On minimal and maximal clones II

László Szabó *†

Abstract

Two minimal clones which generate all operations, and two maximal clones with trivial intersection are given on $2 p$-element sets where $p \geq 5$ is a prime number.

1 Introduction

Let A be a fixed universe with $|A| \geq 2$ and let O_{A} denote the set of all finitary operations on A. For $1 \leq i \leq n$ let e_{i}^{n} denote the n-ary i-th projection (trivial operation). Further let $\mathbf{J}_{A}=\left\{e_{i}^{n} \mid 1 \leq i \leq n<\infty\right\}$. The operations in $\mathbf{O}_{A} \backslash \mathbf{J}_{A}$ are called nontrivial operations. By a clone we mean a subset of \mathbf{O}_{A} which is closed under superpositions and contains all projections. The set of clones, ordered by inclusion, forms an algebraic lattice \mathbf{L}_{A} with least element \mathbf{J}_{A} and greatest element \mathbf{O}_{A}. For A finite \mathbf{L}_{A} is an atomic and dually atomic lattice with finitely many atoms and coatoms. The atoms and the coatoms of L_{A} are called minimal clones and maximal clones, respectively.

In [4] we showed that for an at least three element finite set A there are three maximal clones with intersection \mathbf{J}_{A}, and there are three minimal clones with join \mathbf{O}_{A}. If $|A|$ is a prime number then there are two maximal clones and two minimal clones with the above properties. Moreover, we formulated the following two problems:

Problem 1 Find all natural numbers k for which there exist two maximal clones on a k-element set A such that their intersection is \mathbf{J}_{A}.

Problem 2 Find all natural numbers k for which there exist two minimal clones on a k-element set A such that their join is O_{A}.

This short note is a modest step to answer these problems. Namely, we give two maximal clones with intersection \mathbf{J}_{A} and two minimal clones with join \mathbf{O}_{A} on a $2 p$-element set A where p is a prime number with $p \geq 5$.

[^0]
2 Results

We need some more notions. A ternary operation f on A is a majority operation if for all $x, y \in A$ we have $f(x, x, y)=f(x, y, x)=f(y, x, x)=x ; f$ is a Mal'cev operation if $f(x, y, y)=f(y, y, x)=x$ for all $x, y \in A$. An n-ary operation t on A is said to be an i-th semi-projection ($n \geq 3,1 \leq i \leq n$) if for all $x_{1}, \ldots, x_{n} \in A$ we have $t\left(x_{1}, \ldots, x_{n}\right)=x_{i}$ whenever at least two elements among x_{1}, \ldots, x_{n} are equal.

For a finitary relation ρ on A the set of operations preserving ρ forms a clone, and is denoted by Pol ρ.

Theorem 1 Let $A=\{0,1, \ldots, 2 p-1\}$ where p is a prime number with $p \geq 5$ and put $C=\{0,1, p, p+2\}$. Let us define a binary relation ρ and a permutation π on A as follows:

$$
\rho=\{(a, a): a \in A\} \cup(C \times A) \cup(A \times C)
$$

and

$$
\pi=\left(\begin{array}{ll}
0 & 1
\end{array} \ldots p-1\right)(p p+1 \ldots 2 p-1)
$$

Then $\mathrm{Pol} \rho$ and $\mathrm{Pol} \pi$ are maximal clones and $\operatorname{Pol} \rho \cap \operatorname{Pol} \pi=\operatorname{Pol}\{\rho, \pi\}=\mathbf{J}_{A}$.
Proof: Taking into consideration the list of maximal clones given by I. G. Rosenberg (see e.g. [3]) we have that $\operatorname{Pol} \rho$ and $\operatorname{Pol} \pi$ are maximal clones. We need the following fact which follows immediately from the definitions of C and π : (*)

For any $x, y \in A, x \neq y$, there is a $k \in\{0, \ldots, p-1\}$ such that $x \pi^{k} \in C$ and $y \pi^{k} \notin C$. First we establish some properties of the operations in $\operatorname{Pol}\{\rho, \pi\}$. Let
$f \in \operatorname{Pol}\{\rho, \pi\}$ be an arbitrary n-ary operation, $n \geq 1$.
Claim $1 f\left(A^{n}\right) \supseteq\{0,1 \ldots, p-1\}$ or $f\left(A^{n}\right) \supseteq\{p, p+1 \ldots ., 2 p-1\}$.
This claim follows immediately from the fact that $f \in \operatorname{Pol} \pi$.
Claim $2 f\left(C^{n}\right) \subseteq C$.

Let $c_{1}, \ldots, c_{n} \in C$. By Claim 1, there are $a_{1}, \ldots, a_{n} \in A$ such that

$$
f\left(a_{1}, \ldots, a_{n}\right) \notin C \cup\left\{f\left(c_{1}, \ldots, c_{n}\right)\right\}
$$

Then $\left(c_{1}, a_{1}\right), \ldots,\left(c_{n}, a_{n}\right) \in \rho$, and therefore $\left(f\left(c_{1}, \ldots, c_{n}\right), f\left(a_{1} \ldots, a_{n}\right)\right) \in$ ρ. From this, taking into consideration the definition of ρ, it follows that $f\left(c_{1}, \ldots, c_{n}\right) \in C$.

Claim $3 f$ is an idempotent operation.

Consider the unary operation $g(x)=f(x, \ldots, x)$. If $g(0)=0$ and $g(p)=p$ then $g(x)=x$ for all $x \in A$ and f is an idempotent operation. Indeed, in this case for $k=0, \ldots, p-1$ we get that

$$
g(k)=g\left(0 \pi^{k}\right)=g(0) \pi^{k}=0 \pi^{k}=k
$$

and

$$
g(p+k)=g\left(p \pi^{k}\right)=g(p) \pi^{k}=p \pi^{k}=p+k
$$

Therefore we have to show that $g(0)=0$ and $g(p)=p$. By Claim 2,

$$
g(0), g(1) \in C=\{0,1, p, p+2\} .
$$

It follows that \mid

$$
g(0)=g\left(1 \pi^{-1}\right)=g(1) \pi^{-1} \in C \pi^{-1}=\{p-1,0,2 p-1, p+1\}
$$

and $g(0)=0$. Similarly,

$$
g(p), g(p+2) \in C=\{0,1, p, p+2\}
$$

implies that

$$
g(p)=g\left((p+2) \pi^{-2}\right)=g(p+2) \pi^{-2} \in C \pi^{-2}=\{p-2, p-1,2 p-2, p\}
$$

and $g(p)=p$, completing the proof of Claim 3 .
Claim 4 If f is binary then $f(x, y) \in\{x, y\}$ for all $x, y \in A$.
Let f be binary and suppose that $f(a, b)=c \notin\{a, b\}$ for some $a, b \in A$. Then, by $\left({ }^{*}\right), a \pi^{k} \in C$ and $c \pi^{k} \notin C$ for some k. Put $u=a \pi^{k}, w=c \pi^{k}$ and $v=b \pi^{k}$. Then

$$
f(u, v)=f\left(a \pi^{k}, b \pi^{k}\right)=f(a, b) \pi^{k}=c \pi^{k}=w \notin C,
$$

and therefore, by Claim 2, we have that $v \notin C$. Now $c \neq b,(u, v),(v, v) \in \rho$ imply that $w \neq v$ and $(w, v)=(f(u, v), f(v, v)) \in \rho$ which is not valid.

Claim 5 If f is binary then the restrictions of f to $\{0,1, \ldots, p-1\}$ and to $\{p, p+$ 1..., $2 p-1\}$ are projections.

By Claim $4, f(0,1) \in\{0,1\}$, and without loss of generality we can suppose that $f(0,1)=0$. Then

$$
f(p-1,0)=f\left(0 \pi^{-1}, 1 \pi^{-1}\right)=f(0,1) \pi^{-1}=0 \pi^{-1}=p-1
$$

and

$$
f(p-2, p-1)=f\left(0 \pi^{-2}, 1 \pi^{-2}\right)=f(0,1) \pi^{-2}=0 \pi^{-2}=p-2
$$

Let $i \in\{2, \ldots, p-2\}$. From

$$
(p-1,0),(0, i) \in \rho,(p-1, i) \notin \rho \text { and } f(0, i) \in\{0, i\}
$$

it follows that

$$
(p-1, f(0, i))=(f(p-1,0), f(0, i)) \in \rho \text { and } f(0, i)=0
$$

Similarly, from

$$
(p-2,0),(p-1, p-1) \in \rho,(p-2, p-1) \notin \rho \text { and } f(0, p-1) \in\{0, p-1\}
$$

it follows that

$$
(p-2, f(0, p-1))=(f(p-2, p-1), f(0, p-1)) \in \rho \text { and } f(0, p-1)=0
$$

Hence for any $x \in\{0,1, \ldots, p-1\}$ we have that $f(0, x)=0$, which together with the fact that $f \in \operatorname{Pol} \pi$ imply that the restriction of f to $\{0,1, \ldots, p-1\}$ is the first projection. One can show by a very similar argument that the restriction of f to $\{p, p+1, \ldots, 2 p-1\}$ is also projection.

Claim 6 If f is binary then f is a projection.
Taking into consideration Claim 5, we can suppose without loss of generality that the restriction of f to $\{0,1, \ldots, p-1\}$ is the first projection. First we show that the restriction of f to $\{p, p+1, \ldots, 2 p-1\}$ is also the first projection. In deed, if the restriction of f to $\{p, p+1, \ldots, 2 p-1\}$ is the second projection then from $(2, p),(0, p+1) \in \rho$ we obtain that $(2, p+1)=(f(2,0), f(p, p+1)) \in \rho$ which is not valid.

If f is not the first projection then for some $a \in\{0,1, \ldots, p-1\}$ and $b \in$ $\{p, p+1, \ldots, 2 p-1\}$ we have that $f(a, b)=b$ or $f(b, a)=a$. If $f(a, b)=b$ then choose a positive integer k such that $a \pi^{k} \in C$ and $v=b \pi^{k} \notin C$. Put $u=a \pi^{k}$ and $v=b \pi^{k}$. Now

$$
f(u, v)=f\left(a \pi^{k}, b \pi^{k}\right)=f(a, b) \pi^{k}=b \pi^{k}=v \notin C
$$

Since $(2, u),(0, v) \in \rho$ and $2 \neq v$ (because of $\left.v=b \pi^{k} \in\{p, p+1, \ldots, 2 p-1\}\right)$ it follows that $(2, v)=(f(2,0), f(u, v)) \in \rho$ which is not valid.

If $f(b, a)=a$ then choose a positive integer k such that $a \pi^{k} \notin C$ and $v=b \pi^{k} \in$ C. Put $u=a \pi^{k}$ and $v=b \pi^{k}$. Now

$$
f(v, u)=f\left(b \pi^{k}, a \pi^{k}\right)=f(b, a) \pi^{k}=a \pi^{k}=u \notin C .
$$

Since $(p+1, v),(p, u) \in \rho$ and $p+1 \neq u$ (because of $\left.u=a \pi^{k} \in\{0,1, \ldots, p-1\}\right)$ it follows that $(p+1, u)=(f(p+1, p), f(v, u)) \in \rho$ which is not valid. Hence f is the first projection.

Claim $7 f$ cannot be a Mal'cev operation.
Indeed, if f is a Mal'cev operation, then $(2,0),(0,0),(0,3) \in \rho$ implies that $(2,3)=(f(2,0,0), f(0,0,3)) \in \rho$ which is not valid.

Claim $8 f$ cannot be a nontrivial semi-projection.
Let f be a nontrivial n-ary semi-projection $(n \geq 3)$. We can suppose that f is a first semi-projection. Observe that $f\left(c, a_{2} \ldots, a_{n}\right) \in C$ for any $c \in C$ and $a_{2}, \ldots, a_{n} \in A$. Indeed, if $c \in C$ and $a_{2}, \ldots, a_{n} \in A$ then for any $a \in A$ we have $(c, a),\left(a_{2}, c\right), \ldots,\left(a_{n}, c\right) \in \rho$ which implies that

$$
\left(f\left(c, a_{2} \ldots, a_{n}\right), a\right)=\left(f\left(c, a_{2}, \ldots, a_{n}\right), f(a, c, \ldots, c)\right) \in \rho
$$

and $f\left(c, a_{2} \ldots, a_{n}\right) \in C$. Since f is not the first projection $f\left(a_{1}, \ldots, a_{n}\right)=a \neq a_{1}$ for some $a_{1}, \ldots, a_{n} \in A$. Then, by $\left(^{*}\right), a_{1} \pi^{k} \in C$ and $a \pi^{k} \notin C$ for some k. It follows that

$$
f\left(a_{1} \pi^{k}, \ldots, a_{n} \pi^{k}\right)=f\left(a_{1}, \ldots, a_{n}\right) \pi^{k}=a \pi^{k}
$$

a contradiction.

Claim $9 f$ cannot be a majority operation.

Let f be a majority operation. First observe that $f(a, b, c) \in C$ if at least two elements among a, b, c belong to C. Indeed, if e.g. $a, b \in C$ then for any $x \in A$ from $(a, x),(b, x),(x, 0) \in \rho$ it follows that

$$
(f(a, b, c), x)=(f(a, b, c), f(x, x, 0)) \wedge n \rho
$$

which implies that $f(a, b, c) \in C$.
Now let $a, b, c \in A$ be pairwise distinct elements. Clearly, $f(a, b, c)$ is different from at least two of the elements a, b, c, say from a and b. Then, by $\left(^{*}\right)$, for some k we have $u=a \pi^{k} \in C$ and $t=f(a, b, c) \pi^{k} \notin C$. Put $v=b \pi^{k}$ and $w=c \pi^{k}$. Thus

$$
f(u, v, w)=f\left(a \pi^{k}, b \pi^{k}, c \pi^{k}\right)=f(a, b, c) \pi^{k}=t
$$

and, taking into consideration the above observation, we have that $v \notin C$. Since $f(a, b, c) \neq b$, therefore $v \neq t$ and $(v, t) \notin \rho$. On the other hand $(v, u),(v, v),(0, w) \in$ ρ implies that $(v, t)=(f(v, v, 0), f(u, v, w)) \in \rho$. This contradiction implies that f cannot be a majority operation. Now we are in a position to complete the proof of
the theorem. If $\operatorname{Pol}\{\rho, \pi\} \neq \mathbf{J}_{A}$ then there is a nontrivial operation in $\operatorname{Pol}\{\rho, \pi\}$ which is either a unary operation or an idempotent binary operation or a majority operation or a Mal'cev operation or a semi-projection (see e.g. [4]). Since, by Claims $3,6,7,8$ and 9 , these cases cannot occur we have that $\operatorname{Pol}\{\rho, \pi\}=\mathbf{J}_{A}$.

Theorem 2 Let $A=\{0,1, \ldots, 2 p-1\}$ where p is a prime number with $p \geq 5$ and let $(A ; \vee, \wedge)$ be the lattice given by the following diagram:

Let us define a ternary operation d and a permutation π on A as follows:

$$
d(x, y, z)=(x \wedge y) \vee(x \wedge z) \vee(y \wedge z)
$$

and

$$
\pi=(01 p+2 \ldots 2 p-22 p-1)(p+1 p 2 \ldots p-2 p-1)
$$

Then d and π generate minimal clones such that the clone generated by d and π is O_{A}.

Proof: Suppose that A, p, d and π satisfy the hypotheses of the theorem. Then it is known that π and d generate minimal clones, respectively (see e.g. [2]). We have to show that $\mathbf{A}=(A ; d, \pi)$ is a primal algebra, i.e., every operation on A is a term operation of \mathbf{A}.

First observe that A has no proper subalgebra. Indeed, the proper subalgebras of $(A ; \pi)$ are $\{0,1, p+2, \ldots, 2 p-2,2 p-1\}$ and $\{p, p+1,2, \ldots, p-2, p-1\}$ only. Furthermore,

$$
d(p+2, p+3, p+4)=p \notin\{0,1, p+2, \ldots, 2 p-2,2 p-1\}
$$

and

$$
d(2,3,4)=0 \notin\{p, p+1,2, \ldots, p-2, p-1\} .
$$

Since $d(x, y, 0)=x \wedge y$ and $d(x, y, 2 p-1)=x \vee y$ for any $x, y \in A$, therefore the congruence relations of \mathbf{A} and $(A ; \vee, \wedge, \pi)$ are the same. One can check easily that $(A ; \vee, \wedge)$ has two nontrivial congruence relations only. One of them has two blocks

$$
B=\{0,1, \ldots, p-1\} \quad \text { and } \quad C=\{p, p+1, \ldots, 2 p-1\}
$$

and the blocks of the other are

$$
\{k, p+k\}, k=0, \ldots, p-1
$$

It is easy to check that π does not preserve these two equivalence relations. Hence we have that \mathbf{A} is a simple algebra.

Next we show that the identity map is the only automorphism of \mathbf{A}. To show this let τ be an automorphism of \mathbf{A}. Since τ is also an automorphism of the algebra $(A ; d)$, for any $\Theta \in \operatorname{Con}(A ; d)=\operatorname{Con}(A ; \vee, \wedge)$ we have that $\Theta \tau \in \operatorname{Con}(A ; d)$. It follows that either $B \tau=B$ or $B \tau=C$. Hence $\left.\tau\right|_{B}$ is either an automorphism of $(B ; d)$ or an i somorphism between $(B ; d)$ and $(C ; d)$. For any $x \in B \tau$ we have that

$$
d(x, 0 \tau,(p-1) \tau)=d\left(x \tau^{-1}, 0, p-1\right) \tau=\left(x \tau^{-1}\right) \tau=x
$$

Using this fact it is easy to show that either $\{0 \tau,(p-1) \tau\}=\{0, p-1\}$ or $\{0 \tau,(p-$ 1) $\tau\}=\{p, 2 p-1\}$. If $0 \tau=p-1$ then

$$
\mathbf{1} \tau=(0 \pi) \tau=0(\pi \tau)=0(\tau \pi)=(0 \tau) \pi=(p-1) \pi=p+1 \quad \text { and } \quad B \tau \neq B, C
$$

If $0 \tau=p$ then

$$
1 \tau=(0 \pi) \tau=0(\pi \tau)=0(\tau \pi)=(0 \tau) \pi=p \pi=2 \quad \text { and } \quad B \tau \neq B, C .
$$

If $0 \tau=2 p-1$ then

$$
1 \tau=(0 \pi) \tau=0(\pi \tau)=0(\tau \pi)=(0 \tau) \pi=(2 p-1) \pi=0 \quad \text { and } \quad B \tau \neq B, C
$$

Taking into consideration that $B \tau=B$ or $B \tau=C$, it follows that $0 \tau=0$. Since the set of fixed points of τ is a subalgebra of \mathbf{A} therefore τ is the identity map.

No we are in a position to complete the proof. By [5], every finite, simple, surjective algebra without proper subalgebra is either quasiprimal or affine or term equivalent to a matrix power of a unary algebra. Since affine algebras and matrix powers of unary algebras cannot have majority term operations and d is a majority operation, we obtain that \mathbf{A} is quasiprimal (i.e. every operation on A admitting all isomorphisms beetwen subalgebras of \mathbf{A} is a term operation of \mathbf{A}). Taking into consideration that \mathbf{A} has no proper subalgebras and nontrivial automorphisms, it follows that \mathbf{A} is a primal algebra.

References

[1] P. P. Pálfy, L. Szabó and Á. Szendrei, Automorphism groups and functional completeness, Algebra Universalis 15 (1982), 385-400.
[2] R. Pöschel and L. A. Kalužnin, Funktionen- und Relationenalgebren, VEB Deutscher Verlag d. Wissenschaften, Berlin, 1979.
[3] I. G. Rosenberg, Completeness properties of multiple-valued logic algebras, in: Computer Science and Multiple-Valued Logic, Theory and Applications (ed. D. C. Rine), North-Holland (1977); pp. 144-186.
[4] L. Szabó, On minimal and maximal clones, Acta Cybernetica 10 (1992), 323-327.
[5] Á. Szendrei, Simple surjective algebras having no proper subalgebras, J. Austral. Math. Soc. 48 (1990), 434-454.

Received March, 1998

[^0]: *Research partially supported by Hungarian National Foundation for Scientific Research grants no. OTKA T022876, OTKA T026243 and Scientific Research grant of the Hungarian Education Ministry no. FKFP 0877/1997.
 ${ }^{\dagger}$ Bolyai Institute, H-6720 Szeged, Aradi vértanúk tere 1, Hungary

