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Abstract 

We associate an identity with every finite automaton and show that a 
set of equations consiting of some classical identities as well as the equations 
associated with a subclass of finite automata is complete for iteration theories 
if and only if every finite simple group divides the semigroup of an automaton 
in the given subclass. By taking a special subclass with this property, we 
arrive at the final result of the paper. 

1 Introduction 

It has been shown in [3] that the axioms of iteration theories capture the equational 
properties of the fixed point operation in computer science. For a recent overwiew 
see also [5]. The first axiomatization of iteration theories was given in [8]. This 
system was simplified in [9] by proving that some classical identities in conjunction 
with an identity associated with each finite (simple) group is complete. This result 
confirms a conjecture in [6] in a general setting. In the present paper we give a 
further simplification of the iteration theory axioms. We associate an identity with 
every finite automaton and show that a set of equations consiting of some classical 
identities as well as the equations associated with a subclass of finite automata 
is complete if and only if every finite simple group divides the semigroup of an 
automaton in the given subclass. By taking a special subclass with this property, 
we arrive at our final result. 

In this paper, we define theories in a slightly more general way, so that in this 
context, we prefer the term iteration categories to iteration theories. 
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2 Preliminaries 

2.1 Conway categories and iteration categories 
In any category C, we denote composition by •. The identity morphism correspond-
ing to a C-object A will be written id^, or just id. 

We will consider cartesian categories C with explicit products. Thus we 
assume that for any finite family of C-objects Ci, i £ [n] = { 1 , . . . , n } we are given 
a product diagram 

x . . . x Cn : Ci x . . . x Cn Cj, j e [n] 

with the usual universal property. When /» : A —• Ci, i £ [n] is a family of 
morphisms, the unique mediating morphism A —> Ci x ... x Cn will be denoted 
( / i , - • • , /n)- This morphism is called the tupling of the /¿. In particular, when 
n — 0, the empty tuple is the unique morphism \A : A —» 1, where 1 is the specified 
terminal object. 

We will assume that product is associative on the nose so that A x (B x C) = 
(Ax B) x C, for all objects A, B, C, and diagrams such as 

Ax(BxC) 

A x (B x C) 

id 

(AxB)xC 

BxC 

BxC 7To 

(AxB)xC 
C 

commute. In particular, we assume that for each object A the projection morphism 
7TJ4 : —̂  is the identity morphism id^. It follows that ( / ) = / for all / : A —> B. 
We also assume that 

</,!> = (!,/>=/, 
for all morphisms / : A —> B. 

In the sequel we will call tuplings of projections as base morphism. Note that 
any base morphism An —> Am corresponds to a function p : [m] —> [n]. In fact the 
base morphism An —> A171 determined by p is given by 

{TTlp , • . . , Tmp). 

We will call a base morphism corresponding to a permutation [n] —> 
permutation. 

For any cartesian category C we define the bifunctor C x C —> C by 

in] a base 

f x g = </•< CxD „ -^CxD 9 ' h 

for all / : C A, g:D B. 
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DEFINITION 2.1 A preiteration category is a cartesian category C equipped with 
an external dagger operation 

^:C{AxB,A) C(B,A), 

see [4]. 

The Conway identities are the parameter (1), double dagger (2) and 
composition identities (3) given below. 

( / • (idyi x 5 ) ) t = / t . f f ) (1) 

all / : A x B A, g:C B, 

/ t t = ( / . ( A x i d c ) ) t , (2) 

where f:AxAxC—>A and where A is the diagonal morphism (id^, id/i) : A —• 
A xA. 

(f-(g,4xC)y = f-((g-(f,irfxc))1,*f*c), (3) 

for all / : B x C —» A, g : A x C —» B. Note that the fixed point identity 

/ t = / - ( A i d e ) , / : A x C —t A 

is a particular subcase of the composition identity. 

DEFINITION 2.2 [3] A Conway category is a preiteration category satisfying the 
Conway identities. 

Conway categories satisfy several other non-trivial identities including the 
Bekic identity [1] (called the pairing identity in [3]): 

(f,0)] = (p-(hlidc), h,)\ 

for all / : A x B x C —• A and g : Ax B x C B, where 

h = g(f\idBxC):BxC^B. 

We will also make use of the permutation identity 

(7T • / • (7T-1 X idc ) ) f = 7T-/t, 

for all / : A" x C —> An and all base permutations n : An —» An. Another useful 
identity is given by the next lemma. 

LEMMA 2.3 In any Conway category C, 

/ t - t = ( / - (A n x idp))t, 

for all morphisms f : An x C —> A, where there are n > 1 consecutive daggers on 
the left hand side and where A n is the diagonal morphism (id>i,..., id>t) : A —> An. 
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A full description of the valid identities of Conway categories is given in [2], 
where it is proved that the problem of deciding whether an equation holds in all 
Conway categories is PSPACE-complete. It is shown in [4] that the parameter 
identity corresponds to a naturality condition and that the double dagger identity 
to a dinaturality condition of the dagger operation. 

As argued in [3], all of the fixed point models in computer science satisfy at least 
the Conway identities. For example, for any set S, the category Cpo s of ¿"-sorted 
cpo's and continuous functions satisfies the Conway identities. In this category, 
there is a cpo Aw corresponding to any word w £ S*. When w = s\... sn, the cpo 
Aw is determined by the cpo's ASi, in fact Aw is the product ASl x . . . x ASn. The 
morphisms Aw —> Av are the continuous (or order preserving) functions Aw —¥ Av, 
and the dagger operation is defined by least fixed points. 

We give a semantic definition of iteration categories. For a syntactic character-
ization the reader is referred to Section 3. 

DEFINITION 2.4 An iteration category is a preiteration category equipped with 
a dagger operation which satisfies all of the identities that hold in the categories 
Cpo5 . 

It is shown in [3], see also [5], that the iteration category identities are the 
standard identities of the fixed point operation in computer science. 

2.2 Automata and semigroups 

Except for free semigroups, all semigroups will be assumed to be finite. The product 
of the elements s, t of a semigroup S will be written s ° t, or just st. A subgroup of 
a semigroup 5 is a subsemigroup of S which is a group. Following [7, 12], we say 
that a semigroup S divides a semigroup 5 ' , denoted S |S', if S is a homomorphic 
image of a subsemigroup of S'. It is known that the division relation is transitive 
(and reflexive). Further, a group G divides a semigroup S if and only if G is 
a homomorphic image of a subgroup of S. A group G is called simple if it is 
nontrivial and has no proper nontrivial normal subgroup. 

Suppose that X is a finite nonempty set. An X-automaton Q = (Q, X, o) is a 
finite nonempty set Q equipped with a (right) action of X on Q: 

o-.QxX ->• Q 
(q, x) 1-4- q ox. 

We will usually write qx for q ° x and ( Q , X ) for (Q,X,°). The action of X on 
Q may be extended to an action of the free semigroup A"+ of all finite nonempty 
words over X such that 

q(ux) = (qu)x 

for all q £ Q, u £ X+ and x £ X. 
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Suppose that Q = (Q,X) is an automaton. A letter x £ X is a permutation 
letter (reset letter, respectively) if the function 

q qx, q £ Q 

induced by a; is a permutation (constant map, respectively) on Q. We call Q a per-
mutation automaton (reset automaton, respectively) if each letter x £ X is a 
permutation letter (reset letter, respectively). Further, we call Q a permutation-
reset automaton if each x £ X is either a permutation letter or a reset letter. 
For example, the automaton U = ({<71,92}, {^I, x2 , x 3 } ) equipped with the action 

qiXj — qj 

QiX 3 = qu i,j£[2], 

is a permutation-reset automaton, called the two-state identity-reset automa-
ton. This automaton is important in the Krohn-Rhodes decomposition theorem, 
see [11]. In our arguments we will also make use of counters. A counter of 
length n is a (permutation) automaton (Q, { x } ) such that Q = {qo,..., qn_ 1} has 
n elements and letter x induces the cyclic permutation ^ i-> q^+i mod n-

Homomorphisms, subautomata and congruences of automata are defined 
in the usual way. The automaton (Q,X) is called a renaming of the automaton 
(Q, Y) if there is a function <p : X —> Y such that 

qx = q(xip), 

for all q £ Q and x £ X. 
Suppose that Q = ( Q , X ) is an automaton. Recall that each word u £ X+ 

induces a function Q —* Q. Equipped with the operation of composition that we 
now write in diagrammatic order, these functions form a semigroup denoted S(Q). 
We call 5(Q) the semigroup of Q. For example, the semigroup of a counter 
of length n is a cyclic group of order n. When Q is a permutation automaton, 
each element of S(Q) is a permutation of the set Q, so that S(Q) is a group. 
An automaton Q is called aperiodic [7], if each subgroup of S(Q) is trivial. For 
example, each reset automaton, or more generally, each definite automaton [7] is 
aperiodic. The automaton U is also aperiodic. We will denote the class of aperiodic 
automata by AV. 

The concept of aperiodic automata may be generalized. Suppose that Q is a 
class of simple groups closed under division. We let Qg denote the class of all 
automata Q such that any simple group divisor of S(Q) is in Q. Thus, when Q is 
empty, Qg is the class AV. When Q is the class of all cyclic groups of prime order, 
Qg is known as the class of solvable automata. We denote this class by SOC. 
We will also make use of the following notation. Suppose that m > 1 is an integer. 
Then we let SOCm denote the class of all (solvable) automata Q such that any 
simple group divisor of £(Q) is a cyclic group of prime order p which divides m. 
Thus, SOCm = SOCn if and only if m and n have the same prime divisors. Note 
that SOCx = AV. 
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When ( Q , X ) is an automaton such that X = S is a semigroup and the action 
is compatible with the semigroup operation, i.e., 

q(st) = (qs)t 

for all q G Q and s,t G 5 , we call the automaton ( A , S ) a transformation semi-
group. (Note that we are not requiring that the action is faithful.) When 5 is a 
group with unit e and 

qe = q, 

for all q G Q, ( Q , S ) is a transformation group. See [7]. Note that each trans-
formation group is a permutation automaton. 

For each semigroup S there is a corresponding transformation semigroup (5, S ) 
equipped with the natural self action (s , t ) >->• st. When 5 is a group, ( S , S ) is a 
transformation group. 

Following [11], we now define cascade compositions (or G'o-products) of au-
tomata. For this reason, suppose that Q* = (Qi,X{), i e [n], n > 0, are given 
automata. Moreover, suppose that X is a new finite nonempty set and for each 
i G [n] we are given a function 

(fii : x . . . x Qi_! x X —> Xi. 

Then the cascade composition 

¿e[n] 

determined by the functions is the automaton d l ^ I n ] QuX) equipped with the 
A'-action 

(qi,..., qn)x = {qiyi, • • •, qnyn\, 

where yi = <fii{qi, • • • ,qi-i,x), for all i. Note that when n = 1, a cascade com-
position is just a renaming of Q i . We will sometimes denote the above cascade 
composition as 

Q i x . . . x Qn [X,</?! , . . . ,<pn ] . 

Two particular subcases of the cascade composition are also important, the 
quasi-direct product and the direct product. We call the above cascade composi-
tion a quasi-direct product if each function <pi is independent of its first i — 1 
arguments, so that each <pi can be considered as a function X —> Xi. If for each i 
also X = Xi and tpi is the identity function X —> X, then the quasi-direct product 
is the direct product riie[n] Q»-

We will say that an automaton (Q, X) has an identity letter if some x G X 
induces the identity function Q —» Q. Given Q, we will denote by Q 1 an automaton 
obtained from Q by adding a letter inducing the identity function Q —> Q, if Q 
has no such letter. Otherwise Q 1 is just Q. This notation is extended to classes of 
automata in a natural way. 
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3 Review 
In this section we review some of the results of [9] and [10]. 

Suppose that Q = ( Q , X ) is a finite automaton such that Q = [n] and X = [m], 
for some integers n and m. For each preiteration category C and object A in C, 
we associate with Q the base morphisms p® : An - 4 A"1, q G Q. For each q, pQ 
corresponds to the map 

[m] [n] 
x qx. 

Thus, 

Pi - K l ' • • • > 7 W -

(Recall that X — [m], so that for each q G Q = [n] and i G [m], qi is a state of 
the automaton Q.) The morphisms p®, denoted sometimes just pq, are called the 
basé morphisms associated with the automaton Q. 

We define, for each g : Am x C —> A, 

9Q = (9-(Pi x i d c ) , . - - , 3 - ( P n x i d c ) ) :An x C - > An. 

DEFINITION 3.1 The automaton-identity T(Q) associated with Q is the equation 

(<7Q)t = A „ • (# • (ATO x idc) ) t , g:AmxC^A. (4) 

In preiteration categories satisfying the permutation identity we can associate an 
equation with any automaton not just with those defined on sets of the form [m]. 
In such categories, equations associated with isomorphic automata are equivalent. 

Since any transformation semigroup is an automaton, the above definition asso-
ciates an identity r (Q, S) with each transformation semigroup (Q, S). When (Q, S) 
is the transformation semigroup (5, 5) equipped with the natural self action, we 
denote T(5, S) by T(5) and call this identity the semigroup-identity associated 
with S. When S is group, r(S') is a group-identity. 

The above notation may be extended to classes of automata and semigroups. 
When Q is a class of finite automata, T(Q) consists of all identities T(Q), Q G Q. 
When S is a class of finite semigroups, r (S ) is defined similarly. 

The axiomatization of iteration categories given in the next theorem is a refor-
mulation of the main result of [8]. 

THEOREM 3.2 A Conway category C is an iteration category if and only if each 
automaton identity holds in C. 

The following stronger results were proved in [9] and [10]. 

THEOREM 3.3 Suppose that S is a given class of semigroups and Q is an automa-
ton. Then the. automaton identity T(Q) associated with Q holds in all Conway 
categories satisfying the semigroup-identities r(5) if and only if every simple group 
divisor of S(Q) divides one of the semigroups in S. 
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In particular, an automaton identity F(Q) holds in all Conway categories if and 
only if Q 6 AV. And if Q is any class of simple groups closed under division, then 
T(Q) holds in all Conway categories satisfying the group-identities R(£/) if and only 
if Q e Qg. 

COROLLARY 3.4 [9] A Conway category is an iteration category if and only if it 
satisfies the group-identities. Given a class S of finite semigroups, consider the set 
of equations r(«S) associated with the semigroups in S. The system consisting of 
the Conway identities and the equations T(5) is complete for iteration categories if 
and only if for every simple group G there is a semigroup S £ S such that G|S. 

In the course of proving Theorem 3.3, the following facts were established in [9]. 

LEMMA 3.5 Suppose that Q is a subautomaton or a renaming of Q' . If C is a 
Conway category with C \= I\Q') then C \= T(Q). 

LEMMA 3.6 Let C be a Conway category and suppose that Q = IIIE[N] PI] is 
a cascade composition. If C \= R(QJ) for all i 6 [n\, then C |= T(Q). Moreover, if 
(fx is surjective and if C |= T(Q) and C \= R(QJ) for all i > 1, then C |= T(QI) . 

4 Main results 
The main results of this paper are Theorem 4.2, Corollary 4.4 and Theorem 4.5 
below. In order to formulate these results, we need one more definition. 

The powers fk : A x C —> A, k > 0, of a morphism / : A x C —¥ A in a 
cartesian category are defined by induction: , 

f° = 

fk+1 = f ' ( f k , ^ x C ) -

DEFINITION 4.1 For each m > 1, the mth power identity is the equation PTO 

(fmV = f\ f:AxC-*A. 

Note that this identity is nontrivial only if m > 1. We will prove 

THEOREM 4.2 Suppose that Q is a class of automata and Q is an automaton such 
that every simple group divisor of S(Q) divides the semigroup of some automaton 
in Q. If C is a Conway category satisfying the identities T(Q) and a nontrivial 
power identity, then C |= T(Q). 

COROLLARY 4.3 Suppose that a renaming of some automaton in Q contains a 
nontrivial counter as a subautomaton. Then the identity T(Q) associated with an 
automaton Q holds in all Conway categories satsifying the identities T(Q) if and 
only if every simple group divisor of S(Q) divides the semigroup of an automaton 
in Q. 
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From Corollary 4.3 and Theorem 3.2 we immediately have 

COROLLARY 4.4 Suppose that a renaming of an automaton in Q contains a non-
trivial counter. If every (simple) group is a divisor of the semigroup of an au-
tomaton in Q, then the Conway identities and the automaton identites in S(Q) are 
complete for iteration categories. 

Conversely, if Q is any class of finite automata such that the Conway identities, 
the power identities, and the automaton identities in are complete for iteration 
categories, then every (simple) group divides the semigroup of an automaton in Q. 

Let us now define, for each n > 3, the identity S n 

(f-(A2xidc)-(f-(ntxC, (P)n-2,4xC), = ( / • ( A 2 x i d c ) ) t , 

where / is any morphism A2 x C —> A in a preiteration category. This identity 
is a generalization of an identity of regular sets introduced by John Conway in [6]. 
As an application of Theorem 4.2, we will prove 

THEOREM 4.5 The Conway identities and the equations S n , for all n > 3, are 
complete for iteration categories. 

In order to establish these results, we need to derive the identity T(G) associated 
with a group G dividing the semigroup of an automaton Q from the the identity 
T(Q), a nontrivial power identity, and the Conway identities. 

5 Identities associated with solvable automata 
In this section, we show that in Conway categories, the mth power identity is 
equivalent to the identity associated with a counter of length m. We then proceed 
to prove that an automaton identity T(Q) holds in all Conway categories satisfying 
the mth power identity if and only if Q g SOLm. We. start with a technical lemma. 

LEMMA 5.1 Suppose that C is a Conway category satisfying the identity T(Q) as-
sociated with a finite automaton Q. Then C \= T(Q1 ) . 

Proof. Suppose that Q = (Q,X). If Q has a letter inducing the identity function 
Q —> Q then Q 1 = Q and there is nothing to prove. Otherwise Q 1 = ( Q , Y ) with 
Y = {y} U X such that y induces the identity function Q —> Q and each x £ X 
induces the same function in Q as in Q 1 . In our argument, we assume that Q = [n], 
X = {i •2 < i < m + 1}, so that Y = [m + 1] and y = 1. 

Suppose that C is a Conway category and A and C are objects in C. Define 

Pi = p?-.An->Am 

ai = pf : An A1+m, 
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for all i G [n]. Then we have 

= (ir?n,Pi), (5) 

for all i £ [n]. We complete the argument by using the following sublemma whose 
proof is omitted. 

SUBLEMMA 5.2 Suppose that ft : A1+n x C —> A, i E [N] in a Conway category C. 
Then 

Suppose now that / : Al+m x C —> A. Then, by Sublemma 5.2, equation (5), 
and the parameter identity, 

(/QO1 = ( / + ( P 1 x i d c ) , . . . , / t . ( p „ x i d c ) ) t 

= {9Q)\ 

where g is the morphism /1. Thus, since C \= T(Q), we have 

( / q O f = (5Q)t 

= A „ - ( / t - ( A m x i d c ) ) f 

= A „ - ( / - ( A m + 1 x i d c ) ) f , 
where the last step follows from Lemma 2.3. • 

The following fact is obvious. 

LEMMA 5.3 Suppose that C is a preiteration category and m,n > 1. If C PTO 

and C |= P n , then C |= P m n . 

For the rest of this section, for each m > 1 we let K m denote a counter of length 
m. 

LEMMA 5.4 For any Conway category C and m > 1, C \= P m if and only if C |= 
T ( K m ) . 

Proof. This is obvious if m = 1, so we assume m > 1. It is easy to see that 
C |= r ( K m ) if and only if 

< m - ( / K m ) f = A 

for all / : A x C —» A. But since C is a Conway category, 

^ " • ( / K j t = ( / m ) f . 

Indeed, we have 

/ K „ = x i d c ) , . . . , / - U r x i d c ) , x i d c ) ) : A m x C - > A m . 
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Define 

9 = { f ' ^ r x i d c ) , . . . , / • x i d c ) ) : A m x C^ Am~\ 

Then 

gm-1 = ( / » - i , . . . , / ) . ^ x i d c ) . 

Thus, by the fixed point identity, 

= g^-^MAxc) 

Thus, by the pairing identity, 

= TT^'1 • 9] • (hlidc) 
= r-'-irfMc), 

where 

h = x idc) • (i /MdAxc) 
= f-(fm-\4xC) 
= fm-

Thus, = ( / m ) t and 

= / m ' 1 - ( ( / m ) t , i d c ) 
= (fm)\ 

by the composition identity. • 
Suppose that C is a Conway category satisfying the mth power identity P m . Let 

Zm denote the cyclic group Z/mZ of order m. In order to prove that C satisfies 
the group-identity T(Zm) we need a technical consruction involving automata. 

We represent Zm as the set { 0 , . . . ,m — 1} with group operation 

(i,j) i + j m o d m . 

Similarly, we represent K'71 as the automaton (Zrn, X), where X = {0 ,1} , so that 
X is a generating set of the group Zm. The action of X on Zm is defined by the 
group operation. Define the quasi-direct product 

A = ( A , Z m ) = (Zm, Zm) x (Zm, X)m~2[Zm, tpi,..., ipm-i] 

by 
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for all j € { 0 , . . . ,m — 1} and i € { 2 , . . . ,m — 1}. Moreover, define 

B = (B,Zm) = {Zm,X)m-l[Zm,i>!,..., 

by 

M = { ? J v t \ 1 if J = », 

for all i e { 0 , . . . , m - 1} and i e { 1 , . . . ,m - 1}. Note that A = B = Z™~1. 

LEMMA 5.5 The automata A and B are isomorphic. 

Proof. Define 

¡i: B —» A 
m —1 

: • • • j m̂— 
J=I 

where the sum is taken mod m. Then fi is a bijection. Suppose that k e { 0 , . . . , m — 
1}, k ± 0. Then, in B , 

(ii,... ,im_i) o k = (ii,... ,ik + 1,... ,im_i). 

Moreover, in A , 

m—1 

n(ii,... ,im-i) ° k = (k+yi ij - j , ¿2, • • • + 1 , . . . ,2m_x) , 

if A; > 1, and 
771— 1 

/x ( i i , . . . , i m _ i ) o k = (,k + y^ ij-j, i-2, • •. , i m _ i ) , 
j= i 

if fc = 1. In either case, preserves the action. • 
Thus, by Lemmas 5.4, 5.1 and 3.6, if C is a Conway category satisfying the mth 

power identity, then, T |= T(B) . But by Lemma 5.5, A is isomorphic to B , so that 
T |= T ( A ) . But then, again by Lemma 3.6, C |= r(ZT O , Zm). We have proved 

LEMMA 5.6 Suppose thatC is a Conway category satisfying the mth power identity, 
for some m > 1. Then C (= T(Zm). 

THEOREM 5.7 Let rn >1 be any fixed integer. The identity F (Q) associated with 
an automaton Q holds in all Conway categories satisfying the mth power identity 
if and only ifQe SOCm. 
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Proof. Suppose that C is a Conway category with C f= PTO. Then, by Lemma 5.6 
and Theorem 3.3, C satisfies the identity T(Q) associated with any automaton 
Q £ SOCm. On the other hand, if Q £ SOLm, then by Theorem 3.3 there is a 
Conway category Co satisfying T(Zm) such that T(Q) does not hold in Co- But by 
Lemma 5.4, the mth power identity holds in Co- • 

COROLLARY 5.8 The identity associated with an automaton Q holds in all Conway 
categories satisfying all of power identities if and only if Q £ SOC. 

6 Proof of Theorem 4.2 
Suppose that Q = (Q,X) is an automaton having an identity letter. Recall that 
X+ denotes the free semigroup of all nonempty words over X. Below we write X* 
for X+ U {Л}, where Л is the empty word. 

Let S denote the semigroup 5 (Q) and let G be a subgroup of S. Since Q has an 
identity letter, 5 is a monoid whose unit is the identity function Q —* Q. Moreover, 
there is an integer ко > 0 such that for each к > ко, any function in S is induced 
by a word in X+ of length k. For the rest of this section, for any integer n > 0, we 
denote by Xn the set of all words и £ X* of length \u\ = n. Similarly, Gn is the 
set of all words in G* of length n. 

For a given word и £ X+, we denote by й the function Q —> Q induced by и in 
Q. Also, when и = g\... gn £ G+, then we denote by и the composite gi ° ... ° gn 

of the functions gi,...,gn. (R.ecall that we write composition in 5 from left to 
right.) For a state q £ Q, we will just write qu for qv,. 

Fix an integer к > k,Q. There exists a function ф : Gk —> Xk such that 
и = иф for all и € Gk. Given such a function ф, for every word и € Gk we define 
ифх = firsti(u?/>) to be the first letter of иф, and иф2 = lastfc_i(u'i/i) to be the suffix 
of length к — 1 of иф. Thus, иф = {ифх)(иф2)• 

Let 

R = {(i,u,v,w) : i e [fc], и € G1, v £ Xk~\ w £ Gk, v = lastк-^шф)}. 

We turn R into a G-automaton by defining 

/• \ i (i + 1 ,ug,v' 
= 1 (1,9,иф2,и) 

w) if v = xv' with x £ X 
) if v = X. 

LEMMA 6.1 The automaton R = (R,S) is isomorphic to a subautomaton of a 
cascade composition of a counter of length k with aperiodic automata. 

Proof. When k = 1 the automaton R is definite and hence our claim is obvious. 
Thus, in the rest of the argument, we assume that k > 1. Let K denote the 
counter ([fc], { z } ) such that 0 induces the cyclic permutation (12. . . k). Let R i = 
(Gk,G x [fc]) and R 2 = ( I ^ ^ I U l ' " 1 ) be equipped with the following actions: 

9\ • • -9k ° (g,i) = <1 fc-i 
91 • • -9i-\ggi+\ - gk if i Ф l 
ggt1 if»•= 1 
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X\...Xk-\°X = Xo - Xk-lX 

xx . . .Xk-1 o x\ .. ,x'k_x = x\...x'k_x, 

where % G [A;], g,gj G G, for all j G [k], and x,xj,x'j G A", for all j 6 [k - 1]. and 
where go denotes a fixed element (say the unit element) of the group G. Moreover, 
let R3 be the automaton (G k ,G k U { z } ) with action 

U o V = V 

U O Z = U, 

for all u,v G Gk. 
Define the cascade composition R ' = K x R^ x R 2 x R3[G, <pi, (p2, <f>3-, V4] as 

follows. For all i G [fc], u£Gk, v G and g G G, 

{g,i + 1) if i < k 
19,1) if i = k 

Pi (9) = z 

<P2(i,g) = | 

x • f xo if i < k 
<P3(i,u,g) = | M u ) - { i = k 

,. x f z if i < k 
<pt(t,u,v,g) = | u i f . = jfc) 

where XQ is any fixed element of X . It follows that the map 

(•i,u,v,w) (i^gQ-^vxQ-1 ,w), 

where i G [&], u G Gl, v G Xk~t, uu G Gk, defines an injective homomorphism 
R —y R ' . Moreover, all the automata Rj , i = 1,2,3 are aperiodic, in fact R2 is 
definite and R3 is an identity-reset automaton. (Alternatively, one may refer to the 
Krohn-Rhodes theorem by showing that each of the automata Ri can be embedded 
in a cascade composition of U with itself.) • 

COROLLARY 6.2 If C is a Conway category satisfying the identity P*,, then C (= 
T(R). 

Proof. This is immediate from Lemmas 6.1, 3.5 and 3.6. • 
Since G is a subgroup of S, there exists a nonempty set QG C Q which is closed 

under the functions in G and such that (QG, G), equipped with the natural action, 
is a transformation group having a faithful action. See [11]. Thus, each g e G 
defines a permutation QG —> QG, moreover, the unit element of G defines the 
identity function QG —> QG, and finally, for all g\,g2 G G we have g\ = g2 if and 
only if qgi = qg2, for all q G QG-

Now let M be the cascade composition 

M = R x Q [ G , ^ i , H 
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determined by the identity function TPI : G —> G and the function <P2 : R x G —> X, 

<p2((i,u,v,w),g) = | 
x if v = xv' and x £ X 
uipi if v = A. 

(Note that the definition of ip2 does not depend on g.). Let M ' = (M ' ,G ) be the 
subautomaton of M determined by those states 

((i,u,v,w),q) £ Rx Q 

such that there exists a qi £ QG with q\v' = q, where v' £ X1 is the word firsts(wtp). 
(Such a state q\ £ QG is unique, since v'v = wip induces a permutation of QG) 
Below we will denote qi by Note also that qvu = q~1v'vu = q~1wu £ QG-

LEMMA 6.3 Suppose that C is a Conway category satisfying P^ and the identity 
r ( Q ) . Then C (= T(M) and C \= r ( M ' ) . 

Proof. This follows from Corollary 6.2, Lemma 3.6 and Lemma 3.5. • 
Let QG denote the transformation group (QG,G). 

LEMMA 6.4 The automaton M ' is isomorphic to the direct product R x QG of R 
and QG- An isomorphism h : M ' —> R x QG is given by the map 

((i,u,v,w),q) ((i,u,v,w),qvu), all ((i, u, v, ui), q) £ M'. 

Proof. We have already noted that qvu = q~xwu £ QG- Also, if ((i ,u,v,w),q\) 
and ((i,u,v,w),q2) are both in M', then q-j-1 ^ q^1, so that q\vu = q^wu ^ 
q^xwu = q2vu, since w and u induce permutations QG —» QG- This proves that h 
is injective. To see that h is also surjective, suppose that ( ( i ,u ,v ,w) ,q' ) £ R x QG-
Let qi be the state in QG with qxwu = q'. This state exists, since w and u 
induce permutations QG —> QG- Then let q = qiv', where v'v = wip. We have 
((i,u,v,w),q) £ M' and h : ((i,u,v,w),q) ((i,u,v,iu),q'). It is straightforward 
to check that h is a homomorphism. • 

COROLLARY 6.5 Suppose that C is a Conway category satisfying the kth power 
identity. IfC\= R(Q), then C |= T(G). 

Proof. By Lemma 6.3, we have C |= T(M') . Also, by Corollary 6.2, C |= T(R) . 
Thus, by Lemma 3.6 and Lemma 6.4, C |= T(QG). Since the action of G on QG is 
faithful, S(QG) is isomorphic to G, and thus the automaton (G,G), equipped with 
the natural self action is isomorphic to a subautomaton of a direct power of QG. 
It follows that C \= T(G). • 

We are now ready to complete the proof of Theorem 4.2. 
Proof of Theorem 4.2. Suppose that C is a Conway category satisfying the 

identities in T(Q) as well as the nth power identity for some n > 1. If Q £ 
Q, then by Lemma 5.1, C T(Q1) . Also, by Lemma 5.3, C |= PN*, for all 
k > 1. Since for some k all functions in 5(QX ) are induced by a word of Q 1 
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of length n fc, by Corollary 6.5 we have C \= T(G) for any subgroup G of S ( Q ) . 
Thus, by Theorem 3.3, C \= T (S (Q) ) . We conclude that C satisfies the identity 
associated with the semigroup of any automaton in Q. From this the result follows 
by Theorem 3.3. • 

Proof of Corollary 4.3. One direction is obvious from Theorem 4.2. 
For the other direction suppose that we have C |= T (Q) for all Conway categories 

C with C f= T(Q). Let Q denote the class of simple groups dividing the semigroups 
of the automata in Q. Then, by Theorem 3.3, C |= T (Q) holds for all Conway 
categories C with C |= Thus, again by Theorem 3.3, any simple group divisor 
of S ( Q ) is in g. • 

7 Proof of Theorem 4.5 
For each n > 3, consider the automaton Q „ = ([N],X) such that X = { x , y } with 
x inducing the transposition (12) and y inducing the cyclic permutation (12 . . .n). 
From Corollary 4.4 we immediately have 

COROLLARY 7.1 The Conway identities and the equations R ( Q „ ) , n > 3 are com-
plete for iteration theories. 

LEMMA 7.2 For each n > 3, and for any Conway category C, 

C ^ S „ C |= r(Q„) . 

Proof. Let / : A2 x C —> A in a Conway category C, and let g denote the 
morphism on the left hand side of the equation defining Sn . Below we will write 
7r" for nf" and for Morphism A 2 is the diagonal ( id^jid^) : A —> A2. Note 
that 

/Q„ = (!i X / • (A 2 x! n _3 x idc ) , / ( id^xl i x id^x! n _3 X idc ) , 

/ • « 7 r 3 " , < ) X i d C ) , - / • ( « _ ! , < > X i d c ) , / • ( « , < ) X i d C ) ) . 

We will show that 

(faJ = (g,/•(5,(/t)n-2-(ff>idc),idc), ( / ^ " - ' - ( p . i d c ) , . . . 
/t-<p,idc». (6) 

Indeed, by using Sublemma 5.2, one derives 

( / Q J 1 = (!i x / • (A 2 X ! „ _ 2 x idc) , / • (id,4 x ! i x id^ x ! „ _ 3 x i d c ) , 

/ t • « x i d c ) , • • •, f ] • x i d c ) , / + • K x i d c ) ) t . 

Thus, again by the Conway identities, 

( / Q „ ) f = ( ! i x / - ( A 2 x ! n _ 2 x idc ) , / - ( i d ^ x l i x i d ^ x ! n _ 3 x i d c ) , 

( / + ) " - 2 . « x i d c ) , - • « x i d c ) ) f 

= (9, / • ( 9 , ( / t ) " ~ 2 - ( 9 , i d c ) , i d c ) , (P)n-'2-(gMc), . . . . P-(g, id c )> . 
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Thus, if S n holds in C, then 

< - ( / q J f = ( / - ( A 2 x id c ) ) t = 

But then, 

f^(gMc) = p-(f^Mc) 
= / » 

and by induction, 

(f^Y-igM = / f t , 

for all i > 1. Thus, also 

f-{gAf^)n-2-(gMc)Mc) = f-(f",fnMc) 
= f-(A2 x i d c ) • ( ( /• (A2 x i d c ) ) t , i d c ) 
= ( / - ( A 2 x i d c ) ) t 

= / + t -

Thus, if C (= Sra, then, by (6), 

( / Q j t = A „ - ( / - ( A 2 x i d c ) ) t = / t t , 

proving C |= r ( Q n ) . The converse implication is now obvious. • 
Proof of Theorem 4.5. By Corollary 7.1, the Conway identities and the equations 

r ( Q n ) , n > 3 are complete. But by Lemma 7.2, in Conway categories each identity 
T(Q„) is equivalent to the equation S„. • 
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