
Acta Cybernetica 14 (1999) 51-64.

Trips on Trees

Joost Engelfriet* Hendrik Jan Hoogeboom*
Jan-Pascal Van Best *

Abstract
A "trip" is a triple (g,u,v) where g is, in general, a graph and u and v

are nodes of that graph. The trip is from u to v on the graph g. For the
special case that g is a tree (or even a string) we investigate ways of specifying
and implementing sets of trips. The main result is that a regular set of trips,
specified as a regular tree language, can be implemented by a tree-walking
automaton that uses marbles and one pebble.

1 Introduction
A specification of a function describes the result of the function in terras of its
argument. The goal of the programmer is to implement this specification by a
program that, for a given argument as input, produces the function result as output.
From an elementary point of view, the program can be seen as a device that walks
on a graph g. The nodes of g are the possible contents of the program variables,
and there is an edge from node m to node n if m can be transformed into n by an
atomic programming statement, such as an assignment. The program should find
its way through this graph from the initial state u, determined by the input, to the
final state v, that determines the output.

In this paper we consider a special case of this general situation, viz. the
case that the graph is a finite tree (or even a finite string). In particular, the
specification describes a set of triples of the form (t, u, v) where t is a tree (over a
ranked alphabet) and u and v are nodes of t. Each such triple can be viewed as a
"trip" from u to v on the tree t. Thus, the specification describes a set of trips, i.e.,
a "trip type". To simplify terminology we will also call this a trip. An example of
a trip (type) is: from the left-most leaf to the right-most leaf. This is, of course,
the set of all triples (t ,u,v) where t is an arbitrary tree, u is its left-most leaf, and
v is its right-most leaf.

A set of triples (t, u, v) is said to be regular if it forms a regular tree language
when, as is quite usual, the nodes u and v are indicated by special marks in t.
Thus,'a regular trip can be specified by a finite tree automaton (that recognizes

'Department of Computer Science, Leiden University P.O.Box 9512, 2300 R.A Leiden, The
Netherlands e-mail: engelfri@wi.leidenuniv.nl

51

mailto:engelfri@wi.leidenuniv.nl

52 Joost Engelfriet, Hendrik Jan Hoogeboorn. Jan-Pascal Van Best

the trip) or a regular tree grammar (that generates the trip) or a regular expression
(that describes the trip). Moreover, as is well known from [Don, ThaWri] (and from
[Biic, Elg] for strings), it can be specified by a formula 4>(u, v) of monadic second-
order logic (on trees), with two free variables u and v. Thus, monadic second-order
logic is the highest-level specification language for regular trips.

Our main interest is the implementation of regular trip specifications. Given
such a specification of trips (t ,u,v) , we wish to know how we can walk from u to
v on t. In other words, we are looking for a general type of automaton that, when
started at node u of t can walk to node v along the edges of the tree. Thus, for
the trip mentioned above, the automaton should be able to walk to the right-most
leaf, whenever it is "dropped" at the left-most leaf (and go into a rejecting state
when dropped at any other node).

It is known from [Bio, BloEng2] that, in general, this cannot be done by a fi-
nite state tree-walking automaton (as used, in the form of 'routing expressions', in
[KlaSch] to specify data types consisting of trees with additional pointers). The
solution in [Bio, BloEng2, BloEngl] is to equip the finite state tree-walking au-
tomaton with more powerful tests; in fact, it is allowed to test any property of its
current node that can be expressed by a formula (with one free variable) of monadic
second-order logic. This is of course not a complete implementation because the
tests are still specified in logic. Thus, the question remained how these tests can
be implemented. Here we show that regular trips can be implemented by a finite
state tree-walking automaton that uses "marbles" and one pebble to find its way
through the tree (as Tom Thumb through the forest). The precise way of using
marbles and pebble will be explained in Section 4. In Section 3 we start with the
easier case of regular trips on strings, and show how to implement them by 2-way
finite state automata with one pebble (and no marbles). Section 2 contains the
formal definition of a trip.

The results of this paper are part of the Master's Thesis [vBest] of the last
author, where more detailed definitions and proofs can be found.

2 Trips and Sites
It should be clear that the reader is assumed to be familiar with formal language
theory, and in particular with tree language theory. Thus, the notions of regular tree
language and (bottom-up) finite tree automaton are assumed to be good friends of
the reader. This can be accomplished by reading [GecStel] and [GecSte2]. Shame
on the reader if he/she did not do so yet!

As explained in the introduction, we are interested in trips on trees. These are
now formally defined. Let E be a ranked alphabet.

Definition 2.1 A trip is a set of triples (t,u,v) where t is a tree over and u
and v are nodes of t.

Trips go from sites to sites (or from sights to sights?). This is an auxiliary
notion that we will need too.

Trips on Trees 53

Definition 2.2 A site is a set of pairs (t,u) where t is a tree over £ and u is a
node of t.

To define regular trips (and sites) we first have to show how nodes of trees
can be marked. As usual, to code (t,u,v), two booleans are added to the labels
of t, one for u and one for v. We define the "marked" ranked alphabet m(£) =
{((7,61,62) I o 6 £,6 i ,6 2 G {0 ,1 } } , where (a,bi,b2) has the same rank as cr.
We identify (a, 0,0) with <x; thus, for each o £ £ , m(£) contains the symbols a,
(cr, 1,0), (cr,0,l), and (or, 1,1). Let t be a tree over E and let u and v be nodes
of t. We define mark(i,u, v) to be the tree over m(£) , with the same nodes and
edges as t but with different node labels: if node x has label o in t, then it has
label (a, x = u,x = v) in mark(i, u, v). Thus, in mark(i, u, v), either u ^ v and u
is marked by (1,0) and v by (0,1), or u = v and it is marked by (1,1); the other
nodes are not marked. This defines the coding of trips as tree languages. To code
sites as tree languages, we define mark(f,ix) = mark(£,u,w). Thus, for technical
convenience, a site (i,u) gets the same encoding as the "round-trip" (t,u,u). As
usual, for a trip T, we define mark(T) = {mark(£,u,i;) | (t,u,v) e T } , and for a
site S, mark(S) = {mark(i,u) | (t ,u) 6 S}.

Definition 2.3 A trip T is regular ¿/mark(T) is a regular tree language. A site
S is regular if mark(S) is a regular tree language.

• As observed in the Introduction, it is well known from the classical results of
[Don, ThaWri] that a trip T is regular iff it can be defined by a formula <fi(x,y) of
monadic second-order logic, in the sense that T is the set of all (i, u, v) such that
11= <j>(u,v). And similarly for sites and formulas <p(x) with one free variable.

We will be interested in particular in functional trips, i.e., trips in which the
destination is determined by the place of departure. We will show that functional
trips can be implemented by deterministic tree-walking automata. It is easy to see
that functionality is decidable for regular trips.

Definition 2.4 A trip T is functional if there are no triples (t,u,vi), (t,u,v2) S T
with Vi ^ v2.

Finally, all the above definitions also apply to the case of strings over an (ordi-
nary) alphabet E, with the appropriate changes. Thus, a trip on strings is a set of
triples (w,u,v) with w £ £* and u,v are positions of w (i.e., 1 < u,v < |u>|, where
|w| is the length of w). Note that w cannot be the empty string.

3 Trips on Strings
To find our way on strings we will use 2-way pebble automata. A 2-way pebble
automaton is an ordinary 2-way (nondeterministic) finite state automaton with one
pebble. The input string is surrounded by endmarkers on the input tape, and at
each moment the automaton is at a certain cell of the tape, in a certain state. It

54 Joost Engelfriet, Hendrik Jan Hoogeboorn. Jan-Pascal Van Best

can test the input symbol at the current cell, and move one cell to the left or right,
changing state. Additionally, it can drop the pebble on the current cell, it can test
whether the pebble is at the current cell, and it can lift the pebble from the current
cell (when it lies there, of course). Initially the pebble is not on the input tape,
and it is also required that at the end of a computation the pebble is not on the
input tape. A 2-way pebble automaton A recognizes a language L(A) in the usual
way, but we want to use it to compute a trip, as follows. The trip T(A) computed
by A consists of all triples (w, u, v) such that when A is started at position w o f w
on the input tape, in its initial state, it can walk to position v, enter a final state,
and halt. In other words, if you want to make trip T(A), catch automaton A\

It is well known that 2-way finite automata (without pebble) recognize the reg-
ular languages [RabSco, She]. In fact, a 2-way finite automaton A can be simulated
by an ordinary (1-way) finite automaton M that, at each cell, computes the transi-
tion table of A, i.e., the finite set of pairs (q, q') such that when A is started in state
q at this cell, it can make an excursion to the left, and return to the cell in state
q'. The same technique of transition tables can be used to show that also 2-way
pebble automata recognize the regular languages ([BluHew]; cf. [Bir, GloHar] and
Exercise 3.19 of [HopUll]): a 2-way pebble automaton A can be simulated by a
2-way automaton A' (without pebble) that at each cell computes two transition
tables of the automaton A (without the instructions that manipulate the pebble),
one for excursions to the left and one for excursions to the right. Instead of drop-
ping a pebble on a cell, making excursions to the left and right, and then lifting
the pebble again, A' can just stay at the cell and compute A's state change from
the two transition tables.

From this it is easy to see that every trip computed by a 2-way pebble automaton
is regular.

Lemma 3.1 For every 2-way pebble automaton A, T(A) is a regular trip.

Proof. We have to show that mark(T(^4)) = { m a r k ^ u , ? ;) | (w,u,v) € T(A)} is
a regular language. In fact, there is a 2-way pebble automaton A' that recognizes
mark(T(A)), i.e., L(A') = mark(T(A)). The automaton A' first walks to u (which
is marked by (1,0) or (1,1)), then simulates a successful walk of A (ignoring marks),
and finally checks that it is at v (which is marked by (0,1) or (1,1)). •

Determinism of 2-way pebble automata is defined in the usual way. It should
be clear that the trip T(A) computed by a deterministic 2-way pebble automaton
A is functional (cf. Definition 2.4). We now prove that every regular trip can
be computed by a 2-way pebble automaton, and in particular by a deterministic
automaton if the trip is functional.

Lemma 3.2 For every regular trip T on strings there is a 2-way pebble automaton
A with T(A) = T. Moreover, ifT is functional, then A is deterministic.

Proof. Let M be an ordinary, deterministic finite automaton that recognizes
mark(T). First we describe a nondeterministic automaton A that computes T.
The automaton A is started at position u of string w, and it has to walk to position

Trips on Trees 55

v, with (w,u,v) £ T. To do this, A first guesses whether v is to the left or to
the right of u, or v = u. Suppose that it guesses v to be to the right of u. A
drops the pebble at the start position it, walks to the head of the input tape, and
then simulates M walking to the right, until it detects the pebble. It picks up the
pebble and continues the simulation of M, treating the symbol a at position u as
(a, 1,0). Then, nondeterministically, A drops the pebble at some position v, treats
the symbol a at position v as (a, 0,1), and continues the simulation of M until it
reaches the end of the input tape. If M is in a final state, A backs up until it
finds the pebble at position v, lifts the pebble, and goes into a final state. In the
case that v is to the left of it, A simulates a deterministic finite automaton that
recognizes the mirror image of mark(T), walking from the end to the beginning of
the input tape. The case that v = u is obvious.

Let us now assume that T is functional, and describe a deterministic automa-
ton A. It is a variation of the nondeterministic automaton A above. First we
argue that A can find out deterministically whether v is to the left or right of
u, or at u. Since mark(T) is a regular language, it should be clear that the
language {mark(w, u, v) | (w,u,v) € T and v is to the right of u} is regular too.
Hence, applying the string homomorphism that changes (a, 1,0) into (a, 1,1), and
(<r, 0,1) into <7, to this language, we obtain that the site S = {(w,u) | (w,u,v) e
T for some v to the right of u} is regular. Thus, A can test whether or not v is
to the right of u by testing whether or not (w,u) is in site S, and it can do that
by dropping its pebble at u and simulating a deterministic finite automaton that
recognizes mark(S), treating the symbol cr at position u as (cr, 1,1). Obviously, A
can test in a similar way whether or not v is to the left of u, or at u. Suppose
now that v is to the right of u. A then behaves as in the nondeterministic case,
simulating M, until it picks up the pebble from u. After that, instead of guessing
v nondeterministically, A just tries out all positions v to the right of u, one by
one from left to right, moving its pebble from one v to the next. Note that, when
walking from v to the end of the tape, A should not only keep track of the current
state of M but also remember the state in which M arrived in v; this allows A to
continue the simulation of M with the next v. •

Altogether we have proved that the 2-way pebble automaton is the implemen-
tation model of regular trips on strings.

Theorem 3.3 A trip on strings is regular iff it can be computed by a 2-way pebble
automaton. A functional trip on strings is regular iff it can be computed by a
deterministic 2-way pebble automaton.

Since a trip is regular iff it can be expressed in monadic second-order logic, this
theorem can be viewed as the generalization from languages to trips of the classical
result of Biichi and Elgot [Biic, Elg].

It is shown in [Bio, BloEng2] (for the more general case of trees) that 2-way
finite automata cannot compute all regular trips. Thus, the pebble is really needed.
We strengthen this result in Theorem 4.9. On the other hand, it is well known that
two pebbles are more powerful than one; a 2-way automaton with two pebbles can

56 Joost Engelfriet, Hendrik Jan Hoogeboorn. Jan-Pascal Van Best

easily recognize, e.g., the language {wcw \ w € {0 ,6}*}, and thus also compute
non-regular trips.

4 Tree-Walking Automata
In the case of strings we have used 2-way automata to walk from one position of
a string to another. For trees we need an automaton that walks from one node of
a tree to another. Such tree-walking automata were introduced in [AhoUll], and
were studied, e.g., in [ERS, KamSlu]. A (nondeterministic) finite state tree-walking
automaton (or tw automaton, for short) is similar to a 2-way automaton on strings.
At each moment the tw automaton is at a certain node of the input tree, in a
certain state. It can test the label of the current node, and move to the parent or
to one of the children of the node, changing state. A child can be specified by a
number between 1 and the rank of the current node label. The automaton can also
test whether the current node is the root of the input tree, and if not, what is its
"child number", i.e., which child it is of its parent (specified by a number between
1 and the rank of the label of its parent). The language L(A) recognized by a
tree-walking automaton A consists of all trees on which A has a computation that
starts at the root of the input tree in its initial state, and ends in a final state. As
in the case of strings, it can be shown, using the technique of transition tables (for
excursions in a subtree), that every tree-walking automaton can be simulated by
an ordinary (bottom-up) finite tree automaton. However, as opposed to the case
of strings, it is not known whether every finite tree automaton can be simulated by
a tree-walking automaton!

Conjecture 4.1 The class of tree languages recognized by tree-walking automata
is a proper subclass of the regular tree languages.

It should be mentioned here that a statement similar to the one above is proved
in [KamSlu]. However, the tree-walking automata of [KamSlu] are weaker than
ours: they cannot test the child number of a node; and for this reason, as shown
in [KamSlu], they cannot even make a depth-first left-to-right search of the input
tree.

Clearly, a type of automaton that can compute all regular trips on trees, should
be able to recognize the regular tree languages: for every regular tree language L,
{ (t ,u ,u) I í £ L,u is the root of t} is a regular trip, and obviously, an automaton
that computes this trip also recognizes L. Thus we are led to an automaton that is
known to recognize the regular tree languages: the tree-walking marble automaton.

A tree-walking marble automaton is a tree-walking automaton that, additionally,
can use "marbles" to drop on the nodes of the input tree. The difference between
a pebble and a marble is that the automaton has an unlimited supply of marbles
(i.e., a marbles bag of infinite size!). Moreover, we want our automaton to have
marbles of different colours (which is the reason to call them marbles). Thus, each
automaton has a fixed (but arbitrary) number of marble colours, and it has an

Trips on Trees 57

unlimited supply of marbles of each colour. During its computation, the automaton
can drop a marble of a given colour on the current node (provided there is not yet
one of that colour), it can test whether a marble of a given colour is at the current
node, and it can lift a marble of a given colour from the current node (provided
there is one there). Note that there cannot be two marbles of the same colour on
a node. There is, however, an important additional restriction on the behaviour
of the tw marble automaton: if there are marbles on the current node, then the
automaton is not allowed to move up to the parent node. In other words, dropping
a marble on a node u closes off the context of u, in the sense that the automaton
can only visit u and its descendants, but has to lift all marbles from u to visit the
other nodes. Since the automaton starts its computation without marbles on the
input tree, this restriction implies that at each moment of time all marbles lie on
the path from the current node to the root.

It is shown in [KamSlu] (cf. also [ERS]) that the tw marble automaton rec-
ognizes exactly the regular tree languages. However, the model of tw marble au-
tomaton is described in a different way in these papers. Instead of marbles, the
tree-walking automaton has a pushdown, which has the same length as the path
from the current node to the root. The pushdown is synchronized with the move-
ments of the automaton on the tree: a symbol is pushed on the pushdown when
the automaton moves to a child, and the top symbol is popped from the pushdown
when the automaton moves to the parent. It should be clear that these two types
of automata recognize the same tree languages. Each symbol on the pushdown can
be simulated by a marble on the corresponding node, taking all pushdown symbols
as marble colours. Vice versa, the marbles on the path from the current node to
the root can be simulated by a pushdown containing in each cell the colours of the
marbles that are on the corresponding node, taking all sets of marble colours as
pushdown symbols. The only reason that we have turned the tree-walking push-
down automaton into a tree-walking marble automaton is that the pushdown au-
tomaton is not suitable for the computation of trips: when started at a node of the
input tree, what would be the content of its pushdown?

The result of [KamSlu] is stated next, together with a sketch of the proof.

Proposition 4.2 Both the nondeterministic and the deterministic tw marble au-
tomata recognize the regular tree languages.

Proof. The fact that the language recognized by a nondeterministic tw marble
automaton is regular can be proved in the usual way using transition tables, and
we will not go into that (cf. the discussion before Lemma 3.1).

The other way around we sketch how a deterministic tw marble automaton A
can simulate a (deterministic, bottom-up) finite tree automaton M. Let us assume
for convenience that the input trees are binary, i.e., that the rank of an input symbol
is either 2 or 0. A traverses the input tree t in a depth-first left-to-right fashion, and
uses the states of M as marble colours. At each node u of t it determines the state
in which M arrives at u (in its own state), as follows. If u is a leaf, it determines
M's state from the transition function of M. Otherwise, suppose it has determined

58 Joost Engelfriet, Hendrik Jan Hoogeboorn. Jan-Pascal Van Best

the state qi at the first child of u. It then drops a marble of colour q\ on u, walks
down to the second child of u, and determines the state q2 at that child. Moving
up to u again, it picks up the marble qi, and determines the state at u from qx and
<72, using M's transition function.

For arbitrary input trees, A uses as marble colours all pairs (i,q), indicating
that q is the state of M at the z-th child of u. •

As in the case of strings, to obtain an implementation model for the regular
trips an additional pebble is needed. This finally leads us to the main automaton
model of this paper: the tree-walking marble/pebble automaton. A tree-walking
marble/pebble automaton is a tw marble automaton that uses one additional pebble.
The pebble can be dropped on a node, detected at a node, and lifted from a node, as
usual. Initially and finally, there are no marbles and no pebble on the input tree.
However, we need an additional restriction on the behaviour of this automaton,
because otherwise non-regular tree languages could be recognized (and hence non-
regular trips computed).

Example 4.3 Consider the non-regular monadic tree language {ancbne \ n > 0} ,
with a, b, c of rank 1 and e of rank 0. This language can be recognized as follows,
using the pebble and just one marble: put the marble at the root, and the pebble at
the lowest b; then move the marble one node down, and the pebble one node up;
repeat this last step, until both the marble and the pebble are at the c-labeled node.

The additional restriction on the tw marble/pebble automaton is: the pebble
can only be dropped or lifted when there are no marbles on the tree. Note that the
automaton is able to keep track of this condition by giving a special colour to the
first marble it drops on the tree. At the end of this section we will discuss a less
restrictive definition.

The trip T(A) computed by a tw marble/pebble automaton A is defined just as
in the case of 2-way pebble automata on strings: T(A) consists of all triples (t, u, v)
such that when A is started at node u of input tree t, in its initial state, it can
walk to node v, enter a final state, and halt. So, for this trip you have to catch
marble/pebble automaton A\

We first want to prove that every trip computed by a tw marble/pebble au-
tomaton is regular. As in the case of strings (cf. Lemma 3.1), this easily follows
from the fact that the tree languages recognized by tw marble/pebble automata
are regular, i.e., that the above restriction has been effective.

We need some terminology on finite tree automata. Let M be a (deterministic,
bottom-up) finite tree automaton, and let u be a node of an input tree t. By
stat&M,t{u) we denote the state in which M arrives at node u. By SUCCAÍ,Í(I¿) we
denote the set of states q of M such that M arrives in a final state at the root of
t when it is assumed to be in state q at node u (and thus skips the processing of
the subtree with root u); such a state q is said to be "successful" at u. Note that,
for every node u,t 6 L(M) iff stateM,t(u) e SUCCAÍ,Í(U). Note also that, for a child
v of u, SUCCAÍ,Í(I>) can be determined, using M's transition function (for the label
of u), from succM,t(u) and the states stateM,t(w') for all children v' ^ v of u: to

Trips on Trees 59

determine whether state p is successful at v, one applies M ' s transition function to
p and all stateM,i(^')> a n d checks whether the resulting state q is successful at u.

Theorem 4.4 The tw marble/pebble automata recognize the regular tree languages.

Proof. By Proposition 4.2 it suffices to show that every tw marble/pebble au-
tomaton A can be simulated by a tw marble automaton A'. Consider a part of a
computation of A which starts by dropping the pebble on node u of t, in state q,
and ends by lifting it again from u, in state q'. Note that at both moments there
are no marbles on t. When simulating A, A' can of course not put a pebble on u
(and a marble would not help because it closes off the context of u). Instead it
should, somehow, test whether A can make one of the excursions described above,
where q is the current state of A and q' is any state of A In other words, it should
be able to test whether (t, u) is in the site that consists of all pairs (t , u) such
that A can make the excursion described above. We first observe that the site Sq^
is regular. In fact, it is quite clear that mark(5 f / i 9 ') can be recognized by a tw
marble automaton (and hence is regular by Proposition 4.2): the automaton first
walks to node u which is marked by (1,1), and then simulates A, starting in state
q, treating the mark (1,1) as the pebble of A, and ending in state q' at u.

Thus, it now suffices to show that a tw marble automaton A' can always be
modified in such a way that it can, at each moment, test whether its current node
belongs to a given site S. Moreover, the test should be done in a deterministic
way because, in the simulation above, several of these sites have to be tested se-
quentially, viz. Sqiq' for all q'. Let M be a bottom-up finite tree automaton that
recognizes mark(5). Note that the input alphabet of M is m (£) where £ is the
input alphabet of A!. Clearly, at node u of t, A' can always compute stateM,t(u),
using the procedure described in the proof of Proposition 4.2 (first dropping a mar-
ble with a special colour on u, to recognize it after traversing the subtree). Let u
have label o of rank k. To determine whether (t ,u) is in S, A' visits the children
U i , . . . ,Uk of u, computes stateM,t(u») for every 1 < i < k, and returns to u. It
then computes q = stateM,mark(t,u)(M)> using M's transition function for the sym-
bol (CT, 1,1). Finally, it checks whether q G succM,L{U). Thus, it remains to explain
how the latter test can be implemented. During its computation, A keeps track of
succM,t(u) by using additional marbles that have the sets of states of M as colours;
in particular, there is a marble with colour succM,t(u') on every node u' on the
path from the current node to the root of t. When A moves from a node u to one
of its children v, it can compute succM,t(v) (i-e., the colour of the new marble) as
described just before this theorem, from succM,t(u) (the colour of the marble at
u) and the states of M at the other children v' ^ v of u (which it can compute
as shown above). When A moves up to the parent of u, it of course first lifts the
"succ-marble" from u. Initially A puts a succ-marble with colour F on the root of
t, where F is the set of final states of M. •

It is now easy to prove the analogue of Lemma 3.1 for trees.

Lemma 4.5 For every tw marble/pebble automaton A, T(A) is a regular trip.

60 Joost Engelfriet, Hendrik Jan Hoogeboorn. Jan-Pascal Van Best

Proof. By the previous theorem it suffices to show that there is a tw marble/pebble
automaton A' that recognizes mark(T(A)). Just as in the proof of Lemma 3.1, A'
walks to u, simulates A, and checks that it is at v. •

Next we prove that regular trips can be computed by tw marble/pebble au-
tomata.

Lemma 4.6 For every regular trip T on trees there is a tw marble/pebble automa-
ton A with T(A) = T. Moreover, ifT is functional, then A is deterministic.

Proof. It is shown in [Bio, BloEngl, BloEng2] (using terminology from monadic
second-order logic) that regular trips can be computed by tree-walking automata
with regular site tests, i.e., tw automata that, additionally, have the ability to
test whether the current node belongs to a given regular site (for a fixed, but
arbitrary number of regular sites). Clearly, a tw marble/pebble automaton can
test whether (t,u) is in site S by dropping its pebble on u, checking (according to
Proposition 4.2) whether mark(i,u) is in the regular tree language mark(S), with
the pebble treated as the mark (1,1), returning to u, and lifting the pebble. We
note that the tw automata with regular site tests are called tw automata with MSO
tests in [BloEngl, BloEng2].

For the reader who is not familiar with monadic second-order logic, we give a
second, direct proof of this lemma (essentially the same as the one in Theorem 8
of [BloEngl] and Theorem 13 of [BloEng2]). Let M be a bottom-up finite tree
automaton that recognizes mark(T). As in the proof of Lemma 3.2 we first describe
a nondeterministic automaton A that computes T. The automaton A is started at
node u of tree t, and it has to walk to node v, with (t ,u ,v) e T. Note that we
cannot use the same method as in the proof of Lemma 3.2; in fact, we cannot pick
up the pebble from u during the simulation of M (during a depth-first traversal
of the tree), because there will in general be marbles on the tree at that moment.
Thus, a more clever simulation is needed. A walks straight from u to v, along the
shortest path in t. At each node on that path it uses its pebble and marbles to
compute the relevant states of M. First, A guesses whether v is a descendant of
u, an ancestor of u, or neither of the two. Suppose that v is neither a descendant
nor an ancestor of u. Then A walks up to the least common ancestor z of u and v
(which it has to guess) and walks down to v, guessing its way down. On the way up
it computes state,M,v (x) for every node x between u and z, where t' = mark(i, u, v),
and on the way down it computes succM,t'{y) for every node y between z and v\
finally it computes stateM,t'(v) and checks whether stat&m,v(v) £ succm,v(v). Let
us see in more detail how A can do this. It starts by dropping the pebble on u
and computing stateM,V (U) , using the procedure in the proof of Proposition 4.2
and treating the label a of u as (a, 1,0). It then lifts the pebble from u, moves one
node up, say to x, drops its pebble on x, computes stateM,c(«') for all children
u' of x different from u (and note that this equals stateM,t(M'))> and applies the
state transition function of M to obtain state« ¿< (x). This step is repeated until
A arrives at a child, say xo, of the least common ancestor z. A then computes
succM.i' (z) (which equals succM,i(z)) by dropping its pebble on z and, for every

Trips on Trees 61

state q of M, simulating M on t under the assumption that M is in state q at
node z (and, of course, lifting the pebble from 2 after doing this). Let y0 be the
child of z on the path from z to v. Now A computes states,t(w) for all children
w of z different from xo and yo, and uses these states, together with stateM.t'(®o)
and succM,i(-z), to compute succM,t'(yo) as indicated just before Theorem 4.4. Let
y be the child of yo on the path from yo to v. A then computes states,t(y') for
all children xj of yo different from y, and uses them, together with succ^.t' (2/0),
to compute succM,t'(v)- This step is now repeated until A arrives in v. Finally
A computes s t a t t r e a t i n g the label er of v as (a, 0,1), and checks whether
that state is in succM,t'(v)-

The cases that v is a descendant or ancestor of u are similar (A just walks down,
or just walks up, respectively). They are therefore left to the reader.

It remains to show that A can be made deterministic if T is a functional trip
(cf. Theorem 9 of [BloEngl] and Theorem 14 of [BloEng2]). Note that since
the procedure in the proof of Proposition 4.2 is deterministic, the automaton A
only makes nondeterministic moves when there are no marbles or pebble on the
tree. Thus, it suffices to show that for such an automaton a deterministic tw
marble/pebble automaton A' can be constructed that computes the same trip.
Suppose that A is at node w of t in state q, and that A has several possible moves
m i , . . . ,mt , of which, of course, at most one is successful, i.e., leads to a final
state of A (at the destination v). We claim that A' can find out, for each of these
moves m, whether m is successful or not. Consider the site S,hm that consists of
all (t ,w) such that A has a successful computation on t, starting at node w in
state q with move m. Since there is a tw marble/pebble automaton that walks to
w and simulates A, starting with move m, it follows from Theorem 4.4 that Sgt7n

is a regular site. Thus, as explained in the first paragraph of this proof, A' can
test whether (t,w) is in S9 ,m , using the (deterministic) procedure in the proof of
Proposition 4.2. •

Taking the last two lemmas together we can state the main result of this paper:
the tw marble/pebble automaton is the implementation model of regular trips on
trees.

Theorem 4.7 A trip on trees is regular iff it can be computed by a tw marble/pebble
automaton. A functional trip on trees is regular iff it can be computed by a deter-
ministic tw marble/pebble automaton.

As in the case of strings, since a trip is regular iff it can be expressed in monadic
second-order logic, this theorem can be viewed as the generalization of the classical
result of Doner and Thatcher/Wright [Don, ThaWri] from tree languages to trips
on trees.

As mentioned in the definition of tw marble/pebble automaton, there is a less
severe restriction on the behaviour of the automaton that still serves our purposes.
To understand this new restriction, we first note that it can always be assumed
that there is at most one marble on each node (just take the sets of marble colours
as new colours arid simulate a set of marbles by one marble). It is easy to see

62 Joost Engelfriet, Hendrik Jan Hoogeboorn. Jan-Pascal Van Best

that, under this assumption, the life times of the marbles are nested, i.e., included
in one another or disjoint from one- another; this is due to the fact that a marble
closes off the context. Now, in our new definition of tw marble/pebble automaton,
rather than requiring that the pebble can only be dropped or lifted when there
are no marbles on the tree, we require that the life times of the marbles and the
pebble are nested (see [GloHar] for a similar nesting requirement). Intuitively it
means that when the pebble is lifted, the "marble configuration" on the tree has
to be exactly the same as when it was dropped (and the involved marbles have
not been touched in the mean time). It is shown in Theorem 20 of [vBest] that
Theorem 4.4 still holds for these more powerful tw marble/pebble automata, and
so does Theorem 4.7. We note that, under this nesting restriction, the restriction
that marbles close off the context cannot be dropped.

Example 4.8 The non-regular monadic tree language {ancbne | ri > 0} of Exam-
ple 4-3 can be recognized as follows, using marbles only, with nested life times. Put
a red marble at the root, and a blue marble at the lowest b; then repeat the following
step: put a red marble just below the lowest red marble, and put a blue marble just
above the highest blue marble. Do this until both the red and blue marble are neig-
bours of the c-labeled node. Then remove all marbles in the reverse order as they
were laid down (i.e., repeatedly the highest blue marble and the lowest red marble).

•
We end this paper by showing that Theorem 4.7 does not hold for tw marble

automata, i.e., the pebble is really necessary. Note that it is an open problem
whether the marbles are necessary, cf. the Conjecture in the beginning of this
section. The proof of the pebble necessity is similar to the one in [Bio, BloEng2]
(see Theorem 15 of [BloEng2]).

Theorem 4.9 There is a (functional) regular trip on trees that cannot be computed
by any (nondeterministic) tw marble automaton.

Proof. Consider the (monadic) ranked alphabet £ with symbols b and r of rank 1,
standing for "black" and "red", respectively, and one symbol e of rank 0. Let T
be the trip consisting of all (t ,u,v) such that either t has a red root and v is the
root, or t has a black root and v is the child of u (viewing the root as the child of
the leaf). Thus, either all trips are to the red root, or everybody visits its child.
It should be clear that T is regular. Let us now assume that there is a tw marble
automaton A that computes T, and derive a contradiction. The idea is that when
A starts at any node u of a tree with a black root, it first has to visit the root to be
sure that it is not red. Since there is no way for A to remember its starting point
u, A cannot anymore find the child of u. Note that when A is at the root, there
are no marbles on the tree, except on the root itself.

Formally, consider the tree t = bne with n > s -2°, where s is the number of
states of A and c the number of marble colours. Let t' = rbn~le. Thus, t' is t
with its root coloured red. Consider, for every node u of t, the successful walk of A
from u to its child. Clearly, during this computation A must visit the root, because

Trips on Trees 63

otherwise A could make the same computation on t1. As observed above, when A
is at the root, all marbles are at the root. Let, at that moment, qu be the state of A
and let Mu be the set of marble(colour)s on the root. Thus, qu and Mu determine
the configuration of A. Hence, by the choice of n, there must be two different nodes
u and u' such that, in the corresponding computations, qu = qut and Mu = Mu>
and hence A visits the root in the same configuration in both computations. This
implies, however, that A can walk from u to the child of u', a contradiction. •

One may argue that the tw marble/pebble automaton is not a very natural type
of automaton, with its rather artificial restrictions on the use of marbles and pebble.
The reader is invited to search for a more natural automaton; bread crumbs might
be an alternative to marbles and pebbles.

References
[AhoUll] A.V. Aho and J.D. Ullman; Translations on a context free grammar,

Inform, and Control 19 (1971), 439-475

[Bir] J.-C. Birget; Two-way automata and length-preserving homomor-
phisms, Math. Systems Theory 29 (1996), 191-226

[Bio] R. Bloem; Attribute Grammars and Monadic Second Order Logic, Mas-
ter's Thesis, Leiden University, June 1996
http:/ /www.wi.LeidenUniv.nl/MScThesis/IR96-15.html

[BloEngl] R. Bloem, J. Engelfriet; Monadic second order logic and node rela-
tions on graphs and trees, in Structures in Logic and Computer Science
(J.Mycielski, G.Rozenberg, A.Salomaa, eds.), Lecture Notes in Com-
puter Science 1261, Springer-Verlag, 1997, pp.144-161

[BloEng2] R. Bloem, J. Engelfriet; Characterization of properties and relations
defined in monadic second order logic on the nodes of trees, Tech. Re-
port 97-03, Leiden University, August 1997
http:/ /www.wi.LeidenUniv.nl/TechRep/1997/tr97-03.html

[BluHew] M. Blum and C. Hewitt; Automata on a 2-dimensional tape, in Proc.
8th IEEE Symp. on Switching and Automata Theory, pp.155-160,1967.

[Biic] J. Biichi; Weak second-order arithmetic and finite automata, Z. Math.
Logik Grundlag. Math. 6 (1960), 66-92

[Don] J. Doner; Tree acceptors and some of their applications, J. of Comp.
Syst. Sci. 4 (1970), 406-451

[Elg] C. C. Elgot; Decision problems of finite automata and related arith-
metics, Trans. Amer. Math. Soc. 98 (1961), 21-51

[ERS] J. Engelfriet, G. Rozenberg, G. Slutzki; Tree transducers, L systems,
and two-way machines, J. of Comp. Syst. Sci. 20 (1980), 150-202

http://www.wi.LeidenUniv.nl/MScThesis/IR96-15.html
http://www.wi.LeidenUniv.nl/TechRep/1997/tr97-03.html

64

[GécStel]

[GécSte2]

[GloHar]

[HopUll]

[KamSlu]

[KlaSch]

[RabSco]

[She]

[ThaWri]

[vBest]

Joost Engelfriet, Hendrik Jan Hoogeboorn. Jan-Pascal Van Best

F. Gécseg, M. Steinby; Tree automata, Akadémiai Kiadó. Budapest.
1984

F. Gécseg, M. Steinby; Tree Languages, in G. Rozenberg and A. Sa-
lomaa, editors, Handbook of Formal Languages, Volume 3: Beyond
Words, Chapter 1, Springer-Verlag, 1997

N. Globerman, D. Harel; Complexity results for two-way and multi-
pebble automata and their logics, Theor. Comput. Sci. 169 (1996), 161-
184

J.E. Hopcroft, J.D.Ullman; Introduction to Automata Theory, Lan-
guages and Computation, Addison-Wesley, Reading, Massachusetts,
1979.

T. Kamimura, G. Slutzki; Parallel and two-way automata on directed
ordered acyclic graphs, Inf. and Control 49 (1981), 10-51

N. Klarlund, M. L. Schwartzbach; Graph Types, in Proc. of the 20th
Conference on Principles of Programming Languages, 1993, 196-205

M.O. Rabin, D. Scott; Finite automata and their decision problems,
IBM J. Res. Devel. 3 (1959), 115-125

J.C. Shepherdson; The reduction of two-way automata to one-way au-
tomata, IBM J. Res. Devel. 3 (1959), 198-200

J. W. Thatcher, J. B. Wright; Generalized finite automata theory with
an application to a decision problem of second-order logic, Math. Sys-
tems Theory 2 (1968), 57-81

J.P. van Best; Tree-Walking Automata and Monadic Second Order
Logic, Master's Thesis, Leiden University, July 1998
http://www.wi.LeidenUniv.nl/MScThesis/IR98-06.html

http://www.wi.LeidenUniv.nl/MScThesis/IR98-06.html

