On minimal and maximal clones II

László Szabó *†

Abstract

Two minimal clones which generate all operations, and two maximal clones with trivial intersection are given on 2p-element sets where $p \ge 5$ is a prime number.

1 Introduction

Let A be a fixed universe with $|A| \ge 2$ and let O_A denote the set of all finitary operations on A. For $1 \le i \le n$ let e_i^n denote the *n*-ary *i*-th projection (trivial operation). Further let $\mathbf{J}_A = \{e_i^n | 1 \le i \le n < \infty\}$. The operations in $O_A \setminus \mathbf{J}_A$ are called *nontrivial operations*. By a clone we mean a subset of O_A which is closed under superpositions and contains all projections. The set of clones, ordered by inclusion, forms an algebraic lattice \mathbf{L}_A with least element \mathbf{J}_A and greatest element O_A . For A finite \mathbf{L}_A is an atomic and dually atomic lattice with finitely many atoms and coatoms. The atoms and the coatoms of \mathbf{L}_A are called *minimal clones* and *maximal clones*, respectively.

In [4] we showed that for an at least three element finite set A there are three maximal clones with intersection \mathbf{J}_A , and there are three minimal clones with join \mathbf{O}_A . If |A| is a prime number then there are two maximal clones and two minimal clones with the above properties. Moreover, we formulated the following two problems:

Problem 1 Find all natural numbers k for which there exist two maximal clones on a k-element set A such that their intersection is J_A .

Problem 2 Find all natural numbers k for which there exist two minimal clones on a k-element set A such that their join is O_A .

This short note is a modest step to answer these problems. Namely, we give two maximal clones with intersection \mathbf{J}_A and two minimal clones with join \mathbf{O}_A on a 2*p*-element set A where p is a prime number with $p \geq 5$.

^{*}Research partially supported by Hungarian National Foundation for Scientific Research grants no. OTKA T022876, OTKA T026243 and Scientific Research grant of the Hungarian Education Ministry no. FKFP 0877/1997.

[†]Bolyai Institute, H-6720 Szeged, Aradi vértanúk tere 1, Hungary

2 Results

We need some more notions. A ternary operation f on A is a majority operation if for all $x, y \in A$ we have f(x, x, y) = f(x, y, x) = f(y, x, x) = x; f is a Mal'cev operation if f(x, y, y) = f(y, y, x) = x for all $x, y \in A$. An n-ary operation t on Ais said to be an *i*-th semi-projection $(n \ge 3, 1 \le i \le n)$ if for all $x_1, \ldots, x_n \in A$ we have $t(x_1, \ldots, x_n) = x_i$ whenever at least two elements among x_1, \ldots, x_n are equal.

For a finitary relation ρ on A the set of operations preserving ρ forms a clone, and is denoted by Pol ρ .

Theorem 1 Let $A = \{0, 1, ..., 2p - 1\}$ where p is a prime number with $p \ge 5$ and put $C = \{0, 1, p, p + 2\}$. Let us define a binary relation ρ and a permutation π on A as follows:

$$\rho = \{(a, a) : a \in A\} \cup (C \times A) \cup (A \times C)$$

and

$$\pi = (0 \ 1 \ \dots \ p-1)(p \ p+1 \ \dots \ 2p-1).$$

Then $\operatorname{Pol} \rho$ and $\operatorname{Pol} \pi$ are maximal clones and $\operatorname{Pol} \rho \cap \operatorname{Pol} \pi = \operatorname{Pol} \{\rho, \pi\} = \mathbf{J}_A$.

Proof: Taking into consideration the list of maximal clones given by I. G. Rosenberg (see e.g. [3]) we have that $\operatorname{Pol} \rho$ and $\operatorname{Pol} \pi$ are maximal clones. We need the following fact which follows immediately from the definitions of C and π : (*)

For any $x, y \in A$, $x \neq y$, there is a $k \in \{0, \dots, p-1\}$ such that $x\pi^k \in C$ and $y\pi^k \notin C$. First we establish some properties of the operations in Pol $\{\rho, \pi\}$. Let

 $f \in \text{Pol} \{\rho, \pi\}$ be an arbitrary *n*-ary operation, $n \ge 1$.

Claim 1 $f(A^n) \supseteq \{0, 1, \dots, p-1\}$ or $f(A^n) \supseteq \{p, p+1, \dots, 2p-1\}$.

This claim follows immediately from the fact that $f \in \operatorname{Pol} \pi$.

Claim 2 $f(C^n) \subseteq C$.

Let $c_1, \ldots, c_n \in C$. By Claim 1, there are $a_1, \ldots, a_n \in A$ such that

$$f(a_1,\ldots,a_n) \notin C \cup \{f(c_1,\ldots,c_n)\}.$$

Then $(c_1, a_1), \ldots, (c_n, a_n) \in \rho$, and therefore $(f(c_1, \ldots, c_n), f(a_1, \ldots, a_n)) \in \rho$. From this, taking into consideration the definition of ρ , it follows that $f(c_1, \ldots, c_n) \in C$.

Claim 3 f is an idempotent operation.

Consider the unary operation g(x) = f(x, ..., x). If g(0) = 0 and g(p) = p then g(x) = x for all $x \in A$ and f is an idempotent operation. Indeed, in this case for k = 0, ..., p - 1 we get that

$$g(k) = g(0\pi^k) = g(0)\pi^k = 0\pi^k = k$$

and

$$g(p+k) = g(p\pi^k) = g(p)\pi^k = p\pi^k = p+k.$$

Therefore we have to show that g(0) = 0 and g(p) = p. By Claim 2,

 $g(0), g(1) \in C = \{0, 1, p, p+2\}.$

It follows that

$$g(0) = g(1\pi^{-1}) = g(1)\pi^{-1} \in C\pi^{-1} = \{p - 1, 0, 2p - 1, p + 1\}$$

and g(0) = 0. Similarly,

$$g(p), g(p+2) \in C = \{0, 1, p, p+2\}$$

implies that

$$g(p) = g((p+2)\pi^{-2}) = g(p+2)\pi^{-2} \in C\pi^{-2} = \{p-2, p-1, 2p-2, p\}$$

and g(p) = p, completing the proof of Claim 3.

Claim 4 If f is binary then $f(x,y) \in \{x,y\}$ for all $x, y \in A$.

Let f be binary and suppose that $f(a,b) = c \notin \{a,b\}$ for some $a, b \in A$. Then, by (*), $a\pi^k \in C$ and $c\pi^k \notin C$ for some k. Put $u = a\pi^k$, $w = c\pi^k$ and $v = b\pi^k$. Then

$$f(u,v) = f(a\pi^k, b\pi^k) = f(a,b)\pi^k = c\pi^k = w \notin C,$$

and therefore, by Claim 2, we have that $v \notin C$. Now $c \neq b$, $(u, v), (v, v) \in \rho$ imply that $w \neq v$ and $(w, v) = (f(u, v), f(v, v)) \in \rho$ which is not valid.

Claim 5 If f is binary then the restrictions of f to $\{0, 1, ..., p-1\}$ and to $\{p, p+1, ..., 2p-1\}$ are projections.

By Claim 4, $f(0,1) \in \{0,1\}$, and without loss of generality we can suppose that f(0,1) = 0. Then

$$f(p-1,0) = f(0\pi^{-1}, 1\pi^{-1}) = f(0,1)\pi^{-1} = 0\pi^{-1} = p-1$$

and

$$f(p-2, p-1) = f(0\pi^{-2}, 1\pi^{-2}) = f(0, 1)\pi^{-2} = 0\pi^{-2} = p-2.$$

Let $i \in \{2, ..., p - 2\}$. From

$$(p-1,0), (0,i) \in \rho, (p-1,i) \notin \rho \text{ and } f(0,i) \in \{0,i\}$$

it follows that

$$(p-1, f(0,i)) = (f(p-1,0), f(0,i)) \in \rho$$
 and $f(0,i) = 0$.

Similarly, from

 $(p-2,0), (p-1,p-1) \in \rho, (p-2,p-1) \notin \rho \text{ and } f(0,p-1) \in \{0,p-1\}$

it follows that

$$(p-2, f(0, p-1)) = (f(p-2, p-1), f(0, p-1)) \in \rho$$
 and $f(0, p-1) = 0$.

Hence for any $x \in \{0, 1, ..., p-1\}$ we have that f(0, x) = 0, which together with the fact that $f \in \text{Pol} \pi$ imply that the restriction of f to $\{0, 1, ..., p-1\}$ is the first projection. One can show by a very similar argument that the restriction of f to $\{p, p+1, ..., 2p-1\}$ is also projection.

Claim 6 If f is binary then f is a projection.

Taking into consideration Claim 5, we can suppose without loss of generality that the restriction of f to $\{0, 1, \ldots, p-1\}$ is the first projection. First we show that the restriction of f to $\{p, p+1, \ldots, 2p-1\}$ is also the first projection. In deed, if the restriction of f to $\{p, p+1, \ldots, 2p-1\}$ is the second projection then from $(2, p), (0, p+1) \in \rho$ we obtain that $(2, p+1) = (f(2, 0), f(p, p+1)) \in \rho$ which is not valid.

If f is not the first projection then for some $a \in \{0, 1, ..., p-1\}$ and $b \in \{p, p+1, ..., 2p-1\}$ we have that f(a, b) = b or f(b, a) = a. If f(a, b) = b then choose a positive integer k such that $a\pi^k \in C$ and $v = b\pi^k \notin C$. Put $u = a\pi^k$ and $v = b\pi^k$. Now

$$f(u,v) = f(a\pi^k, b\pi^k) = f(a,b)\pi^k = b\pi^k = v \notin C.$$

Since $(2, u), (0, v) \in \rho$ and $2 \neq v$ (because of $v = b\pi^k \in \{p, p+1, \dots, 2p-1\}$) it follows that $(2, v) = (f(2, 0), f(u, v)) \in \rho$ which is not valid.

If f(b, a) = a then choose a positive integer k such that $a\pi^k \notin C$ and $v = b\pi^k \in C$. Put $u = a\pi^k$ and $v = b\pi^k$. Now

$$f(v,u) = f(b\pi^k, a\pi^k) = f(b,a)\pi^k = a\pi^k = u \notin C.$$

Since $(p+1, v), (p, u) \in \rho$ and $p+1 \neq u$ (because of $u = a\pi^k \in \{0, 1, \dots, p-1\}$) it follows that $(p+1, u) = (f(p+1, p), f(v, u)) \in \rho$ which is not valid. Hence f is the first projection.

Claim 7 f cannot be a Mal'cev operation.

Indeed, if f is a Mal'cev operation, then $(2,0), (0,0), (0,3) \in \rho$ implies that $(2,3) = (f(2,0,0), f(0,0,3)) \in \rho$ which is not valid.

Claim 8 f cannot be a nontrivial semi-projection.

Let f be a nontrivial n-ary semi-projection $(n \ge 3)$. We can suppose that f is a first semi-projection. Observe that $f(c, a_2 \ldots, a_n) \in C$ for any $c \in C$ and $a_2, \ldots, a_n \in A$. Indeed, if $c \in C$ and $a_2, \ldots, a_n \in A$ then for any $a \in A$ we have $(c, a), (a_2, c), \ldots, (a_n, c) \in \rho$ which implies that

$$(f(c, a_2 \dots, a_n), a) = (f(c, a_2, \dots, a_n), f(a, c, \dots, c)) \in \rho$$

and $f(c, a_2, ..., a_n) \in C$. Since f is not the first projection $f(a_1, ..., a_n) = a \neq a_1$ for some $a_1, ..., a_n \in A$. Then, by (*), $a_1 \pi^k \in C$ and $a \pi^k \notin C$ for some k. It follows that

$$f(a_1\pi^k,\ldots,a_n\pi^k)=f(a_1,\ldots,a_n)\pi^k=a\pi^k,$$

a contradiction.

Claim 9 f cannot be a majority operation.

Let f be a majority operation. First observe that $f(a, b, c) \in C$ if at least two elements among a, b, c belong to C. Indeed, if e.g. $a, b \in C$ then for any $x \in A$ from $(a, x), (b, x), (x, 0) \in \rho$ it follows that

$$(f(a,b,c),x) = (f(a,b,c),f(x,x,0)) \ln \rho$$

which implies that $f(a, b, c) \in C$.

Now let $a, b, c \in A$ be pairwise distinct elements. Clearly, f(a, b, c) is different from at least two of the elements a, b, c, say from a and b. Then, by (*), for some k we have $u = a\pi^k \in C$ and $t = f(a, b, c)\pi^k \notin C$. Put $v = b\pi^k$ and $w = c\pi^k$. Thus

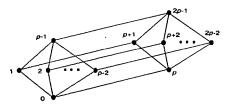
$$f(u, v, w) = f(a\pi^k, b\pi^k, c\pi^k) = f(a, b, c)\pi^k = t$$

and, taking into consideration the above observation, we have that $v \notin C$. Since $f(a, b, c) \neq b$, therefore $v \neq t$ and $(v, t) \notin \rho$. On the other hand $(v, u), (v, v), (0, w) \in \rho$ implies that $(v, t) = (f(v, v, 0), f(u, v, w)) \in \rho$. This contradiction implies that f cannot be a majority operation. Now we are in a position to complete the proof of

the theorem. If $\operatorname{Pol} \{\rho, \pi\} \neq \mathbf{J}_A$ then there is a nontrivial operation in $\operatorname{Pol} \{\rho, \pi\}$ which is either a unary operation or an idempotent binary operation or a majority operation or a Mal'cev operation or a semi-projection (see e.g. [4]). Since , by Claims 3, 6, 7, 8 and 9, these cases cannot occur we have that $\operatorname{Pol} \{\rho, \pi\} = \mathbf{J}_A$. \Box

Theorem 2 Let $A = \{0, 1, ..., 2p - 1\}$ where p is a prime number with $p \ge 5$ and let $(A; \lor, \land)$ be the lattice given by the following diagram:

László Szabó



Let us define a ternary operation d and a permutation π on A as follows:

$$d(x, y, z) = (x \land y) \lor (x \land z) \lor (y \land z)$$

and

$$\pi = (0 \ 1 \ p+2 \ \dots \ 2p-2 \ 2p-1)(p+1 \ p \ 2 \ \dots \ p-2 \ p-1).$$

Then d and π generate minimal clones such that the clone generated by d and π is O_A .

Proof: Suppose that A, p, d and π satisfy the hypotheses of the theorem. Then it is known that π and d generate minimal clones, respectively (see e.g. [2]). We have to show that $\mathbf{A} = (A; d, \pi)$ is a primal algebra, i.e., every operation on A is a term operation of \mathbf{A} .

First observe that A has no proper subalgebra. Indeed, the proper subalgebras of $(A; \pi)$ are $\{0, 1, p + 2, \ldots, 2p - 2, 2p - 1\}$ and $\{p, p + 1, 2, \ldots, p - 2, p - 1\}$ only. Furthermore,

$$d(p+2, p+3, p+4) = p \notin \{0, 1, p+2, \dots, 2p-2, 2p-1\}$$

and

$$d(2,3,4) = 0 \notin \{p, p+1, 2, \dots, p-2, p-1\}.$$

Since $d(x, y, 0) = x \wedge y$ and $d(x, y, 2p - 1) = x \vee y$ for any $x, y \in A$, therefore the congruence relations of **A** and $(A; \vee, \wedge, \pi)$ are the same. One can check easily that $(A; \vee, \wedge)$ has two nontrivial congruence relations only. One of them has two blocks

$$B = \{0, 1, \dots, p-1\}$$
 and $C = \{p, p+1, \dots, 2p-1\},\$

and the blocks of the other are

$$\{k, p+k\}, k = 0, \dots, p-1.$$

It is easy to check that π does not preserve these two equivalence relations. Hence we have that **A** is a simple algebra.

Next we show that the identity map is the only automorphism of **A**. To show this let τ be an automorphism of **A**. Since τ is also an automorphism of the algebra (A; d), for any $\Theta \in \text{Con}(A; d) = \text{Con}(A; \lor, \land)$ we have that $\Theta \tau \in \text{Con}(A; d)$. It follows that either $B\tau = B$ or $B\tau = C$. Hence $\tau|_B$ is either an automorphism of (B; d) or an i somorphism between (B; d) and (C; d). For any $x \in B\tau$ we have that

$$d(x,0\tau,(p-1)\tau) = d(x\tau^{-1},0,p-1)\tau = (x\tau^{-1})\tau = x.$$

Using this fact it is easy to show that either $\{0\tau, (p-1)\tau\} = \{0, p-1\}$ or $\{0\tau, (p-1)\tau\} = \{p, 2p-1\}$. If $0\tau = p-1$ then

$$1\tau = (0\pi)\tau = 0(\pi\tau) = 0(\tau\pi) = (0\tau)\pi = (p-1)\pi = p+1$$
 and $B\tau \neq B, C$.

If $0\tau = p$ then

$$1\tau = (0\pi)\tau = 0(\pi\tau) = 0(\tau\pi) = (0\tau)\pi = p\pi = 2$$
 and $B\tau \neq B, C.$

If $0\tau = 2p - 1$ then

$$1\tau = (0\pi)\tau = 0(\pi\tau) = 0(\tau\pi) = (0\tau)\pi = (2p-1)\pi = 0$$
 and $B\tau \neq B, C$.

Taking into consideration that $B\tau = B$ or $B\tau = C$, it follows that $0\tau = 0$. Since the set of fixed points of τ is a subalgebra of A therefore τ is the identity map.

No we are in a position to complete the proof. By [5], every finite, simple, surjective algebra without proper subalgebra is either quasiprimal or affine or term equivalent to a matrix power of a unary algebra. Since affine algebras and matrix powers of unary algebras cannot have majority term operations and d is a majority operation, we obtain that **A** is quasiprimal (i.e. every operation on A admitting all isomorphisms beetwen subalgebras of **A** is a term operation of **A**). Taking into consideration that **A** has no proper subalgebras and nontrivial automorphisms, it follows that **A** is a primal algebra.

References

- P. P. Pálfy, L. Szabó and Á. Szendrei, Automorphism groups and functional completeness, Algebra Universalis 15 (1982), 385-400.
- [2] R. Pöschel and L. A. Kalužnin, Funktionen- und Relationenalgebren, VEB Deutscher Verlag d. Wissenschaften, Berlin, 1979.
- [3] I. G. Rosenberg, Completeness properties of multiple-valued logic algebras, in: Computer Science and Multiple-Valued Logic, Theory and Applications (ed. D. C. Rine), North-Holland (1977); pp. 144-186.
- [4] L. Szabó, On minimal and maximal clones, Acta Cybernetica 10 (1992), 323-327.
- [5] A. Szendrei, Simple surjective algebras having no proper subalgebras, J. Austral. Math. Soc. 48 (1990), 434-454.

Received March, 1998