W-F \text { and } b \in V\} \\
\cup & \left\{2 \rightarrow \beta(x) X^{m-|\beta(a b c x) y|-2} 2: x \in V^{*}, y \in T^{+}, \text {and }(a, b, x y, c) \in g,\right. \text { for some } \\
& a \in W-F, c \in W, \text { and } b \in V\} \\
\cup & \left\{2 \rightarrow y X^{m-|\beta(a b c) y|-2} 2: y \in T^{*}, \text { and }(a, b, y, c) \in g,\right. \text { for some } \\
& a \in W-F, c \in W, \text { and } b \in V\} .
\end{aligned}
$$

Furthermore,

$$
K=K_{1} \cup K_{2} \cup K_{3} \cup K_{4} \cup K_{5} \cup K_{6}
$$

where K_{1} through K_{6} are constructed as follows. Initially, set

$$
K_{i}=\emptyset
$$

for $i=1, \ldots, 6$. Then, extend K_{1} through K_{6} in the following way.
A. If

$$
(a, b, x, c) \in g, \text { where } b, c \in W, a \in V, \text { and } x \in V^{*}
$$

then

$$
\begin{aligned}
& K_{1}:=K_{1} \cup\left\{\left\{\mathbf{b}_{1}\right\}^{+}\{3\}^{+} \ldots\left\{\mathbf{b}_{\mathrm{n}}\right\}^{+}\{3\}^{+}\{2\}^{+}\left\{\mathbf{a}_{1}\right\}^{+}\{3\}^{+} \ldots\left\{\mathbf{a}_{\mathrm{n}}\right\}^{+}\{3\}^{+}\right. \\
&\left.(\{0,1,3\} \cup T)^{*} \mathbf{H}_{1} \ldots \mathbf{H}_{\mathrm{m}-|\beta(\mathbf{b a})|-2}\{\mathbf{2}\}^{+}\right\}
\end{aligned}
$$

where

```
\(a_{i}, b_{i} \in\{0,1\}\) for \(i=1, \ldots, n\)
\(a_{1} 3 \ldots a_{n} 3=\beta(a)\)
\(b_{1} 3 \ldots b_{n} 3=\beta(b)\)
\(H_{j}=\{X\}^{+}\), for all \(j=1, \ldots, m-4 n-2\)
\[
\begin{aligned}
& K_{2}:=K_{2} \cup\left\{\left\{\mathbf{b}_{\mathbf{1}}\right\}^{+}\{\mathbf{3}\}^{+} \ldots\left\{\mathbf{b}_{\mathbf{n}}\right\}^{+}\{\mathbf{3}\}^{+}\left\{\mathbf{a}_{\mathbf{1}}\right\}^{+}\{\mathbf{3}\}^{+} \ldots\left\{\mathbf{a}_{\mathbf{n}}\right\}^{+}\{\mathbf{3}\}^{+}\{\mathbf{2}\}^{+}\right. \\
&\left.(\{0,1,3\} \cup T)^{*} \mathbf{H}_{\mathbf{1}} \ldots \mathbf{H}_{\mathbf{m}-|\beta(\mathbf{b a})|-\mathbf{2}}\{\mathbf{2}\}^{+}\right\},
\end{aligned}
\]
```

where
$a_{i}, b_{i} \in\{0,1\}$ for $i=1, \therefore, n$
$a_{1} 3 \ldots a_{n} 3=\beta(a)$
$b_{1} 3 \ldots b_{n} 3=\beta(b)$
$H_{j}=\{X\}^{+}$, for all $j=1, \ldots, m-4 n-2$

$$
\begin{aligned}
K_{3}:=K_{3} \cup & \left\{\delta\left\{\left(\mathbf{b}_{\mathbf{1}}\right)\right\}^{+}\{\mathbf{3}\}^{+} \ldots\left\{\delta\left(\mathbf{b}_{\mathbf{n}}\right)\right\}^{+}\{\mathbf{3}\}^{+}\left\{\delta\left(\mathbf{a}_{\mathbf{1}}\right)\right\}^{+}\{\mathbf{3}\}^{+} \ldots\right. \\
& \left\{\delta\left(\mathbf{a}_{\mathbf{n}}\right)\right\}^{+}\{\mathbf{3}\}^{+}\left\{\mathbf{c}_{\mathbf{1}}\right\}^{+}\{\mathbf{3}\}^{+} \ldots \\
& \left\{\mathbf{c}_{\mathbf{n}}\right\}^{+}\{\mathbf{3}\}^{+}\{\mathbf{2}\}^{+}\left(\{0,1,3\}^{*}\left\{\mathbf{d}_{\mathbf{1}}\right\}^{+}\{\mathbf{3}\}^{+} \ldots\right. \\
& \left.\left\{\mathbf{d}_{|\mathbf{x}|}\right\}^{+}\{\mathbf{3}\}^{+} \mathbf{H}_{\mathbf{1}} \ldots \mathbf{H}_{\mathbf{m}-\mid \beta(\text { bacx }) \mid-\mathbf{2}}\{\mathbf{2}\}^{+}\right\}
\end{aligned}
$$

where

$$
\begin{aligned}
& a_{i}, b_{i}, c_{i}, d_{i} \in\{0,1\}, \text { for } i=1, \ldots, n \\
& a_{1} 3 \ldots a_{n} 3=\beta(a) \\
& b_{1} 3 \ldots b_{n} 3=\beta(b) \\
& c_{1} 3 \ldots c_{n} 3=\beta(c) \text { for some } c \in V \\
& d_{1} 3 \ldots d_{|x|} 3=\beta(x) \\
& H_{j}=\{X\}^{+}, \text {for all } j=1, \ldots, m-\mid \beta(\text { bacx }) \mid-2 .
\end{aligned}
$$

B. If

$$
x \in V^{*}, y \in T^{+}, \text {and }(a, b, x y, c) \in g \text { for some } b, c \in W \text { and } a \in V
$$

then

$$
\begin{aligned}
K_{4}:=\quad K_{4} \cup & \left\{\left\{\delta\left(\mathbf{b}_{\mathbf{1}}\right)\right\}^{+}\{\mathbf{3}\}^{+} \ldots\left\{\delta\left(\mathbf{b}_{\mathbf{n}}\right)\right\}^{+}\{\mathbf{3}\}^{+}\left\{\delta\left(\mathbf{a}_{\mathbf{1}}\right)\right\}^{+}\{\mathbf{3}\}^{+} \ldots\right. \\
& \left\{\delta\left(\mathbf{a}_{\mathbf{n}}\right)\right\}^{+}\{\mathbf{3}\}^{+}\left\{\mathbf{c}_{\mathbf{1}}\right\}^{+}\{\mathbf{3}\} \ldots \\
& \left\{\mathbf{c}_{\mathbf{n}}\right\}^{+}\{\mathbf{3}\}^{+}\{\mathbf{2}\}^{+}\{0,1,3\}^{*}\left\{\mathbf{d}_{\mathbf{1}}\right\}^{+}\{\mathbf{3}\}^{+} \ldots \\
& \left\{\mathbf{d}_{|\mathbf{x}|}\right\}^{+}\{\mathbf{3}\}^{+}\left\{\mathbf{e}_{\mathbf{1}}\right\}^{+} \ldots \\
& \left.\left\{\mathbf{e}_{|\mathbf{y}|}\right\}^{+} \mathbf{H}_{\mathbf{1}} \ldots \ldots \mathbf{H}_{\mathbf{m}-|\beta(\mathbf{b a c x}) \mathbf{y}|-\mathbf{2}}\{\mathbf{2}\}^{+}\right\}
\end{aligned}
$$

where
$a_{i}, b_{i} \in\{0,1\}$, for $i=1, \ldots, n$
$a_{1} 3 \ldots a_{n} 3=\beta(a)$
$b_{1} 3 \ldots b_{n} 3=\beta(b)$
$c_{1} 3 \ldots c_{n} 3=\beta(c)$ for some $c \in V$
$d_{1} 3 \ldots d_{|x|} 3=\beta(x)$
$e_{1} \ldots e_{|y|}=y$
$H_{j}=\{X\}^{+}$, for all $j=1, \ldots, m-|\beta(x)|-|y|-6 n-2$.
C. If

$$
x \in T^{*} \text { and }(a, b, x, c) \in g \text { for some } b, c \in W \text { and } a \in V
$$

then

$$
\begin{aligned}
K_{5}:=K_{5} \cup & \left\{\left\{\delta\left(\mathbf{b}_{\mathbf{1}}\right)\right\}^{+}\{\mathbf{3}\}^{+} \ldots\left\{\delta\left(\mathbf{b}_{\mathbf{n}}\right)\right\}^{+}\{\mathbf{3}\}^{+}\left\{\delta\left(\mathbf{a}_{1}\right)\right\}^{+}\{\mathbf{3}\}^{+} \ldots\right. \\
& \left\{\delta\left(\mathbf{a}_{\mathbf{n}}\right)\right\}^{+}\{\mathbf{3}\}^{+}\left\{\mathbf{c}_{\mathbf{1}}\right\}^{+}\{\mathbf{3}\} \ldots\left\{\mathbf{c}_{\mathbf{n}}\right\}^{+}\{\mathbf{3}\}^{+}\{\mathbf{2}\}^{+}\{0, \mathbf{1}, 3\}^{*} \\
& \mathbf{T}^{+}\left\{\mathbf{e}_{\mathbf{1}}\right\}^{+} \ldots\left\{\mathbf{e}_{|\mathbf{x}|}^{+} \mathbf{T}^{*} \mathbf{H}_{\mathbf{1}} \ldots \mathbf{H}_{\mathbf{m}-|\beta(\mathbf{b a c}) \times \mathbf{x}|-\mathbf{6 n}-\mathbf{3}}\{\mathbf{2}\}^{+}\right\}
\end{aligned}
$$

> where

$$
a_{i}, b_{i} \in\{0,1\}, \text { for } i=1, \ldots, n
$$

$$
a_{1} 3 \ldots a_{n} 3=\beta(a)
$$

$$
b_{1} 3 \ldots b_{n} 3=\beta(b)
$$

$$
c_{1} 3 \ldots c_{n} 3=\beta(c) \text { for some. } c \in V
$$

$$
e_{1} \ldots e_{|x|}=x
$$

$$
H_{j}=\{X\}^{+}, \text {for all } j=1, \ldots, m-|x|-6 n-3
$$

D. If

$$
b \in F
$$

then

$$
\begin{aligned}
& K_{6}:=K_{6} \cup\left\{\left\{\delta\left(\mathbf{b}_{1}\right)\right\}^{+}\{\mathbf{3}\}^{+} \ldots\left\{\delta\left(\mathbf{b}_{\mathbf{n}}\right)\right\}^{+}\{\mathbf{3}\}^{+} \mathbf{H}_{\mathbf{1}} \ldots \mathbf{H}_{\mathbf{m}-\mathbf{2 n}-\mathbf{1}} \mathbf{T}^{+} T^{*}\right\} \\
& \text { where } \\
& b_{i} \in\{0,1\} \text {, for all } i=1, \ldots, n \\
& b_{1} 3 \ldots b_{n} 3=\beta(b) \\
& H_{j}=\{X\}^{+}, \text {for all } j=1, \ldots, m-|\beta(b)|-1
\end{aligned}
$$

Main Idea:

Observe that G derives no sentential form that contains a subword consisting of two identical nonterminals. Considering this essential property, examine the construction of G to see that every successful derivation simulates a successful derivation in Q. To give an insight into this simulation in greater detail, assume that Q makes this derivation step

$$
a v b \Rightarrow v x c
$$

according to $(a, b, x, c) \in g$. By using selectors constructed in A, G simulates $a v b \Rightarrow$ $v x c$ by making the following three steps.

$$
\begin{aligned}
\beta(b) 2 \beta(a v) X^{m-|\beta(b a)|-2} 2 & \Rightarrow \beta(b a) 2 \beta(b a) 2 \beta(v) X^{m-|\beta(b a)|-2} 2 \\
& \Rightarrow \delta(\beta(b a)) \beta(c) 2 \beta(v x) X^{m-|\beta(b a c x)|-2} 2 \\
& \Rightarrow \beta(c) 2 \beta(v x) X^{m-4 n-2} 2 .
\end{aligned}
$$

By analogy with these steps, G uses selectors constructed in B and C to simulate $Q^{\prime} s$ derivation steps that produce terminals appearing in the generated word. Finally, it uses a selector constructed in D to complete the simulation. As a result, $L(Q)=L(G)$.

Formal Proof (Sketch):
Hereafter, by

$$
u \Rightarrow v[i]
$$

in G, where $i \in\{1, \ldots, 6\}$, this proof symbolically expresses that G makes $u \Rightarrow v$ by using a component from K_{i}. For brevity, the rest of this proof omits some details, which the reader can easily fill in. Examine K to see that in G, every successful derivation, $2 \Rightarrow^{+} v$ with $v \in T^{+}$, has this form

$$
\begin{aligned}
& 2 \Rightarrow x_{0} \\
& \Rightarrow x_{1_{1}} \quad[1] \Rightarrow x_{1_{2}}[2] \quad \Rightarrow x_{13} \quad[3] \\
& \Rightarrow \quad x_{2_{1}} \quad[1] \quad \ldots \\
& \Rightarrow x_{t_{1}} \quad[1] \Rightarrow x_{t_{2}} \quad[2] \quad \Rightarrow x_{t_{3}} \quad[3] \\
& \Rightarrow \begin{array}{lllllllll}
\Rightarrow & y_{1} & {[1]} & \Rightarrow & y_{2} & {[2]} & \Rightarrow & y_{3} & {[4]}
\end{array} \\
& \Rightarrow z_{1_{1}} \quad[1] \Rightarrow z_{1_{2}} \quad[2] \Rightarrow z_{1_{3}} \quad[5] \\
& \Rightarrow \quad z_{2_{1}} \quad[1] \quad \ldots \\
& \Rightarrow z_{h_{1}}[1] \Rightarrow z_{h_{2}}[2] \Rightarrow z_{h_{3}} \quad[5]
\end{aligned}
$$

where
(i) $x_{0}=\beta(b) 2 \beta(a) X^{m|\beta(b a)|-2} 2$ with $a b=R$
(ii) t is a non-negative integer, and for all $i=0, \ldots, t$, there exist $(a, b, v, c)^{\prime} \in g$ and $u \in V^{*}$ so that

$$
\begin{aligned}
& x_{i_{1}}=\beta(b a) 2 \beta(u) X^{m-|\beta(b a)|-2} 2 \\
& x_{i_{2}}=\delta(\beta(b a)) \beta(c) 2 \beta(u v) X^{m-|\beta(b a c v)|-2} 2 \\
& x_{i_{3}}=\beta(c) 2 \beta(u v) X^{m-2|\beta(c)|-2} 2
\end{aligned}
$$

(iii) there exist $w \in V^{*}$ and $(a, b, v u, c) \in g$ where $v \in V^{*}$ and $u \in T^{+}$, so that

$$
\begin{aligned}
& y_{1}=\beta(b a) 2 \beta(w) X^{m-|\beta(b a)|-2} 2 \\
& y_{2}=\delta(\beta(b a)) \beta(c) 2 \beta(w v) u X^{m-|\beta(b a c v) u|-2} 2 \\
& y_{3}=\beta(c) 2 \beta(w v) u X^{m-2|\beta(c)|-2} 2
\end{aligned}
$$

(iv) h is a non-negative integer, and for all $i=0, \ldots, h$, there exist $u \in V^{*}, w \in$ T^{+}, and $(a, b, v, c) \in g$ with $v \in T^{*}$ so that

$$
\begin{aligned}
& z_{i_{1}}=\beta(b a) 2 \beta(u) w X^{m-|\beta(b a)|-2} 2 \\
& z_{i_{2}}=\delta(\beta(b a)) \beta(c) 2 \beta(u) w v X^{m-|\beta(b a c) v|-2} 2 \\
& z_{i_{3}}=\beta(c) 2 \beta(u) w v X^{m-2|\beta(c)|-2} 2
\end{aligned}
$$

(v) $r=\delta(\beta(b)) v X^{m-|\beta(c)|-1}$ with $b \in F$.

Observe that there also exists the following derivation

$$
\begin{aligned}
R & \Rightarrow \rho\left(\beta^{-1}\left(\sigma\left(x_{1_{3}}\right)\right)\right) \ldots \Rightarrow \rho\left(\beta^{-1}\left(\sigma\left(x_{h_{3}}\right)\right)\right) \\
& \Rightarrow \rho\left(\beta^{-1}\left(\sigma\left(y_{3}\right)\right)\right) \\
& \Rightarrow \rho\left(\beta^{-1}\left(\sigma\left(x_{1_{3}}\right)\right)\right) \ldots \Rightarrow \rho\left(\beta^{-1}\left(\sigma\left(x_{h_{3}}\right)\right)\right) \\
& \Rightarrow \rho\left(\beta^{-1}(\sigma(r))\right)
\end{aligned}
$$

in Q. Notice that $\rho\left(\beta^{-1}(\sigma(r))\right)=v$. Thus, if in $G, 2 \Rightarrow^{*} v$ with $v \in T^{+}$, then $v \in L(Q)$; therefore,

$$
L(G)-\{\varepsilon\} \subseteq L(Q)-\{\varepsilon\}
$$

Notice that in Q, every successful derivation, $R \Rightarrow^{*} v f$ with $v \in T^{+}$and $f \in F$, has this form

$$
\begin{aligned}
R & \Rightarrow^{*} d_{1} d_{2} \ldots d_{n} y_{1} c_{1} \\
& \Rightarrow d_{2} \ldots d_{n} y_{1} y_{2} c_{2} \\
& \ldots \\
& \Rightarrow d_{n} y_{1} y_{2} \ldots y_{n} c_{n} \\
& \Rightarrow y_{1} y_{2} \ldots y_{n} f,
\end{aligned}
$$

where

$$
\begin{aligned}
& n \text { is a natural number } \\
& d_{k} \in V, \text { for } k=1, \ldots, n \\
& v=y_{1} y_{2} \ldots y_{n} \\
& y_{1} \neq \varepsilon \\
& y_{i} \in T^{*} \text {, for } i=2, \ldots, n \\
& c_{j} \in W-F, \text { for } j=1, \ldots, n \\
& f \in F .
\end{aligned}
$$

Consider any derivation expressed in this way in Q, and demonstrate that there also exists

$$
2 \Rightarrow^{+} v
$$

in G (a detailed version of this demonstration is left to the reader). Thus

$$
L(Q)-\{\varepsilon\} \subseteq L(G)-\{\varepsilon\}
$$

As $L(G)-\{\varepsilon\} \subseteq L(Q)-\{\varepsilon\}$ and $L(Q)-\{\varepsilon\} \subseteq L(G)-\{\varepsilon\}$,

$$
L(Q)-\{\varepsilon\}=L(G)-\{\varepsilon\}
$$

Because G has only the six nonterminals $0,1,2,3, X$, and Y, Lemma 1 holds.
Theorem 1 The family of languages generated by six-nonterminal multicontinuous grammars coincides with the family of recursively enumerable languages.

Proof: Obviously, every language generated by a six-nonterminal multi-continuous grammar represents a recursively enumerable language. The rest of this proof demonstrates that every recursively enumerable language is generated by a six-non terminal multi-continuous grammar.

Let L be a recursively enumerable language. Then, there exists a queue grammar, Q, such that $L(Q)=L$ (see Theorem 2.1 in [2]). By Lemma 1, there exists a six-nonterminal multi-continuous grammar,

$$
G=(T \cup\{0,1,2,3, X, Y\}, P, 2, T, K)
$$

satisfying $L(Q)-\{\varepsilon\}=L(G)-\{\varepsilon\}$. Consider the six-nonterminal multi-continuous grammar, G^{\prime}, defined as

$$
G^{\prime}=\left(T \cup\{0,1,2,3, X, Y\}, P \cup P^{\prime}, 2, T, K\right)
$$

with

$$
P^{\prime}=\{2 \rightarrow \varepsilon\} \text { if } \varepsilon \in L(Q), \text { and } P^{\prime}=\emptyset \text { if } \varepsilon \notin L(Q) .
$$

Observe that $L(G)-\{\varepsilon\}=L\left(G^{\prime}\right)-\{\varepsilon\}$. Because $L(Q)-\{\varepsilon\}=L(G)-\{\varepsilon\}, L(Q)-$ $\{\varepsilon\}=L\left(G^{\prime}\right)-\{\varepsilon\}$. Furthermore, by the definition of $P^{\prime}, \varepsilon \in L(Q)$ if and only if $\varepsilon \in L\left(G^{\prime}\right)$. Therefore,

$$
L\left(G^{\prime}\right)=L(Q)
$$

As $L(Q)=L$,

$$
L=L\left(G^{\prime}\right) .
$$

Therefore, this theorem holds.
Consider i-nonterminal multi-continuous grammars, where $i=1, \ldots, 5$. What is their generative power?

Acknowledgement: The author is indebted to the anonymous referee for useful comments concerning the first version of this paper.

References

[1] Dassow, J. and Paun, G.: Regulated Rewriting in Formal Language Theory. Springer, New York, 1989 .
[2] Kleijn, H. C. M. and Rozenberg, G.: "On the Generative Power of Regular Pattern Grammars," Acta Informatica, Vol. 20, pp. 391-411, 1983.
[3] Kleijn, H. C. M. and Rozenberg, G.: "Multi Grammars," International Journal of Computer Mathematics, Vol.12, pp. 177-201, 1983.
[4] Meduna, A. : "Six-Nonterminal Multi-Sequential Grammars Characterize the Family of Recursively Enumerable Languages," International Journal of Computer Mathematics, Vol. 65, pp. 179-189,1997.
[5] Meduna, A. : On the Number of Nonterminals in Matrix Grammars with Leftmost Derivations, in Paun, G. and Salomaa, A. (ed.), New Trends in Formal Languages, Lecture Notes of Computer Science 1218, 1997, 27-38
[6] Paun, Gh. : "Six Nonterminals are Enough for Generating each R. E. Language by a Matrix Grammar," International Journal of Computer Mathematics, Vol. 15, pp. 23-37, 1984.

Received May, 1997

[^0]: *Computing Center at Technical University of Brno, Udolni 19, Brno 60200, Czech Republic

