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On minimal and maximal clones II 

László Szabó ** 

Abstract 
Two minimal clones which generate all operations, and two maximal clones 

with trivial intersection are given on 2p-element sets where p > 5 is a prime 
number. 

1 Introduction 
Let A be a fixed universe with |A| > 2 and let O/t denote the set of all finitary 
operations on A. For 1 < i < n let e™ denote the n-ary '¿-t,h projection (trivial 
operation). Further let J a = {e"|l < i < n < oo}. The operations in 0,4 \ J a are 
called nontrivial operations. By a done we mean a subset of OA which is closed 
under superpositions and contains all projections. The set of clones, ordered by 
inclusion, forms an algebraic lattice L a with least element J a and greatest element 
O^. For A finite LA is an atomic and dually atomic lattice with finitely many 
atoms and coatoms. The atoms and the coatoms of L^ are called minimal clones 
and maximal clones, respectively. 

In [4] we showed that for an at least three element finite set A there are three 
maximal clones with intersection J A , and there are three minimal clones with join 
0,4. If | A | is a prime number then there are two maximal clones and two mini-
mal clones with the above properties. Moreover, we formulated the following two 
problems: 

Problem 1 Find all natural numbers k for which there exist two maximal clones 
on a k-element set A such that their intersection is J a • 

Problem 2 Find all natural numbers k for which there exist two minimal clones 
on a k-element set A such that their join is OA-

This short note is a modest step to answer these problems. Namely, we give 
two maximal clones with intersection J a and two minimal clones with join O^ on 
a 2p-element set A where p is a prime number with p > 5. 
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2 Results 
We need some more notions. A ternary operation / on A is a majority operation 
if for all x,y £ A we have f(x,x,y) = f(x,y,x) = f(y,x,x) = x; / is a Mal'cev 
operation if f(x,y,y) = f(y,y,x) = x for all x,y £ A. An n-ary operation t on A 
is said to be an ¿-th semi-projection (n > 3, 1 < i < n) if for all x\,..., xn £ A we 
have t(xi,..xn) = X{ whenever at least two elements among xi.... ,xn are equal. 

For a finitary relation p on A the set of operations preserving p forms a clone, 
and is denoted by Pol p. 

Theorem 1 Let A = {0 ,1 , . . . , 2p — 1} where p is a prime number with p > 5 and 
put C = {0, l,p,p+ 2}. Let us define a binary relation p and a permutation 7r on 
A as follows: 

p = {(a, fl):a€4}U(CxA)u(ixC) 

and 
7T = (0 1 ... p- l)(p p + 1 ... 2p - 1). 

Then Pol p and Pol ir are maximal clones and Pol p D Pol tt = Pol {p, 7r} = J^. 

Proof: Taking into consideration the list of maximal clones given by I. G. Rosen-
berg (see e.g. [3]) we have that Pol p and Pol TT are maximal clones. We need the 
following fact which follows immediately from the definitions of C and IT: (*) 

For any x,y £ A, x y, there is a k 6 {0 . . . . ,p — 1} such that xnk £ C and 
ynk ^ C. First we establish some properties of the operations in Pol{p,7r}. Let 

/ £ Pol{p, 7r} be an arbitrary n-ary operation, n > 1. 

Claim 1 f(An) 3 {0,1. ...,p- 1} or f(An) D {p,p + 1 . . . . , 2p - 1}. 

This claim follows immediately from the fact that / £ Pol n. 

Claim 2 f(Cn) C C. 

Let c i , . . . , c„ £ C. By Claim 1, there are a\,..., an £ A such that 

/(«!,...,a„) &Cl){f{ci,...,cn)}. 

Then ( c i . a j ) , . . . , (cn,an) € p, and therefore (f(ci,...,cn)1f(ai...,ari)) £ 
p. From this, taking into consideration the definition of p, it follows that 
f(a,. ..,cn)eC. 

Claim 3 / is an idempotent operation. 
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Consider the unary operation g(x) = f(x,... ,x). If g(0) = 0 and g(p) = p then 
g{x) = x for all x £ A and / is an idempotent operation. Indeed, in this case for 
k = 0 , . . . , p - 1 we get that 

g(k) = g(0irk) = g{ 0)nk = OTTk = k 

and 
g{p + k) = g{p-Kk) = g(p)wk = pirk = p + k. 

Therefore we have to show that </(0) = 0 and g(p) = p. By Claim 2, 

g(0),g(l)£C = {0,l,p,p + 2}. 

It follows that ) 

5 ( 0 ) = ^(LTR- 1 ) = ^ L ) * " 1 € C T T 1 = { p - 1 , 0 , 2 ? - l,p+ 1 } 

and 5(0) = 0. Similarly, 

g(p),g(p + 2) G C = {0,l,p,p + 2} 

implies that 

9(p) = g ( ( p + 2 ) T T - 2 ) = g(p + 2 ) T T - 2 € C T T " 2 = { p - 2,p - 1 , 2 p - 2,p} 

and g(p) = p, completing the proof of Claim 3. 

Claim 4 If f is binary then f(x,y) € {x,y} for all x,y £ A. 

^Let^/ be binary and suppose that f(a, b) = c $ {a, b} for some a,b £ A. Then, 
by (*), )ank £ C and cnk £ C for some k. Put u = aivk, w = cirk and v = birk. 
Then 

f{u,v) = f{a-nk,b-Kk) = / (a , b)nk = cnk = w £ C, 

and therefore, by Claim 2, we have that v $ C. Now c ^ b, (u,v), (v,v) £ p imply 
that w ^ v and (w,v) = ( f ( u , v ) , f ( v , v ) ) £ p which is not valid. 

Claim 5 If f is binary then the restrictions of f to {0,1, . . . ,p — 1} and to {p,p + 
1... ,2p — 1} are projections. 

By Claim 4, / (0 ,1) € {0,1}, and without loss of generality we can suppose that 
/ (0 ,1) = 0. Then 

f ( p - 1 , 0 ) = / ( O T T 1 , ITT- 1 ) = / ( 0 , L ) ^ - 1 = O71--1 = p - 1 

and 
f ( p - 2 ,p - 1) = / ( O T T 2 , ITT-2 ) = / ( 0 , 1 ) 7 T ~ 2 = OTT 2 = p - 2. 

Let i £ { 2 , . . . — 2} . From 

( p - l ) 0 ) , ( 0 , i ) e p , {p-l,i)?p and f(0,i) £ {0 , i } 
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it follows that 

(p-l ) /(0>t)) = ( / (p - l > 0) ) / (0 ,0 )ep and / ( 0 , 0 = 0 . 

Similarly, from 

(p — 2,0), (p — l,p — 1) G p, ( p - 2 , p - l ) £ p and / ( 0 , p - l ) e { 0 , p - l } 

it follows that 

(p - 2, / (0 ,p - 1)) = ( / (p - 2,p - 1), / (0 ,p - 1)) G p and / (0 ,p — 1) = 0. 

Hence for any x G {0 ,1 , . . . ,p — 1} we have that / (0, x) = 0, which together with 
the fact that / G Pol 7r imply that the restriction of / to {0 ,1 , . . . ,p — 1} is the first 
projection. One can show by a very similar argument that the restriction of / to 
{p,p + 1 , . . . , 2p — 1} is also projection. 

Claim 6 If f is binary then f is a projection. 

Taking into consideration Claim 5, we can suppose without loss of generality 
that the restriction of / to {0 ,1 , . . . ,p — 1} is the first projection. First we show 
that the restriction of / to {p,p +1 , . •., 2p— 1} is also the first projection. In deed, 
if the restriction of / to {p,p + 1 , . . . , 2p - 1} is the second projection then from 
(2,p), (0,p+ 1) G p we obtain that (2,p + 1) = ( /(2,0), / (p ,p + 1)) G p which is 
not valid. 

If / is not the first projection then for some a G {0 ,1 , . . . ,p — 1} and b G 
{p,p + 1 , . . . , 2p - 1} we have that f(a, b) = b or f(b, a) = a. If / (a , b) = b then 
choose a positive integer k such that ank G C and v — b-Kk £ C. Put u = airk and 
v — birk. Now 

f(u,v) = f{airkMk) = f(a,b)nk = birk = v £ C. 

Since (2,u), (0,v) G p and 2 / v (because of v — birk G {p,p + 1 , . . . , 2p — 1}) it 
follows that (2,v) = (/(2,0), f{u, v)) G p which is not valid. 

If f(b, a) = a then choose a positive integer k such that airk g C and v = birk G 
C. Put u = ank and v = birk. Now 

f{v,u) = f(birk,aitk) = f(b, a)irk = airk = u £ C. 

Since (p + l ,v), (p,u) G p and p + 1 ̂  u (because of u = airk G {0 ,1 , . . . ,p - 1}) it 
follows that (p + 1, u) = (f(p + 1 ,p), f(v, u)) G p which is not valid. Hence / is the 
first projection. 

Claim 7 / cannot be a Mal'cev operation. 

Indeed, if / is a Mal'cev operation, then (2,0), (0,0), (0,3) G p implies that 
(2,3) = ( / (2,0,0) , / (0 ,0,3)) G p which is not valid. . 
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Claim 8 / cannot be a nontrivial semi-projection. 

Let / be a nontrivial n-ary semi-projection (n > 3). We can suppose that / 
is a first semi-projection. Observe that f(c, a2 ..., an) £ C for any c £ C and 
a2,... ,an £ A. Indeed, if c £ C and a2,.. .,an £ A then for any a £ A we have 
(c,a), (a2,c).... ,(an,c) £ p which implies that 

(/(c,<22 ...,an),a) = (f(c,a2,...,an),f(a,c,...,c)) £ p 

and / ( c , a-2 ..., an) £ C. Since / is not the first projection / ( a i , . . . , an ) = a ^ Oi 
for some a i , . . . ,an £ A. Then, by (*), aiirk £ C and airk $ C for some k. It 
follows that 

f(aiTTk,...,anirk) = f(au... ,an)nk = airk, 

a contradiction. 

Claim 9 / cannot be a majority operation. 

Let / be a majority operation. First observe that f(a,b,c) £ C if at least two 
elements among a, b, c belong to C. Indeed, if e.g. a,b £ C then for any x £ A 
from (a,x), (b,x), (x,0) £ p it follows that 

( / (a, b, c), x) = {f {a, b, c),f(x, x, 0))mp 

which implies that f(a,b,c) £ C. 
Now let a,b,c£ A be pairwise distinct elements. Clearly, f(a, b, c) is different 

from at least two of the elements a,b,c, say from a and b. Then, by (*), for some 
k we have u = airk £ C and t = f(a, b, c)irk g C. Put v = birk and w = cnk. Thus 

f(u,v,w) = f(aTTkibiTk,ciTk) = f(a,b,c)irk = t 

and, taking into consideration the above observation, we have that v $ C. Since 
f(a, b, c) ^ b, therefore » / i and (v, t) ^ p. On the other hand (v,u), (v,v), (0, w) £ 
p implies that (v,t) = (f(v,v,0),f(u,v,w)) £ p. This contradiction implies that / 
cannot be a majority operation. Now we are in a position to complete the proof of 

the theorem. If Pol {/?, 7r} ^ J A then there is a nontrivial operation in Pol{p, 7r} 
which is either a unary operation or an idempotent binary operation or a majority 
operation or a Mal'cev operation or a semi-projection (see e.g. [4]). Since , by 
Claims 3, 6, 7, 8 and 9, these cases cannot occur we have that Pol {p, 7r} = J A- D 

Theorem 2 Let A = {0 ,1 , . . . , 2p — 1} where p is a prime number with p > 5 and 
let (A\ V, A) be the lattice given by the following diagram: 
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Let us define a ternary operation d and a permutation IT on A as follows: 

d(x, y, z) = (x A y) V (x A z) V (y A z) 

and 

7r = (0 1 p+2 ... 2p - 2 2p- l ) (p + 1 p 2 . . . p- 2 p- 1). 

Then d and IT generate minimal clones such that the clone generated by d and IT is oA: 

Proof: Suppose that A, p, d and IT satisfy the hypotheses of the theorem. Then 
it is known that nr and d generate minimal clones, respectively (see e.g. [2]). We 
have to show that A = (A\ d,ir) is a primal algebra, i.e., every operation on A is a 
term operation of A. 

First observe that A has no proper subalgebra. Indeed, the proper subalgebras 
of (A; IT) are {0>l,p + 2 , . . . , 2p - 2,2p - 1} and {p,p + 1 ,2 , . . . ,p - 2,p - 1} only. 
Furthermore, 

d(p + 2,p + 3,p + 4) = p ^ {0, l , p + 2 , . . . , 2p — 2,2p — 1} 

and 
d{2,3,4) = 0 ^ { p , p + l , 2 , . . . , p — 2,p — 1}. 

t 
Since d{x, y,0) = x A y and d(x, y, 2p - 1) = x V y for any x, y 6 A, therefore the 

congruence relations of A and (A; V, A , IT) are the same. One can check easily that 
(A\ V , A) has two nontrivial congruence relations only. One of them has two blocks 

B = { 0 , 1 , . . . , p - 1} and C = {p,p + 1 , . . . , 2p — 1}, 

and the blocks of the other are 

{k,p+k}, k = 0, . . . , p - l . 
\ 

It is easy to check that -IT does not preserve these two equivalence relations. Hence 
we have that A is a simple algebra. 
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Next we show that the identity map is the only automorphism of A. To show 
this let r be an automorphism of A. Since r is also an automorphism of the algebra 
(A-,d), for any 0 G Con {A\ d) = Con (A; V, A) we have that Or G Con(A;d). It 
follows that either BT = B or BT = C. Hence T\B is either an automorphism of 
(B; d) or an i somorphism between (5 ; d) and (C; d). For any x G BT we have that 

d(x,0r, (p — 1)T ) = d(xr^1,0,p — 1 )T = (XT~1)T — x. 

Using this fact it is easy to show that either {Or, (p — l ) r } = {0, p — 1} or {Or, (p — 
l ) r } = {p, 2p - 1}. If Or = p - 1 then 

I t = (07r)r = 0(?rr) = 0(r?r) = (0r)?r = (P-L)IR=P+L and BT ± B, C. 

If Or = p then 

l r = (0TT)T = 0(Trr) = 0(TTT) = (OT)TT = pn — 2 and BT ^ B, C. 

If Or = 2p - 1 then 

l r = (0?r)r = 0(TTT) = 0(r7r) = (0r)7r = (2P - 1)TT = 0 and BT ± B, C. 

Taking into consideration that BT — B or BT — C, it follows that Or = 0. Since 
the set of fixed points of r is a subalgebra of A therefore r is the identity map. 

No we are in a position to complete the proof. By [5], every finite, simple, 
surjective algebra without proper subalgebra is either quasiprimal or affine or term 
equivalent to a matrix power of a unary algebra. Since affine algebras and matrix 
powers of unary algebras cannot have majority term operations and d is a majority 
operation, we obtain that A is quasiprimal (i.e. every operation on A admitting 
all isomorphisms beetwen subalgebras of A is a term operation of A). Taking into 
consideration that A has no proper subalgebras and nontrivial automorphisms, it 
follows that A is a primal algebra. • 
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