
Acta Cybernetica 13 (1998) 385-403. 

Decompositions of automata 
semigroups * 

Tatjana Petkovic* Miroslav Ciric* 

Abstract 

The purpose of this paper is to describe structural properties of automata 
whose transition semigroups have a zero, left zero, right zero or bi-zero, or 
are nilpotent extensions of rectangular bands, left zero bands or right zero 
bands, or are nilpotent. To describe the structure of these automata we 
use various well-known decomposition methods of automata theory - direct 
sum decompositions, subdirect and parallel decompositions, and extensions of 
automata. Automata that appear as the components in these decompositions 
belong to some well-known classes of automata, such as directable, definite, 
reverse definite, generalized definite and nilpotent automata. But, we also 
introduce some new classes of automata: generalized directable, trapped, one-
trapped, locally directable, locally one-trapped, locally nilpotent and locally 
definite automata. We explain relationships between the classes of all these 
automata. 

Keywords : automaton, transition semigroup, direct sum decomposition, 
directable automata, trapped automata, generalized directable automata, lo-
cally directable automata, generalized varieties. 

1. Introduction and preliminaries 
Transition semigroups of automata were first defined and studied by V. M. Glushkov 
in [16], 1961. The systematic study of relationships between the structure of au-
tomata and their transition semigroups was initiated by I. Peak in [23], 1964, and 
[24], 1965, and after that many authors worked on this important topic. Many of 
the results concerning this topic were collected in the book of F. Gecseg and I. Peak 
[14], in 1972, and in some other books. 
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The main aim of the present paper is to investigate structural properties of au-
tomata whose transition semigroups have some interesting properties, such as: to 
have a zero, left zero, right zero or bi-zero, to be a nilpotent extension of a rectan-
gular band, left zero band or right zero band, to be nilpotent, etc. To describe the 
structure of these automata we use various well-known decomposition methods of 
automata theory, such as direct sum decompositions, subdirect and parallel decom-
positions, and extensions of automata. Automata that appear as the components 
in these decompositions belong to some well-known classes of automata. These are 
directable automata, introduced by P. H. Starke in [30] and J. Cerny in [7], definite 
automata, defined first by S. C. Kleene in [20], and M. Perles, M. O. Rabin and E. 
Shamir in [25], reverse definite automata, introduced by J. A. Brzozowski in [5], and 
A. Ginzburg in [15], generalized definite automata, defined also by A. Ginzburg in 
[15], and nilpotent automata, that appeared first in the paper of L. N. Shevrin [29], 
and the book [14] by F. Gecseg and I. Peak. These automata were also studied by 
J. Cerny, A. Piricka and B. Rosenauerova in [8], M. Ito and J. Duske in [19], J. E. 
Pin in [26], [27] and [28], M. Steinby in [31], and others. These types of automata 
were recently investigated by B. Imreh and M. Steinby in [18]. 

However, it is also necessary to introduce some new classes of automata. In 
Section 2 we define and study some new types of automata: generalized directable 
automata, trapped automata, one-trapped automata, locally directable automata 
and locally one-trapped automata. In Section 3 we introduce locally nilpotent and 
locally definite automata, and we connect them with nilpotent, definite, reverse 
definite and generalized automata. Relationships between these types of automata 
will be explained in Section 4, where the classes of these automata will be treated 
as generalized varieties. Note that the concept of an automaton 'belonging locally' 
to a given class of automata was introduced by M. Steinby in [32] 

Automata considered throughout this paper will be automata without outputs 
in the sense of the definition from the book of F. Gecseg and I. Peak [14]. It 
is well known that automata without outputs, with the input alphabet X , can be 
considered as unary algebras of type indexed by X (we will say that they are of type 
X). This will be done throughout this paper. The notions such as a congruence, 
subautomaton, generating set etc., will have their usual algebraic meanings. In 
order to simplify notations, an automaton with the state set A will be also denoted 
by the same letter A. For any considered automaton A, its input alphabet will be 
denoted by X . In this paper we will aim our attention only to the case > 2. 
The free monoid over X, i.e. the input monoid of A, is denoted by X* and free 
semigroup over X is denoted by X+. Under action of an input word u £ X*, the 
automaton A goes from a state a into the state that will be denoted by au. For 
an arbitrary k e N, where N denotes the set of all positive integers, we denote by 
Xk the set of all words having the length k, and by X-k the set of all words of the 
length at least k. 

The transition semigroup S = 5(A) of an automaton A, in some origins called 
the characteristic semigroup of A, one can define in two equivalent ways. The first 
one is to define S(A) as a semigroup consisting of all transition mappings on A, 
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by which we mean the mappings rju, u 6 X+, defined by: at]u = au, for a £ A. 
Another way is to define S(A) to be the factor semigroup of the input semigroup 
X+ with respect to the Myhill congruence fi on X+ defined by: (u,v) £ p. if and 
only if au = av, for each a £ A. Note that (u,v) £ ¡i if and only if r)u = rjv. We 
will use the first way mostly. 

Rees congruences, a famous notion of semigroup theory, have their analogues 
in many other theories. It appears that in automata theory they were first defined 
by I. Babcsanyi in [2]. The Rees congruence on an automaton A determined by a 
subautomaton B of A is a congruence 9 defined in the following way: For a, b £ A we 
say that (a, b) £ 9 if and only if either a = 6 or a,b £ B holds. The factor automaton 
A/9 is usually denoted by A/B, and it is called a Rees factor automaton of A with 
respect to B. If B is a subautomaton of an automaton A and the Rees factor 
automaton A/B is isomorphic to an automaton C, we say that A is an extension 
of an automaton B by an automaton C. Clearly, the automaton C can be viewed 
as an automaton obtained from A by contraction of B into a single element. In 
other words, C is isomorphic to the automaton D defined in the following way: 
D — {A \ B) U {ao}, where do does not belong to A, and the transitions in D are 
defined by 

f ax, as in A, if a. ax £ A \ B 
CLX — \ } ao, if a £ A \ B and ax ^ A \ B, or a = ao 

We will usually identify the automata C and D. 
Another notion imported from semigroup theory is the following: If there exists 

a homomorphism ip of an automaton onto its subautomaton B such that aip = a, 
for each a £ B, then this homomorphism is called a retraction of A onto B and we 
say that A is a retractive extension of B by A/B. 

An automaton A is a direct sum of its subautomata Aa, a £ Y, if A = Uaey Aa 

and Aa fl Ap = 0 for all a,/3 € Y such that a /3. The equivalence relation 
that correspond to this partition of A is a congruence and it is called a direct 
sum congruence on A. More information about general properties of direct sum 
decompositions of automata can be found in [10]. Finally, we say that an automaton 
A is a parallel composition of automata B and C if it can be embedded into their 
direct product. 

For the notions and notations which are not explicitly defined here we refer to 
[6], [14] and [17]. 

2. Generalized directable automata 
As it was announced in the introduction, we will investigate automata whose transi-
tion semigroups have some kinds of zeroes. Recall that an element e of a semigroup 
S is called a left zero of S if es = e, for each s £ S, a right zero of S if se = e, 
for each s € S, and a zero of 5, if it is both a left and a right zero of 5. As a 
generalization of these notions we introduce the following notion: An element e of 
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a semigroup S will be called a bi-zero of S if ese = e, for each s £ S. First we 
describe semigroups having left, right or bi-zeroes. 

Lemma 1. A semigroup S has a bi-zero (resp. left zero, right zero) if and only if 
it is an ideal extension of a rectangular (resp. left zero, right zero) band. 

If e and f are bi-zeroes of S, then esf = ef, for each s £ S. 

Proof. Suppose that S has a bi-zero. Let E denote the set of all bi-zeroes of S. 
For an arbitrary e £ E we have e3 = e and e4 = ee2e = e, whence e2 = e. Thus, 
E is a band, and clearly, it is a rectangular band. On the other hand, for e £ E 
and s,t € S we have that (es)t(es) = e(st)es = es and (se)t(se) = se(ts)e = se. 
Therefore, es,se £ E, so E is an ideal of 5, which was to be proved. 

Conversely, let 5 be an ideal extension of a rectangular band E. Assume arbi-
trary e £ E and s £ S. Then es £ E, whence ese = e(es)e = e. Thus, e is a bi-zero 
of 5. 

The assertions concerning left and right zeroes can be proved similarly.. 
In the above notations, assume arbitrary e, / £ E and s £ S. Then sf £ E and 

/ = fef, whence esf = es(fef) = e(sf)ef = ef. This completes the proof of the 
lemma. • 

Using the previous one, we prove another lemma: 

Lemma 2. Let a semigroup S has a left (resp. right) zero. Then the set of all left 
(resp. right) zeroes of S coincides with the set of all bi-zeroes of S. 

If S has a zero, then it is unique and S does not have other left, right or bi-
zeroes. 

Proof. Let L and B denote the set of all left zeroes and the set of all bi-zeroes of 
S, respectively. Obviously, L C. B. Assume an arbitrary / £ B. Then / = fef. 
But, by Lemma 1, L is an ideal of S, whence f £ SLS C L. Therefore, L = B. 

The remaining assertions one proves similarly. • 

Now we are passing from semigroups to automata. First we recall some known 
notions. An automaton A is called a directable automaton if there exists a word 
u £ X* such that au = bu, for all a, b £ A. Such word is called a directable word 
and the set of all directable words of A is denoted by DW(A). 

A state a of A is called a trap of A if au = a, for each u £ A'*, that is, if the set 
{a} is a subautomaton of A [21]. If A has exactly one trap, it is called a one-trap 
automaton [3]. The set of all traps of A will be denoted by Tr(A). An automaton 
whose each state is a trap is called a discrete automaton [13]. 

The first new notion that we introduce is the following: An automaton A will 
be called a trapped automaton if there exists a word u £ A''* such that au £ Tr(A), 
for each a £ A. Such word will be called a trapping word, and the set of all trapping 
words of A will be denoted by TW(A). In other words, u £ TW(A) if and only 
if auv = au, for all a £ A and v £ X*. We also define an automaton A to be a 
one-trapped automaton if it is trapped and has exactly one trap. It is not hard to 
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verify that A is a one-trapped automaton if and only if there exists u £ X* such 
that auv = bu, for all a,b £ A and v £ X*. 

Third, we generalize directable automata as follows: An automaton A will be 
called a locally directable automaton if all monogenic subautomata of A are di-
rectable and they have common directing word. Here by a monogenic subautoma-
ton we call a subautomaton generated by a single state (called also cyclic). The 
condition that all monogenic subautomata must have the same directing word is 
fulfilled in each finite automaton, that is, a finite automaton is locally directable if 
and only if all its monogenic subautomata are directable. Equivalently, A is locally 
directable if there exists u £ X* such that avu = au, for all a £ A and v £ X*. 
Such word will be called a locally directing word, and the set of all locally directing 
words of A will be denoted by LDW(A). 

Similarly, an automaton A will be called a locally one-trapped automaton if all 
monogenic subautomata of A are one-trapped automata and they have common 
trapping word. Such words will be called a locally one-trapping word of A and the 
set of all such words will be denoted by LOTW(A). In other words, A is a locally 
one-trapped automaton if and only if there exists u £ X* such that apuq — au, for 
all a € A and p,q € X*. A finite automaton is locally one-trapped if and only if 
all its monogenic subautomata are one-trapped. 

The fifth new notion that we introduce here is a common generalization of 
directable, locally directable and trapped automata. Namely, an automaton A is 
said to be a generalized directable automaton if there exists u £ X* such that 
auvu = au, for all a £ A and v £ X*. Such word will be called a generalized 
directing word of A. The set of all generalized directing words of an automaton 
A will be denoted by GDW(A). We have chosen these names because an analogy 
with generalized definite automata, that will be considered in the next section. 

The following lemma, that can be easily checked, establishes some relationships 
between these automata and the above considered semigroups. 

Lemma 3. Let A be an automaton and u £ X*. Then u £ GDW(A) (resp. 
u £ TW(A), u £ LDW(A), u £ LOTW(A)) if ajid only if r]u is a bi-zero (resp. 
left zero, right zero, zero) of S(A). 

The next lemma is an immediate consequence of Lemmas 1, 2 and 3. 

Lemma 4. For an automaton A, GDW(A), TW(A) and LDW(A) are ideals of 
X*. Moreover, the following conditions hold: 

(1) TW(A) ± 0 implies TW{A) = GDW(A); 

(2) LDW(A) ± 0 implies LDW(A) = GDW(A); 

(3) LOTW(A) ± 0 implies LOTW{A) = LDW(A) = TW(A) = GDW(A); 

(4) TW(A) ± 0 and LDW(A) ± 0 implies LOTW(A) £ 0 . 

Now we are ready to prove one of the main theorems of the paper. 
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Theorem 1. The following conditions on an automaton A are equivalent: 

(i) S(A) has a bi-zero; 

(ii) A is an extension of a locally directable automaton by an one-trapped automa-
ton; 

(iii) A is a generalized directable automaton. 

Proof. (i)-i=>(iii). This follows by Lemma 3. 
(iii)=>(ii). Let B — {au \a £ A, u £ GDW(A)}. Since GDW(A) is an ideal of 

X*, B is a subautomaton of A. Let a0 be the trap of A/B which is the image of 
B under the natural homomorphism of A onto A/B. For arbitrary a £ A \ B and 
u £ GDW(A) we have that au £ B in A, that is au = a0 in A/B, so A/B is an 
one-trapped automaton. 

Assume arbitrary b £ B, v £ X+ and w £ GDW(A). Then we have that 
b = au, for some a £ A and u £ GDW(A), and now (bv)w = auvui = auw = bw, 
by Lemma 1. This completes the proof of the implication (iii)=>(ii). 

(ii)=>(iii). Let A be an extension of a locally directable automaton B by an 
one-trapped automaton A/B. Let v £ LDW(B) and u £ T W ( A / B ) . Assume 
now arbitrary a £ A and w £ X*. Then au £ B, and since the subautomaton 
S(au) of B generated by au is directable, with v as one of its directing words, and 
au,auviuu £ S(au), then auv = auvwuv. Therefore, uv £ GDW(A) and A is a 
generalized directable automaton. • 

Locally directable automata, that appear in the above theorem, will be charac-
terized by the next theorem. 

Theorem 2. The following conditions on an automaton A are equivalent: 

(i) S(A) has a right zero; 

(ii) A is a direct sum of directable automata with the same directing word; 

(iii) A is a locally directable automaton. 

If A is a finite automaton, then the condition (ii) can be replaced by the following 
condition: 

(ii') A is a direct sum of directable automata. 

Proof. (i)<s>(iii). This follows by Lemma 3. 
(iii)=>(ii). Assume an arbitrary u £ LDW(A) and define a relation g on A by: 

(a, b) £ g <£> au = bu. Obviously, g is an equivalence relation on A and (av, a) £ g, 
for all a 6 A and v £ X*. Therefore, by Lemma 3.1 of [10] we have that Q is a 
direct sum congruence on A. 

Let B be an arbitrary p-class of A. Assume arbitrary a,b £ B. Then au = bu, 
so B is a directable automaton, with u as one of its directing words. This completes 
the proof of the implication (iii) => (ii). 
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(ii)=>(iii). Let A be a direct sum of directable automata Aa, a £ Y, and let 
there exists a word u £ X* such that it is a directing word for all Aa, a £ Y. 
Assume arbitrary a £ A and v £ X*. Then a,av £ Aa, for some a £ Y, and since 
Aa is directable and u £ DW(Aa), then avu = au, which was to be proved. 

If A is finite and if (ii') holds, then A is a direct sum of finitely many directed 
automata A\,..., A\t, and if we assume an arbitrary Uj £ DW(Ai), i £ { 1 , . . . , k}, 
then u = ui • • • uk £ DW(Ai), for each i £ {l,...,k}, by Remark 3.2 of [18]. This ' 
completes the proof of the theorem. • 

The next our goal is to characterize automata whose transition semigroups have 
left zeroes. 

Theorem 3. The folloviing conditions on an automaton A are equivalent: 

(i) S(A) has a left zero; 

(ii) A is an extension of a discrete automaton by an one-trapped automaton; 

(iii) A is a trapped automaton. 

Proof. (i)<=>(iii). This follows by Lemma 3. 
(iii)=>(ii). By (i)<^(iii) and Lemma 4, every trapped automaton A is a gener-

alized directable automaton and TW{A) = GDW(A). As was proved in (iii)=^(ii) 
of Theorem 1, A is an extension of an automaton B = {au | a £ A, u £ GDW(A)} 
by an one-trapped automaton, and since GDW (A) = TW(A), then B is a discrete 
automaton. 

(ii)=>(iii). Let A be an extension of a discrete automaton B by an one-trapped 
automaton A/B and let u £ Tr(A/B). Then for each a £ A we have that au £ 
B = Tr(A), so we have proved that A is trapped. • 

We will finish this section considering automata whose transition semigroups 
have a zero. 

Theorem 4. The following conditions on an automaton A are equivalent: 

(i) S(A) has a zero; 

(ii) A is a retractive extension of a discrete automaton by an one-trapped automa-
ton; 

(iii) A is a direct sum of one-trapped automata with the same trapping word; 

(iv) A is a subdirect product of a discrete automaton and an one-trapped automa-
ton; 

(v) A is a parallel composition of a discrete automaton and an one-trapped au-
tomaton; 

(vi) A is a locally one-trapped automaton; 
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If A is a finite automaton, then the condition (iii) can be replaced by the following 
condition: 

(iii') A is a direct sum of one-trapped automata. 

Proof, (i)^(vi). This follows by Lemma 3. 
(vi)=>(ii). Let A be a locally one-trapped automaton. Assume an arbitrary 

u £ LOTW{A). Then A is trapped, and by Theorem 3, A is an extension of 
a discrete automaton B = Tr(A) by a one-trapped automaton A/B. Define a 
mapping (p of A into B by: for a £ A, cup = au. Since au £ Tr(A) and A is locally 
one-trapped, for each v £ X* we have that (av)ip = avu = au = auv = (aip)v, 
so (/3 is a homomorphism. On the other hand, if a £ B, then it is a trap and 
aip = au = a. Therefore, ip is a retraction of A onto B, which was to be proved. 

(ii)=>(iii). Let A be a retractive extension of a discrete automaton B by a 
one-trapped automaton A/B. Let ip be a retraction of A onto B and let u be an 
arbitrary trapping word of A/B. For b £ B, let Ab = bip"1. Since an inverse 
homomorphic image of a subautomaton is also a subautomaton, then Ab, b £ B, 
are subautomata of A and A is a direct sum of these automata. Clearly, b is the 
unique trap of At, and u is a trapping word of Af>. Thus, we have proved (iii). 

(iii)=>(iv). Let A be a direct sum of one-trapped automata AA, a £ Y, that have 
the same trapping word u. Let a denote the corresponding direct sum congruence 
on A. As we know, A/A is a discrete automaton. On the other hand, B = TR(A) 
is a subautomaton of A. Let g denote the Rees congruence on A determined by 
B. Obviously, A/G is an one-trapped automaton, with u as one of its trapping 
words. Finally, A fl g = A, since each cr-class contains exactly one trap of A. Here 
A denotes the equality relation on A. Therefore, A is a subdirect product of A/A 
and A/Q, so we have proved (iv). 

(iv)=>(v). This implication is obvious. 
(v)=>(vi). Let A be a parallel composition of a discrete automaton B and a 

one-trapped automaton C. Let </> be an embedding of A into B x C, and let u be 
an arbitrary trapping word of C. Assume arbitrary a £ A and p, q £ X*. Then 
a<p = (b, c) for some b £ B and c £ C, so (apuq)<j> = (a<f)puq = (bpuq,cpuq) = 
(b,cu) = (bu,cu) = (acp)u = (au)4), whence apuq = au, which was to be proved. 

If A is finite and if (iii') holds, then A is a direct sum of finitely many one-trapped 
automata A\,..., and if we assume an arbitrary Uj 6 TW(Ai), i £ { 1 , . . . , k}, 
then u = ui • • • Uk £ TW(Ai), for each i £ { 1 , . . . , k], by Lemma 4. This completes 
the proof of the theorem. • 

3. Generalized definite automata 
In this section we study the class of generalized definite automata and some of its 
well-known subclasses, from the aspect of properties of transition semigroups of 
automata belonging to these classes. 

First we recall some known definitions. An automaton A is called a definite 
automaton if there exists fceN such that au = bu, for all a,b £ A and u £ X-k, or 
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equivalently, if X-k C DW(A), for some k £ N. The smallest number having this 
property is called the degree of definiteness of A. Similarly, A is called a reverse 
definite automaton if there exists k £ N such that auv = au, for all a £ A, u £ X-k 

and v £ X*, that is, if X^k C TW(A), for some k £ N. The smallest number 
having this property is called the degree of reverse definiteness of A. 

An automaton A is called a nilpotent automaton if it has a unique trap and 
there exists k £ N such that each word u £ X-k is a trapping word. In other 
words, A is nilpotent if and only if there exists k £ N such that auv = bu, for all 
a,b £ A, u £ X-k and v £ X*. The smallest number having this property is called 
the degree of nilpotency of A. An extension A of an automaton B will be called a 
nilpotent extension of B if the factor automaton A/B is nilpotent. Clearly, A is a 
nilpotent extension of B if and only if there exists k £ N such that au £ B for all 
a £ A and u £ X^k. 

As in the previous section, we give some new definitions regarding some "local" 
properties of automata. An automaton A will be called locally definite if all its 
monogenic subautomata are definite and their degrees of definiteness are bounded. 
For finite automata the second condition is obviously fulfilled and it can be omitted. 
Equivalently, A is locally definite if and only if there exists k £ N such that avu = 
au, for all a £ A, v £ X* and u £ X-k. 

Similarly, A is said to be locally nilpotent if all its monogenic subautomata are 
nilpotent and their degrees of nilpotency are bounded. As in the previous case, the 
second condition can be omitted for finite automata. In other words, A is locally 
nilpotent if and only if there exists k £ N such that apuq — au, for all a £ A, 
p,q £ X* and u £ X^k. 

Finally, by a generalized definite automaton we mean an automaton for which 
there exist k,m £ N such that aupv = auqv, for all a £ A, p,q £ X*, u £ X-k and 
v £ X-m. These automata are described by the following theorem: 

Theorem 5. The following conditions on an automaton A are equivalent: 

(i) S(A) is a nilpotent extension of a rectangular band; 

(ii) A is a nilpotent extension of a locally definite automaton; 

(iii) A is a generalized definite automaton; 

(iv) (3k £ N)(VM G X-F C)(VA G A)(VI> G X*) auvu = au. 

Proof. (i)=i>(iii). Let 5 be a nilpotent extension of a rectangular band E, i.e. 
Sk = E, for some k £ N. Assume arbitrary u,v £ X-k, p,q £ X* and a £ A. Then 
rju,riv £ E, whence r]upv = r}ur]pr]v = r)uriv = rjur]qriv = rjuqv, whence aupv = auqv, 
which was to be proved. 

(iii)=>(iv). If A is generalized definite, then there exist m,n £ N such that 
aupv = auqv, for all a £ A, p,q £ X*, u £ X-m and v £ X-n. Let k — m + n, 
w £ X-k, a £ A and p £ X*. Then w = uv, for some u £ X-m and v £ X-n, 
whence awpw = au{ypu)v = auv = aw. Therefore, (iv) holds. 
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(iv)=>(i). We see that A is a generalized directable automaton, so 5 is an ideal 
extension of a rectangular band E consisting of all bi-zeroes of 5. Moreover, the 
condition (iv) means that X-k.C GDW(A), for some k £ N, so we conclude the 
following: if s £ Sk, then s = rju, where u can be chosen to be in X-k, that is, to 
be in GDW(A). Now by Lemmas 1 and 3 we have that s = G E. Therefore, 
Sk = E, which was to be proved. 

(iv)=>(ii). Since A is a generalized directable automaton, then by Theorem 1, it 
is an extension of a locally directable automaton B = {au \ a G A, u G GDW(A)} 
by a one-trapped automaton A/B. But, by (iv) we have that X-k C GDW(A), for 
some k G N, so au G B, for any a G A and u G X-k. Therefore, A/B is a nilpotent 
automaton. Assume arbitrary b G B, u G X-k and v G X*. Then b = aw, for some 
w G X-k, so by Lemmas 1 and 3 it follows that bvu = awvu = awu ~ bu, since 
u,w G X^k C GDW(A). Thus, B is locally definite. 

(ii)=>(iii). Let A be a nilpotent extension of a locally definite automaton B. 
Then there exists k G N such that au G B. for all a G A and u G X~k, and there 
exists m G N such that bwv = bv, for all 6 G B, w G X* and v G X-m. Assume 
now arbitrary u G X-k, v G X-m, a £ A and p,q G X*. Then au G B yields 
aupv = (au)pv = (au)v = (au)qv = auqv. Therefore, A is generalized definite. • 

The condition (iv) will be used here as a simpler definition of the generalized 
definiteness. Note again that this condition means that X-k C GDW(A), for some 
k G N. 

Next we intend to describe structure of locally definite automata that -appear 
in the preceding theorem. 

Theorem 6. The following conditions on an automaton A are equivalent: 

(i) 5(A) is a nilpotent extension of a right zero band; 

(ii) A is a direct sum of definite automata with bounded degrees of definiteness; 

(iii) A is a locally definite automaton. 

If A is a finite automaton, then the condition (ii) can be replaced by the following 
condition: 

(ii') A is a direct sum of definite automata. 

Proof. (i)=>(iii). Let 5 be a nilpotent extension of a right zero band E. Assume 
k G N such that Sk = E. In view of Lemmas 1 and 3, Sk = E implies that 
X-k C LDW(A), which is clearly equivalent to the condition (iii). 

(iii)=>(i). Clearly, A is generalized definite, so by Theorem 5 it follows that 5 
is a nilpotent extension of a rectangular band E which consists of all bi-zeroes of 
5. On the other hand, A is locally directable, so by Theorem 2 and Lemmas 1 and 
2 we have that E is also the set of all right zeroes of 5, i.e. it is a right zero band. 

(iii) =>(ii)- Assume k G N such that avu = a,u, for all a G A, u G X-k and 
v £ X*. Let a relation g on A be defined by: (a, b) £ g <=> (Vu G X-k) au = bu. 
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It is easy to see that Q is an equivalence relation on A. On the other hand, the 
definition of local definiteness implies that Q is a direct sum congruence on A. Let 
B be an arbitrary g-class of A and a,b G B. Then au = bu, for each u € X-k, so B 
is a definite automaton whose degree of definiteness does not exceed k. Therefore, 
(ii) holds. 

(ii)=i>(iii). Let A be a direct sum of definite automata Aa, a € Y, and let k 
be a bound of their degrees of definiteness. Assume arbitrary a G A, v G X* and 
v, G X-k. Then a,av G Aa, for some a G Y, so avu = au, since u G DW(Aa). 
This proves (iii). 

As in the proof of Theorem 2 we show that (ii) is equivalent to (ii1) for all finite 
automata. • 

An automaton A is called a reset automaton if it is a definite automaton with 
the degree of definiteness equal to 1, that is if ax = bx, for all a, b G A and x G X. 
If all monogenic subautomata of A are reset, we will say that A is a locally reset 
automaton. In other words, A is locally reset if and only if aux = ax, for all a G A, 
x G X and u G X*. As an immediate consequence of the previous theorem we have 
the following: 

Corollary 1. The following conditions on an automaton A are equivalent: 

(i) S(A) is a right zero band; 

(ii) A is a direct sum of reset automata; 

(iii) A is a locally reset automaton. 

Next we consider automata whose transition semigroups are nilpotent extensions 
of left zero bands. 

Theorem 7. The following conditions on an automaton A are equivalent: 

(i) 5(A) is a nilpotent extension of a left zero band; 

(ii) A is a nilpotent extension of a discrete automaton; 

(iii) A is a reverse definite automaton. 

Proof, (i)o(iii). Assume k G N such that Sk = E is a left zero band. Then s G E 
if and only if s = 7]u, for some u G X-k, and, on the other hand, rju G E if and 
only if u G TW(A). Therefore, Sk is a left zero band, for some k G N, if and only 
if A is reverse definite. 

(iii) =>(ii)- By Theorem 3, A is an extension of a discrete automaton B by a 
one-trapped automaton A/B, and then B = Tr(A). On the other hand, by (iii) it 
follows that there exists k G N such that au G B, for each u G X-k. Thus, A/B is 
a nilpotent automaton, which was to be proved. 

(ii)=>(iii). Let A be a nilpotent extension of a discrete automaton B. Clearly, 
B = Tr(A). Let k be the degree of nilpotency of A/B, and assume arbitrary 
u G X-k, a G A and v G X*. Then au G B, whence auv = au. Thus, A is reverse 
definite. • 
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Theorem 8. The following conditions on an automaton A are equivalent: 

(i) S(A) is a nilpotent semigroup; 

(ii) A is a retractive nilpotent extension of a discrete automaton; 

(iii) A is a direct sum of nilpotent automata with bounded degrees of nilpotency; 

(iv) A is a subdirect product of a discrete automaton and a nilpotent automaton; 

(v) A is a parallel composition of a discrete automaton and a nilpotent automaton; 

(vi) A is a locally nilpotent automaton; 

If A is a finite automaton, then the condition (iii) can be replaced by the following 
condition: 

(iii') A is a direct sum of nilpotent automata. 

Proof. Note that the equivalence of conditions (i) and (iii) was discovered by L. 
N. Shevrin in [29], and one proof of this assertion can be found in the book of F. 
Gecseg and I. Peak [14]. However, here we will give another proof of this assertion. 

( i )o(vi) . We see that A is locally nilpotent if and only if X^k C LOTW{A), 
for some k £ N. But, this holds if and only if S has a zero 0 and Sk = {0} , for 
some k £ N, by Lemma 3. 

(vi)=>(ii). By Theorem 4, A is a retractive extension of a discrete automaton B 
by an one-trapped automaton. On the other.hand, by Theorem 7, A is a nilpotent 
extension of a discrete automaton C. Clearly, B = C, so (ii) is proved. 

(ii)=>(iii). This one proves similarly as the corresponding part of the proof of 
Theorem 4. 

(iii)=>(iv). Let A be a direct sum of nilpotent automata AA, a £ Y, and let 
k be a bound of the degrees of nilpotency of the summands AA, a £ Y. By the 
proof of Theorem 4, A is a subdirect product of a discrete automaton A / a and an 
one-trapped automaton A/Q, where er and g are congruences on A defined as in 
the proof of Theorem 4. It is not hard to check that A/G is a nilpotent automaton 
with the degree of nilpotency which does not exceed k. 

(iv)=>(v). This is obvious. 
(v)=^(vi). Let A be a parallel composition of a discrete automaton B and a 

nilpotent automaton C. Then X-k C LOTW(C), for some k £ N, and if assume 
arbitrary u £ X-k, a £ A and p, q £ X*, as in the proof of Theorem 4 we obtain 
that apuq = au, which was to be proved. 

The rest of the proof can be proved similarly as the related parts of the proof 
of Theorems 4 and 6. • 

Note that finite semigroups which are nilpotent extensions of rectangular bands 
are known as locally trivial semigroups. Languages that correspond to these semi-
groups, in the sense of the Eilenberg's theorem, were characterized in the book [28] 
by J. E. Pin. Languages that correspond to finite nilpotent semigroups, and finite 
semigroups which are nilpotent extensions of left and right zero bands, were also 
described in this book. 
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4. Characterizations through generalized varieties 
Treatment of X-automata as unary algebras of type X gives possibility to study 
varieties of X-automata and certain their generalizations, such as generalized vari-
eties and pseudo-varieties. In this section we use this possibility to characterize the 
classes considered in the previous two sections as generalized varieties of automata. 

A class K of X-automata is called a variety if it is closed under homomorphisms, 
subautomata and direct products, a generalized variety, if it is closed under homo-
morphisms, subautomata, finite direct products and arbitrary direct powers, and 
it is called a pseudo-variety if it consists only of finite automata and it is closed 
under homomorphisms, subautomata and finite direct products. As was proved 
by C. J. Ash in [1], K is a generalized variety if and only if it is a directed union 
of varieties, and it is a pseudo-variety if and only if it is the intersection of some 
generalized variety and the pseudo-variety of all finite X-automata. Generalized 
varieties will be here usually denoted by bold face letters. For a generalized variety 
K, the corresponding pseudo-variety, consisting of all finite automata from K, will 
be denoted by K. 

As known, a class of algebras of a given type r is a variety if and only if it can 
be equationally defined, that is, if it is the class of all algebras of type r that satisfy 
a given set of identities of type r. It is also known that this set of identities can 
be chosen so that at most countably many variables occur in them. For automata, 
this set of variables can be obviously reduced to at most two variables. So we will 
consider identities of type X in at most two variables, that is, the identities of the 
form gu = hv or gu = gv, where u,v G X* and g and h are variables that take their 
values in the set of states of an automaton. If a family {gui = hvl } i e / of identities 
of type X is given, then [gui = hvi \ i G / ] will denote the variety of X-automata 
determined by this family of identities. 

We introduce the following notations: 

Notation Class of automata Notation Class of automata 
GDir generalized directable GDef generalized definite 
LDir locally directable LDef locally definite 
Dir directable Def definite 
Trap trapped RDef reverse definite 
LOTrap locally one-trapped LNilp locally nilpotent 
OTrap one-trapped Nilp nilpotent 
D discrete O trivial 

Table 1 

Let Ki and K> be two classes of X-automata. Then their Mal'cev product K\ o 
K-2 is defined as the class of all X-automata A such that there exists a congruence 
q on A so that A/q belongs to K2 and every £>-class which is a subautomaton of A 
belongs to K\. For example, OTrap o K is the class of all extensions of automata 
from K by one-trapped automata, and D o K denotes the class of all automata that 
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are direct sums of automata from K. Especially, D • Dir will denote all direct sums 
of directable automata with the same directing word, D *Def will denote all direct 
sums of definite automata with bounded degrees of definiteness, D • OTrap will 
denote all direct sums of one-trapped automata with the same trapping word, and 
D • Nilp will denote all direct sums of nilpotent automata with bounded degrees 
of nilpotency. 

Now we are ready to prove the following theorem: 

Theorem 9. The classes defined in Table 1 are pairwise different generalized va-
rieties and the following figure represents their inclusion diagram: 

Trap = OTrap o D 

RDef = Nilp o D 

LOTrap = D 

LNilp = D • Nilp' 

Moreover, they form a semilattice under the set intersection. 

Proof. Clearly, D and O are varieties. Other classes can be represented in the 
following way: 

GDef = \J [guwu = gu\u £ X-k, w £ X*] 
FCGN 

Def = \J [gu = hu\u £ X^k], 
k£N 

RDef = (J [guw = gu I u £ X-k, w £ X * ] , 
fceN 

Nilp = U [guw = hu I u £ X^k, w £ A'*], 
fcew 

LDef = (J [gwu = gu | u e X-k, w £ X*}, 
ken 

GDir = (J [guwu = gu\w £ X* 
«ex« 

Dir = U [gu = hu], 
u€X* 

Trap = (J [guw = gu | w G X*], 
uex* 

OTrap = (J [guw = hu j i u £ l * 
uex• 

LDir = U [gwu = gu | w £ X * ] , 
uEX' 

LOTrap = U [gpuq = gu\p,q£ X*], LNilp =[J [gpuq = gu[u£ X^k, p,q£ X*]. 
uex' fceN 



Decompositions of automata and transition semigroups 399 

On the other hand, since GDW(A), LDW(A) and TW{A) and LOTW(A), if they 
are non-empty, are ideals of X*, for every X-automaton A, we have: 

[guwu = gu \ w £ X*], [gvwv = gv \ w € X*] C [guvwuv = guv | w £ X*], 
[gu = hu], [gv — hv] C [guv = liuv], 
[guw — gu | w £ X*], [gvw = gv\w £ X*] C [guvui = guv | w £ X*], 
[guw = hu | w £ X*], [gvw = hv \ w £ X*] C [guvw = huv \ w € X*], 
[gwu = gu | IU £ X*], [gwv = gv\w £ X*] C [gwuv = guv | w £ X*], 
[gpuq = gu\p,q£ X*j, [gpvq = gv\p,q& X*] C [gpuvq = guv \p,q€ X*], 

and for m, k £ N, m > k implies 

[guwu = gu\u€ X^k, w £ X*] C [guwu = gu\u E w £ X*], 
[gu = hu\ u £ X^ fc] C [gu = hu\u€ X^m], 
[guw = gu\u£ X^k, w £ X*] C [guw = gu\uG X^m, ui £ X*], 
[guw = hu\u€ X^k, w £ X*] C [guw = hu\u€ X^m, w £ X*], 
[gwu = gu\u£ X^k, w £ X*] C [gwu = gu\u € X ^ m , w £ X*], 
[c/pug = £ p,q £ X*] C [^pug = | u £ X ^ m , £>,<?£ X*]. 

Therefore, each of the above given unions is directed, that is, each of the given 
classes is a directed union of varieties, so by Theorem 1 of [1], they are generalized 
varieties. 

It is not hard to verify that the above figure represents the inclusion diagram of 
the considered classes. This follows by the given representation of these generalized 
varieties and by Theorems 1-8. We will give some examples that verify that these 
inclusions are proper. 

Let the input alphabet X be represented in the form X = Xi U X 2 , where 
Xi 0, X2 ^ 0 and Xi fl X 2 = 0 . This is possible since the automata with 
the one-element input alphabets are out of consideration. Consider the automata 
constructed by the following figures: 

Fig. 3 
Fig. 2 

The automaton from Fig. 1 is a two-element reset automaton and it belongs to 
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Def \ Trap, that yields the inclusions 

Nilp C Def, LNilp C LDef, RDef C GDef 
OTrap C Dir, LOTrap C LDir, Trap C GDir. 

The automaton given by Fig. 2 belongs to OTrap \ GDef, whence it follows that 

Nilp C OTrap, LNilp C LOTrap, RDef C Trap 
Def C Dir, LDef C LDir, GDef C GDir. 

The third automaton, defined by Fig. 3, belongs to RDef \ LDir, so we conclude 
that 

LNilp C RDef, LOTrap C Trap, LDef C GDef, LDir C GDir. 

Assume an arbitrary B £ Nilp. Let A be the direct sum of at least two isomorphic 
copies of B. Then A belongs to LNilp \ Dir, and this yields the inclusions 

Nilp C LNilp, OTrap C LOTrap, Def C LDef, Dir C LDir. 

The inclusions O C Nilp, O C D and D C LNilp are obvious. Therefore, we have 
proved that all classes given in the above figure are different. 

Further, assume A £ Trap D Dir. Then TW(A) ^ 0 and LDW(A) 0 , so 
LOTW(A) ^ 0 , by Lemma 4, whence A € LOTrap = D»OTrap. But, A is direct 
sum indecomposable, since A € Dir, so A e OTrap. Thus, Trap n Dir = OTrap. 
By this it also follows that KflDir = OTrap, for each K from the figure such that 
OTrap C K C Trap. 

Let A £ Trap n Def. Then we also have A £ OTrap and LOTW{A) = 
LDW(A) ± 0 . On the other hand, A £ Def implies that X^k C LDW(A), for 
some k e N, and now X-k C LOTW(A), whence A £ Nilp. Thus, we have proved 
Trap n Dir = Nilp, and this implies that K D Def = Nilp, for each K from the 
figure such that Nilp C K C Trap. 

In the same way we prove that Trap fl LDir = LOTrap and Trap n LDef = 
LNilp, that implies that KflLDef = LNilp, for each K from the figure such that 
LNilp C K C Trap. Finally, it is clear that D n K = O, for every K from the 
figure such that K C Dir. 

Therefore, the above diagram represents a semilattice under the set intersection. 
This completes the proof of the theorem. • 

An immediate consequence of the previous theorem is its analogue concerning 
related pseudo-varieties. 
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Corollary 2. The classes given in the following figure are pairwise different pseu-
do-varieties and the figure represents their inclusion diagram: 

Remark 1. Previously we considered only automata with at least two input let-
ters. In the case of autonomous automata, i.e. the automata whose input alphabet 
is one-element, we have that only the classes Nilp, LNilp, O and D are different 
since the transition semigroup of an autonomous automaton is monogenic. 
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