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Minimizing the number of tardy jobs on a single 
machine with batch setup times * 

Günter Rote t Gerhard J. Woeginger* 

Abstract 
This paper investigates a single-machine sequencing problem where the 

jobs are divided into families, and where a setup time is incurred whenever 
there is a switch from a job in one family to a job in another family. This setup 
only depends on the family of the job next to come and hence is sequence 
independent. The jobs are due-dated, and the objective is to find a sequence 
of jobs that minimizes the number of tardy jobs. 

The special case of this problem where in every family the jobs have at 
most two different due dates is known to be A,''P-coniplete [Bruno & Downey, 
1978]. The main result of this paper is a polynomial time algorithm for the 
remaining open case where in every family all the jobs have the same due 
date. This case may be formulated as a dual resource allocation problem 
with a tree-structured constraint system, which can be solved to optimality 
in polynomial time. 
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1 Introduction 
This paper deals with the following scheduling problem. There are N jobs JI,..., JN 

that are to be processed without interruption on a single machine. All jobs are 
available for processing at time zero. The set of jobs is divided into F families; a 
setup time SJ is associated to each family / = 1 , . . . ,F. Whenever a job in family / 
is processed, this incurs the setup time Sf unless another job from the same family 
is processed immediately before this job. The machine can execute at most one job 
at a time, and it cannot perform any processing while undergoing a setup. Job Jj 
(j = 1,... ,ri) has a positive integer processing time pj, and an integer due date dj. 
In a schedule cr, we denote by Cj(a) the completion time of job Jj ( j = 1 , . . . ,n). 
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If Cj{o) > dj, then job J, is tardy and we set Uj = 1. If Cj(a) < dj, then job Jj is 
processed on-time and we set Uj = 0. The objective is to find a processing order 
of the jobs that minimizes Uj, i.e. the number of tardy jobs. In the standard 
scheduling notation (cf. Lawler, Lenstra, Rinnooy Kan & Shmoys [5] and Potts & 
van Wassenhove [8]), this problem is denoted by 11 sj \ Y,Uj- For related problems 
and for practical applications involving batch setup times, the interested reader is 
referred to Monma & Potts [6], Potts & van Wassenhove [8], and Webster & Baker 
[9]. 

A special case of 11 s/ | Y , U j t h e feasibility testing problem, i.e. the problem 
of deciding whether there is a feasible schedule in which all jobs of a given instance 
are on-time. Bruno & Downey [1] prove that the feasibility testing problem is 
NV-hard, even if there are only two distinct deadlines per family. An instance of 
11 sf I 12 Uj where in every family all jobs have the same due date, is said to have 
uniform family due dates. In this paper we will show that the problem with uniform 
family due dates is solvable in polynomial time. This special case is sufficiently 
general to contain the problem 111 J^Uj without batch setup times (in 111 ^ Uj, 
every jobs forms its own family and all family setup times are zero). Hence, our 
result generalizes the well-known polynomial time algorithm of Moore [7]. 

Our solution approach to 11 s j | Y Uj is as follows: We formulate 11 s/ | J2Uj 
with uniform family due dates as a dual resource allocation problem with tree-
structured constraints (cf. Section 3). Since this dual resource allocation problem 
can be solved in polynomial time by dynamic programming (cf. Section 2), the 
scheduling problem itself can be solved in polynomial time. 

2 A dual resource allocation problem 
The resource allocation problem (cf. Ibaraki & Katoh [3]) is a well-known optimiza-
tion problem with a (possibly) complex objective function under a single, extremely 
simple constraint. In the dual resource allocation problem (cf. Katoh, Ibaraki & 
Mine [4] or Section 10.1 in [3]), the roles are exchanged and the objective function is 
simple whereas the constraint system may be messy. In this section, we investigate 
the following dual resource allocation problem (DAP). 

E / = i ® / 

E / € s 9f(xf) < cs for all S G S 
< 0 < xf <nf f = l,...,F 
„ xf integer / = 1 , . . . ,F 

For 1 < / < F, the function gf.[0,rif] - » IR is an arbitrary function which is 
specified as an ordered list of pairs {x,g/(x)), x = 0 , . . . ,nj. The values n / , 1 < 
/ < F, are positive integers. The set system S is a system of non-empty sets over 
{ 1 , . . . , F } . For every S E S, the value c$ is an arbitrary real number. 

max 

(DAP) 
s.t. 
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Moreover, denote n = Observe that n > F holds and that by the 
specification of the functions <?/, the numbers n/ and n are essentially encoded in 
unary. 

Proposition 2.1 The dual allocation problem (DAP) is an AfV-hard problem. 

Proof. The statement may be proved e.g. via a reduction from INDEPENDENT 
SET IN GRAPHS (cf. Garey k Johnson [2]): Given a graph G = (V,E), find 
the maximum number of pairwise non-adjacent vertices. For every vertex Vf £ V, 
introduce a corresponding variable x j in (DAP) with the interpretation "Xf = 1" 
if Vf belongs to the independent set and "xf = 0" otherwise. Moreover, set n/ = 1, 
<7/(0) = 0 and Qf( 1) = 1. For every edge e = (vf, «/,.)• introduce the set { / , h} in S 
and set C{//,} = 1. Then the optimal objective value of (DAP) yields the size of 
the maximum independent set in G. • 

A set system S is called tree-structured if 0 S and for all S', S" £ S, 

S' C S" or S" C S' or S' n 5 " = 0. 

With a tree-structured set system S, we associate a directed in-forest T(S) as 
follows: For every set S £ S the forest contains a corresponding vertex; in the 
following we will not distinguish between a set 5 and its corresponding vertex. 
There is a directed edge from a set S' to another set S" in !F(S) if and only if 
S' C S" and there is no S'" in S with S' ± S'" ± S' and S' c S'" C 5" . Clearly, 
every vertex in T(S) has out-degree at most one. Adding all singleton sets to 
S does not destroy the tree-structured property. But then, the forest ^"(5) has 
F leaves, and the remaining vertices have indegree at least 2. It follows that a 
tree-structured family S contains at most 2F — 1 sets. 

Lemma 2.2 For any instance I — (n /,()/, S. c,s) of (DAP) with tree-structured 
S, one can construct in 0(n + F2) time another instance /' = (rif,gf,S',c's) of 
(DAP) such that the following conditions are fulfilled. 

(CI) I and V are equivalent, i.e. they have the same set of optimal solutions and 
the same optimal objective value. 

(C2) The set system S' in I' is tree-structured; |<S'| = 2F — 1 holds; the in-forest 
T(S') associated with S' is a binary in-tree. 

Proof. We construct / ' in two steps by adding more sets to S. We set the right-
hand sides c's of all the corresponding new inequalities to the global upper bound 
c* = max{0,maxo<x<n/ g/(x)}, which makes them redundant. Initialize 
S' := S and for all S £ S set c's = cS- 'If { / } $ S' for some f £ {1,...,F} then 
add the new set { / } to <S'. If { 1 , . . . , F} S' then add the new set { 1 , . . . , F} to 
5'. 

In the second step, repeat the following procedure as long as some vertex S in 
J-(S') has three or more in-going edges: Let S^ and Sj2 be two arbitrary children of 
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S in add the set S' = S^ US,2 to S'. By iterating this procedure, eventually 
every interior vertex in !F(S') will have in-degree two and condition (C2) will be 
fulfilled. This completes the construction of instance I ' . It can be verified that / ' 
is equivalent to I and hence, conditions (Cl) and (C2) are both fulfilled. 

It remains to discuss the time complexity. The first step is easily done in 
0(n + F) time. In the beginning of the second step, compute the current forest 
J-(S') as follows. First construct a simple, undirected, loopless auxiliary graph with 
vertex set S': For every / = 1,... ,F and for every S', S" 6 S' with / e S' and 
/ 6 S" , put an edge between S' and S" into the auxiliary graph. The auxiliary 
graph can be constructed in 0(F2) overall time. Then for S € S1, S ^ { 1 , . . . . F } , 
the unique out-going edge in T(S') goes to the set S' where (i) S ' is adjacent to 
S in the auxiliary graph, (ii) |S'| > |S|, and (iii) |S'| is smallest possible under 
these conditions. In this way, the forest F(S') for S' at the beginning of the second 
step can be computed in 0(F2) time from the auxiliary graph. Getting rid of the 
vertices with in-degree greater than two can be done by locally manipulating JF(iS'); 
it is routine to implement it in 0{F2) overall time. • 

Theorem 2.3 The special case of the dual allocation problem (DAP) where S is 
tree-structured is solvable in 0(n2) time. 

Proof. First we apply Lemma 2.2 to get in 0(n + F2) time an equivalent instance 
where 3-(S) is a binary tree. Let S i , . . . , S2F-1 be an enumeration of the sets in S, 
such that Si C Sj implies i < j. For S € S, let n(S) = E / e s nf • 

The remaining argument will be done by dynamic programming. Define a two-
dimensional array A[i,t] where 1 < i < 2F — 1 and 0 < t < n with the following 
meaning: The value A[i, ¿} is the smallest g* for which there exist values x*j. f £ St, 
such that 

(A1) Efes 9f (x*f) ^ c s holds for all S € S C Si. 

(A2) E f € S i * } = * • 
(A3) E / € 5 i .9/(z/) = <?*• 

If no values x*j fulfilling (Al) and (A2) exist, then A\i,i] = +00. This happens 
for example when I > n(Si). Hence from now on, we will only deal with entries 
A[i,i] for which I < n(Si). We compute the entries A[i. £} in increasing order of i. 
If |S»| = 1, let Si = { / } and set for 0 < i < nf 

* M = i " ( 0 i f " W S c s (i) I + 0 0 otherwise. 

If |Si| > 1, let Si = S0 U Sb with a < b < i, where Sa and St are the two children 
of Si in T(S). Then for I < n(Si), 

j min { A[a, k] + A[b, i - k] : 0 < k < n(S„), 0 < t - k < n(Sb) } 
A^i, £\ — \ ( 2 ) 

I + 0 0 if this minimum is greater than cs{ • 
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It can be verified that with the above definitions, (A1)-(A3) are always fulfilled for 
g* = A[i, £}. In the end, the optimal objective value of (DAP) equals the maximum 
I for which A[2F - 1,1] takes a finite value. 

Let us analyze the time needed to compute all values A[i,i], Denote by T(i) 
the total time needed to handle all finite entries A[j,£] with 0 < i < n and Sj C Si. 
Then for |Si| = 1 with S, = { / } , (1) implies that 

T(i) = COnstx-71/ = consti • n(Si). (3) 

If |Sj| > 1, let Sa and St, be the two children of Sj in T(S). Note that a < b < i, 
that Si = Sa U St, and that n(Si.) = n(Stt) + n(St) holds. We claim that 

T(i) = T(a) + T(b) + const2 • n(Sa) • n(Sb). (4) 

This can be seen as follows. The time T(i) consists of the total time for handling 
all entries A[j,£\ with 0 < I < n and Sj C Sa or Sj C St, plus the total time for 
handling all entries A[i,i] with 0 < £ < n. For every a, 0 < a < n(Sa), and for 
every /?, 0 < (3 < n(Sb), in (2) there is exactly one step performed with k = a and 
£ — k = p. Hence, the total time for handling the entries A{i,i) with 0 < I < n(Si) 
is proportional to n(Sa) -n(Sb). Hence, (4) indeed holds. By induction, one proves 
from (3) and (4) that 

T{i) < const • n(Si)2. 

Consequently, the total time T(2F — 1) needed for computing all entries is 0(n2). 
Since F < n, the time spent'on applying Lemma 2.2 is also 0(n2). Summarizing, 
this yields the running time claimed in the statement of the theorem. 

Finally, we remark that by storing appropriate auxiliary information in the 
dynamic program and by doing some backtracking, one can also explicitly compute 
the values xf in an optimal solution; this increases the running time by only a 
constant factor. Since these are standard techniques, we do not elaborate on them. 

• 

3 Solution of the scheduling problem 
In this section we discuss the scheduling problem 11 s / \ Uj that has been de-
fined in the introduction. The following observation follows via straightforward job 
interchange arguments. 

Observation 3.1 For any instance ofl\sf\ Y^Uj with uniform family due dates, 
there is an optimal schedule of the following form. 

(i) For every family, the on-time jobs of that family are processed consecutively; 
hence, the setup for each family is performed at most once. 

(ii) In each family, the on-time jobs are the shortest jobs of the family. • 
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For / = 1 , . . . , F, denote by df the due date of the jobs in family / . Without loss 
of generality assume that d\ < do < • • • < dp. Let n / , / = 1,... ,F, denote the 
number of jobs in family / , and let p/^ < p/,2 < • • • < Pf,n, denote their processing 
times. Moreover, define 

9f(x) = 

For / = 1 ,...,F, introduce 5 / = { 1 , . . . , / } and set cs, = df. Define S = 
{ 5 I , . . . , 5 F } . Finally, denote by Xf the number of on-time jobs from family / , 
f=l,...,F. 

With this choice of parameters, the dual allocation problem (DAP) is equivalent 
to 11 Sf | Y, Uj with uniform family due dates. Moreover, S is tree-structured and 
hence Theorem 2.3 implies the main result of this paper: 

Theorem 3.2 The special case of 11 sj | Uj with uniform family due dates is 
solvable in 0(n2) time. • 
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