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Abstract 
Two restricted ways to apply a term rewriting system (TRS) to a tree are 

considered. When the one-pass root-started, strategy is followed, rewriting 
starts from the root and continues stepwise towards the leaves without ever 
rewriting a paxt of the current tree produced in a previous rewrite step. One-
pass leaf-started, rewriting is defined similarly, but rewriting begins from the 
leaves. In the sentential form inclusion problem one asks whether all trees 
which can be obtained with a given TRS from the trees of some regular tree 
language T belong to another given regular tree language U, and in the normal 
form inclusion problem the same question is asked about the normal forms of 
T. We show that for a left-linear TRS these problems can be decided for both 
of our one-pass strategies. In all four cases the decision algorithm involves 
the construction of a suitable tree recognizer. 

1 Introduction 
In general, reducing a term with a term rewriting system (TRS) is a highly non-
deterministic process in which many choices have to made, and usually no bound 
for the lengths of the possible reduction sequences can be given in advance. In this 
paper we consider two very restrictive strategies of term rewriting, one-pass root-
started rewriting and one-pass leaf-started rewriting. When the former strategy is 
followed, rewriting starts at the root of the given term t and proceeds continuously 
towards the leaves without ever rewriting any part of the current term which l\as 
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been produced in a previous rewrite step. When no more rewriting is possible, 
a one-pass root-started normal form of the original term t has been reached. Of 
course, such a normal form is not necessarily irreducible in the usual sense since a 
rewrite rule may apply either in the part already rewritten or to a subtree rooted 
at a position strictly below the nodes affected by the last rewriting steps. The 
leaf-started version is similar, but the rewriting is initiated at the leaves and pro-
ceeds towards the root. The requirement that rewriting should always concern 
positions immediately adjacent to parts of the term rewritten in previous steps 
distinguished our rewriting strategies from the 10 and 01 rewriting schemes consid-
ered in [ES77, ES78] or [DDC87], It also implies that the top-down and bottom-up 
cases are different even for a linear TRS. 

Both of the one-pass modes of rewriting are defined formally by associating with 
any given TRS an auxiliary TRS in which a new separator mark restricts rewriting 
in the intended way. 

Let us now describe the problems concerning one-pass rewriting considered in 
this paper. Since the problems involve regular tree languages, we find it convenient 
to use the terminology of the theory of tree languages. Let TZ = (£, R) be a TRS 
over a ranked alphabet E. For any S-tree language T (C Tg), we denote the sets 
of one-pass root-started sentential forms, one-pass root-started normal forms, one-
pass leaf-started sentential forms and one-pass leaf-started normal forms of trees 
in T by lrSiz(T), lrNN(T), USTI(T) and 1£NTC(T), respectively. We show that 
all of the following inclusion problems, in which the input consists of a left-linear 
TRS TZ = (£, R) and two regular S-tree languages T\ and T2 (effectively given by 
tree recognizers, for example), are decidable. 

The one-pass root-started sentential form inclusion problem: LRS^TI) C T2? 

The one-pass root-started normal form inclusion problem: lrN-ji(Ti) C T2? 

The one-pass leaf-started sentential form inclusion problem: IP. S-R.(T\ ) C T2? 

The one-pass leaf-started normal form inclusion problem: WN-JI(TI) C T2? 

In [GT95] the sentential form inclusion problem for ordinary sentential forms 
is called the second-order reachability problem and the problem is shown to be 
decidable for a TRS TZ which preserves recognizability, i.e. if the set S n ( T ) of 
sentential forms of the trees of any recognizable tree language T is also recognizable. 

Many questions concerning term rewriting systems have been studied, and 
solved, using tree automata and tree languages; cf. [DDC87, DG89, Gil91, GT95, 
GV98, HH94, KT95, VG92], for example. Also here tree automata are used: in 
all four cases the decidability of the problem is proved by showing how one may 
construct from TZ and the given tree recognizers of T\ and T2 a new tree recognizer 
C such that the question can be answered by checking whether the tree language 
T(C) recognized by C is empty. To simplify these constructions we introduce gener-
alized top-down and generalized bottom-up tree recognizers. It is easy to see that 
both of these new types of recognizers recognize exactly the regular tree languages 
and that their emptiness problems are decidable. 
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The paper is essentially self-contained since all special concepts used, as well 
as many general notions, are completely defined. However, for further information 
about term rewriting systems and tree automata, we refer the reader to [Ave95], 
[DJ90], [Hue80], [GS84] and [GS97], 

A conference version of this paper has appeared as [FJSV98]. This research 
was supported by the exchange program of the University of Turku and the József 
Attila University, and by the grants MKM 665/96 and FKFP 0095/97. 

2 Preliminaries 
Throughout this paper E is a ranked alphabet, i.e. a finite set of operation symbols. 
For each m > 0, the set of m-ary symbols in E is denoted by E m . We say that 
E is unary if E = Ei, i.e., if every symbol / £ E has rank 1. If Y is an alphabet 
disjoint with E, then the set Ts(Y) of E-ierms with variables in Y is the smallest 
set U of strings such that 

(1) Y U £ 0 C U and 

(2) f(ti,... ,tm) £ U whenever m > 1, / € E m and t%,... ,tm £ U. 

Sometimes we consider terms f(t\,... ,tm) with m > 0. For m = 0, this is in-
terpreted as / . The set Ts(0) of ground T,-terms is denoted by Tg. Terms are 
viewed in the usual way as formal representations of trees, and we also call them 
trees. In particular, ground E-terms and subsets of Ts are called E-trees and E-tree 
languages, respectively. 

The height hg(t) of a tree t £ T^(Y) is defined so that hg(i) = 0 for t £ Y U E 0 , 
andhg(í) = max{hg(i i ) , . . . ,hg(iT O ) } + l for t = f{h,...,tm). The set var(í) (C Y) 
of variables appearing in t is also defined as usual (cf. [GS97], for example). 

Let X = {xi,x2,... } be a countably infinite set of variables. For every n > 0, 
we put X„ = {xi,..., xn} and abbreviate T S ( X „ ) to TE|„. A tree t £ Ts,n is called 
linear if each Xi, 1 < i < n, appears at most once in t. 

We introduce a subset T^¡n of Ts,n as follows. A tree t £ Ts>n belongs to Ts i n 

if and only if each of x\,..., xn occurs in t exactly once and their left-to-right order 
is x\,... ,xn. Hence the elements of T^ n are special linear trees. In addition, let 
Ts,x = Un=0 If / 6 Smi m > 1 and ¿ i , . . . , tm £ TY,,X, then ||/(ii , . . . , im)|| 
is the unique tree in Ts,x obtained from f{t\,... ,tm) by renaming the variables. 

A substitution o : X —• T%(X) is extended to a mapping a: T%(X) —> T^(X) 
so that o (i) = f(a(h),..., a(t )) for any t — f{ti,...,tm). Hence, for any tree 
t £ Tz(X), o(t) is the tree obtained from t when every occurrence of each variable 
x e var(i) is replaced by the corresponding tree a(x). If, in particular, t 6 Tz,n 

and a(xi) = ti (i = 1 ,2 , . . . ,n), we write a(t) = t[t\,..., tn]. 
Let E be a ranked alphabet. A term rewriting system (TRS, for short) over 

E is a system TZ = (E ,R) , where R is a finite subset of T^(X) x T%(X) such 
that var(r) C var(p) and p £ X for each (p, r) £ R. Note that since R is finite, 
R C Tz{Xn) x Ts(Xn) for some n > 0. The elements of R are called (rewrite) 
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rules and written in the form p ( , . . . , xn) —»• ?-(a;i , . . . , xn) or just as p —¥ r. A 
rule p —¥ r of a TRS TZ is called ground if both p and r are ground trees. 

A TRS TZ induces a binary relation in T£ defined as follows: for any t, 
ueTs,t =>n и if и is obtained from t by replacing an occurrence of a subtree of t 
of the form p[t\,..., tn] by r[t\,... ,tn), where p - » r G R and h,... ,tn e T-£. The 
reflexive, transitive closure of =>-R is denoted by Hence s i if and only if 
there exists a reduction sequence 

to 11 =>71... =Ф>7z tn 

in 1Z such that n > 0, t0 = s and tn = t. 
A TRS TZ is left-linear if, for every rule p r in R, p is a linear tree. A TRS is 

in standard form if for every rule p —¥ r in it, p G Ts,n for some n > 0. Obviously 
one can construct for every left-linear TRS 7Z a standard form TRS TZ' such that 

We define the set of left-hand sides of a TRS TZ = as lhs(7?.) = { p \ 
(3r)p-¥ r e R}. 

An element s G Xs is irreducible with respect to TZ if there exists no и such that 
s =>iz u. A S-tree s is a normal form of a E-tree t if t s and s is irreducible. 
The set of all normal forms of a E-tree t is denoted by N7z{t). The set of sentential 
forms of t is defined by 

Sn(t) = {s\t^*ns}. 

Moreover, for a tree language Г С ТЕ, we put 

Sn{T) = (J Sn(t), 
ter 

N n ( T ) = [J ВД). 
teT 

A TRS TZ over E is terminating if there are no infinite reduction sequences 
tL t2 =>тг • • •, cf. [Hue80], [DJ90] and [Ave95]. 

Let us recall the two basic types of tree recognizers which both define the same 
family of recognizable tree languages. To facilitate our proofs, we also introduce 
certain generalized versions of both types. All of these recognizers can be defined 
conveniently as special term rewriting systems. 

In a top-down E-recognizer A = (Л,Е,Р, ao) 

(1) A is a (finite) unary ranked alphabet of states such that А Л E = 0, 

(2) P is a finite set of rewrite rules, the transition rules, each of the form 

(a) a(f(x i,...,xm)) f{ai(xi),... , a m ( i m ) ) , also written simply a ( / ) 
f(ai,... ,am), where m > 0, / G £ m and a, ai, ... , am G A, or of the 
form 

(b) a(c) —¥ c, where с G EQ and a G A, and 
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(3) ao G A is the initial state. 

We treat A as the TRS (E U A, P) and the rewrite relation C TY.UA X T^UA 
is defined accordingly. For each a G A, let T(A,a) = {t £ Ts | a(t)=$>At}. In 
particular, the tree language recognized by A is the set T(A) = T(A,ao). 

A tree language T C is recognizable or regular if there exists a top-down 
E-recognizer A such that T(A) — T. The class of all recognizable E-tree languages 
is denoted by REC%. 

In a generalized top-down Y,-recognizer A = {A, E,P, ag) 

(1) A is a (finite) unary ranked alphabet of states such that A n E = 0, 

(2) P is a finite set of rewrite rules, the transition rules of A, of the form 

a(t(x1,..., xn)) i[ai(a;i),... 

where n > 0, a, ai, ... , an £ A, and t G T^>n, and 

(3) ao G A is the initial state. 

The rewrite relation =>.4 C TSUA x T^UA and its reflexive, transitive closure 
are defined in the natural way. The tree language recognized by A is the set 

T(A) = {teTs\ao(t) =>*At}. 

It is clear that also the generalized top-down X-recognizers recognize exactly the 
regular E-tree languages. 

Next we define tree recognizers which read their inputs from the leaves to the 
root. 

A bottom-up Yi-recognizer is a quadruple A = (A, T,,P,Af), where 

(1) A is a finite set of states of rank 0, E fl A = 0, 

(2) P is a finite set of rewrite rules of the form 

f(alt... ,am) a 

with TO > 0, / G £ m , ai,..., o m , a £ A, and 

(3) Af (C i ) is the set oi final states. 

We say that A is total deterministic if for all / G £TO, m > 0, «1, . . . , am £ A, 
there is exactly one rule of the form f(a 1,..., am) —> a. 

When we treat A as the rewriting system (EuA, P), the tree language recognized 
by it can be defined as the set 

T(A) = {t £ TE | (3 a G Af) t^*Aa}. 

For any bottom-up E-recognizer A, one can effectively construct a total determin-
istic bottom-up E-recognizer B such that T(A) = T(B). If A is total deterministic, 
there is for each E-tree t exactly one state a £ A such that t =>*A a. 
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A generalized bottom-up E-recognizer is a system A = (/1. E. P, Af), where A, 
E and A / arc as in the case of a bottom-up E-recognizer, but P is now a finite set 
of rewrite rules of the form 

i [a i , . . . ,an] -¥ a, 

where n > 0, i 6 T-£:Tl and ,...,an, a € A. Hence there may be rules of 
the form a —> b in P, where a, b G A. The tree language recognized by A is 
T(A) = {t6Ts | (3 a G Af) t a }. 

It is not hard to see that the class of E-tree languages recognized by generalized 
bottom-up E-recognizers is RECz . Moreover, the emptiness problem "'T(A) = 0?" 
is obviously decidable for both generalized top-down and generalized bottom-up 
recognizers. 

3 One-pass Term Rewriting 
The first of our two modes of one-pass rewriting may be described as follows. 

Let 1Z = (E, R) be a TRS and t the E-tree to be rewritten. The rewriting starts 
at the root of t and the portion first rewritten should include the root. Rewriting 
then proceeds as far as possible towards the leaves so that each rewrite step applies 
to a root segment of some maximal unprocessed subtree but never involves any 
part of the tree produced by a previous rewrite step. For the formal definition we 
associate with 7Z a TRS in which a new special symbol forces this mode of rewriting. 

Definition 3.1. The one-pass root-started TRS associated with a given TRS 7Z = 
(E,i?) is the TRS 7Z# = (E U {# } , -R#) , where # is a new unary symbol, the 
separator mark, and is the set of all rewrite rules 

# ( p ( x i , . . . , xn)) r [ # ( x i ) , . . . , # ( x „ ) ] 

obtained from a rule p(xi,..., xn) —» r(x\,..., xn) in R by adding # to the root 
of the left-hand side and above the variables in the right-hand side. 

Example 3.2. Suppose that E consists of the binary symbol / , the unary symbol 
g and the miliary symbol c. If 1Z = (E, R) is the TRS, where 

R = {f(9(xi)>z2) f(xi,g(x2)), g(xi) f(c,xi), g(Xl) g(c) }, 

then the rule set of the associated one-pass root-started TRS 7?.# is 

R# = { # ( / ( f f ( x i ) , x 2 ) ) / ( # ( x i ) , i ; ( # ( £ 2 ) ) ) , 
#(<?(*i)) ^ / ( c , # ( s i ) ) , #(g(xi)) g(c) }. 

For any TRS 1Z, the associated one-pass root-started TRS 7Z# is terminating. 
For recovering the one-pass root-started reduction sequences of 7Z from the reduc-
tion sequences of 1Z#, we introduce the tree homomorphism 5 : T-£U{#y —> T-£ which 
erases the separator marks: 
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(1) ¿(c) = c for any c G E0 ; 

(2) <S(#(i)) = 5(t) for any t G T E u { # } ; 

(3) S(t) = f(5{t!),...,S(tm)) for t = f(t!,...,tm), where m > 0, / e ETO and 
U £ 7su{#}-

If t G T s and 
# ( i ) 11 =>7J# ¿2 • • • tk 

is a reduction sequence with 1Z#, then 

t =>n S(h) =>n S(t2) ... S(tk) 

is a one-pass root-started reduction sequence with 1Z. The terms t, 5(ti), ... , S(tk) 
are called one-pass root-started sentential forms of t in 1Z. If tk is irreducible in 

then S(tk) is a one-pass root-started normal form of t in 1Z. The sets of all 
one-pass root-started sentential forms and normal forms of a E-tree t are denoted 
by lrS-R.(t) and lrN-ft(i), respectively. This notation is extended to sets of E-trees 
in the natural way. 

Note that for any TRS 7Z = (E ,R) and any t G TE , the sets lrSTC(i) and 
lrNK(£) are finite and effectively computable but that lrSiz(T) and lrNTC(T) are 
not necessarily regular even for a regular E-tree language T. 

The mode of one-pass rewriting which starts from the leaves is also formalized by 
associating with the given TRS a special one-pass TRS. This TRS is constructed in 
two stages. First we add to the original TRS all rules obtained by instantiating any 
variables in the original rules as constants. In the second stage the extended TRS 
is turned into a one-pass TRS by introducing a separator mark and by labelling 
the symbols of the right-hand sides so that the rewriting cannot be restarted from 
leaves which have already been processed. 

Definition 3.3. Let U = (£ , i? ) be a TRS. First we extend R to the set Re of all 
rules 

p[yi,---,yn] q[yi,---,yn] 

such that p(xi,..., xn) q(x±,..., xn) G R, with p, q G TEiJl, and for each 
i, 1 < i < n, either yt G X or j/j G E0 , and p[yi,...,yn] € Now let 
S' = { / ' | / G E } be a disjoint copy of E such that for any / G E, / and / ' 
have the same rank. The one-pass leaf-started TRS associated with 1Z is the TRS 
1Z* = (E U E' U { # } , i ? # ) , where # is a new unary symbol, the separator mark, 
and R& consists of all rules 

P[#{xl), • • •, #{xn)} -» #{r'{xi,..., xn)), 

where p -»• r G Re, with p, r G Ts,„, and r' is obtained from r by replacing every 
symbol / G E by the corresponding symbol / ' in E'. 

For every left-linear TRS 1Z, the one-pass TRS 1Z# is in standard form. 
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Example 3.4. Let E = {f,g,c}, where / is binary, g unary and c miliary, and let 
TZ = (E, R) be the TRS with 

R = {f(g{xi),x2) f(xug(x2)), g{c) f(c,c)}. 

Then E' = {f',g',c'} and the one-pass leaf-started TRS associated with R is the 
TRS TZ# = (E U E' U { # } , R*) where R* is 

R* = { / (<? (# (* ! ) ) , # ( z 2 ) ) # ( / ' ( x 1 , f l ' ( x 2 ) ) ) , 

f(9(c),c) #(/'(c',g'(c'))), g(c) #( / ' (c ' ,c ' ) ) } . 

It is clear that the TRS TZe = (T,,Re) is always equivalent to the original TRS 
TZ in the sense that = =>n- The connection between TZ and 7 i s the 
following. The reduction sequences of TZ* represent such reduction sequences of 1Z 
which start at the leaves of a term and proceed towards the root of it in such a 
way that symbols introduced by a previous rewrite step never form a part of the 
left-hand side of the rule applied next. At the same time the rewrite places are 
joined together by the separator mark. Moreover, TZ# can make only one pass over 
the term because the left-hand sides and the right-hand sides of its rules are over 
disjoint ranked alphabets. The one-pass reduction sequence of 1Z represented by 
a reduction sequence of 7Z& is recovered by applying a tree homomorphism which 
erases the #-marks and the primes from the symbols / ' E E'. Formally we define 
<5: r E u S / u { # } so that 

(1) <5(c') = ¿(c) = c for every c € E0; 

(2) <5(#(i)) = 6(t) for every t e T E u E , u { # } ; 

(3) 5{}{tu...,tm)) = ¿ ( / ' ( ix , . . . , *™)) = f{S(h),...,6(tm)) for any / e E m , 
m > 1, and ti,... , tm € T S u S / u { # } . 

Then each reduction sequence 

t =>k* h h =>n# • • • tl* tk 

with 1Z& starting from a E-tree t yields the one-pass leaf-started reduction sequence 

t S(h) 5{t2) 6{tk) 

with TZ. Moreover, the set of one-pass leaf-started sentential forms and the set of 
one-pass leaf-started normal forms of t with respect to TZ are defined by 

i * s R ( t ) = { < S M | 3 e S w # ( i ) } , 

and 
l « K ( t ) = { i ( S ) | S 6 N K # ( i ) } , 
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respectively. Finally, for a tree language T C Ts, we put 

USn(T) = U l*Sw(t), 
IST 

and 
1£NK (T) = (J l*N*(t ) . 

teT 

The extended TRS lZe may seem redundant, but without the new rules in 
Re \ R many natural one-pass leaf-started rewriting sequences would be missed. 
In particular, if H contains no ground rules, such as the rule g(c) —> f(c,c), no 
non-trivial one-pass leaf-started rewriting sequence could be initiated since the 
left-hand sides of all rules of Ti* would contain the symbol # . Hence we would 
have US-R.it) = H N n { t ) = {*} for every t £ T s . 

4 The one-pass root-started inclusion problems 
First we define the one-pass root-started normal form inclusion problem for a TRS 
1Z = (E ,R) . It is assumed that the recognizable tree languages are given in the 
form of tree recognizers. 

T h e o r e m 4.1. For any left-linear TRS TZ = (E ,R) , the following one-pass root-
started normal form inclusion problem is decidable. 

Instance: Recognizable E-tree languages Ti and To. 
Question: lrN-R.(Xi) C T2? 

For proving Theorem 4.1, we need the following auxiliary notations. For a set 
A of unary symbols such that Af1 E = 0 and any alphabet Y, let Tz(A(Y)) be the 
least, subset T of TZUA(Y) for which 

(1) E0 C T, 

(2) a(y) € T for all a £ A, y e Y, and 

(3) m > 1, / G Stni t\, ... , tm £ T implies f(t\,..., tm) G T. 

Let A = (A, T,,P,ao) be a top-down E-recognizer. For any a £ A, n > 0 and 
any t £ Ts,n, the set A(a,t) (C Ts (A(X n ) ) ) is defined so that 

(1) A(a,Xi) = {a(xi)} for all Xi £ Xn, 

(2) for c G E0 , A(a,c) = { c } if a(c) —tc£P, and A(a, c) = 0 otherwise, and 

(3) for m > 1, i = / ( ¿ i , . . •, tm), 

A(a,t) = { / ( s i , . . . , s m ) | S! G A(ai,ti),... ,sm £ ^l(oTO,im), 

a(f) -> f(au...,am) £ P}. 
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For any s £ T±(A(X)) and any variable Zj £ X, we denote by st(s.Xj) the set of 
states b E A such that b(xi) appears as a subterm in s. 

Clearly, A(a, t) ^ 0 if and only if there is a computation of A which starts 
at the root of t and continues successfully along all paths to the leaves of t, and 
moreover, if A reaches in a state b (£ A) a leaf labelled by a nullary symbol c, then 
the rule b(c) —» c is in P. Each term s in A(a, t) represents the situation when 
such a successful computation has been completed so that all leaves labelled with 
a nullary symbol have also been processed. If t £ then every s E A(ao, t) is of 
the form s = i f a^Xi ) , . . . , an(xn)] and for any tXl ... , tn £ Tz, the tree s appears 
in a computation of A on t[t\,...,£„] of the form 

a0[t[ti,... ,tn]) =>^i[ai ( i i ) , . . . ,an(£n)] = s[*i , . . . ,tn] • • • 

in which each subterm tj is processed starting in the corresponding state ai. How-
ever, if t is not linear, then a variable Xi may appear in a term s £ A(ao, t) together 
with more than one state symbol, and then the corresponding subterm tj should 
be accepted by a computation starting with each a £ st(s,a;i). 

Proof of Theorem 4.1. Consider a left-linear TRS 1Z = (E,i?) and any recog-
nizable S-tree languages T\ and T2. Let A = (A, S, Pi,ao) and B = (£?,£, P2;fro) 
be top-down £-recognizers for which T(A) = Ti and T(B) = T2C (= T s \ T2). We 
construct a generalized top-down E-recognizer C such that for any E-term t, 

teT{C) iff t £ T(A) and s £ T(B) for some s £ lrNn{t). (*) 

Then lr~N-ji(Ti) C T2 if and only if T(C) = 0, and the latter condition is decidable. 
Let C = (C, E, P, (ao, {bo})) be the generalized top-down E-recognizer with the 

state set 
C = (Axp{B))U(Axp(B)), 

where p(B) is the power set of B and A = { a | a £ v 4 . } i s a disjoint copy of A, and 
the set P of transition rules is defined as follows. The rules are of three different 
types. 

Type 1. If p(xi, • • •, xn) r(x!,...,xn) is a rule in R and (a ,H) £ A x p(B), 
where H = {&i , . . . , bk], we include in P any rule 

(a, H){p{xi,..., xn)) p[(aj, i i i X x i ) , . . . , (a„, Hn){xn)] 

where 

(a) p[a\ ( x i ) , . . . ,an(a;n)] £ A{a,p) and 

(b) there are terms si £ B(bi,r), ... , sk £ B(bk,r) such that, for all i = 1, 
. . . , n, 

Hi = st(sj,Xi) U • • • U st(sk ,Xi) . 
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For H = 0 (k = 0), this is interpreted to mean that H\ = • • • — Hn = 0 
should hold, and if p -4- r is a ground rule (n = 0), we include (a, H)(p) p 
in P iff a{p) =>*Ap and bi(r) =$*Br for all i = 1 , . . . , k. 

Type 2. Let N1 be the set of all terms q G Tx.,x such that 

(1) hg(g) < max{ hg(p) | p G lhs(ft) } + 1, and 

(2) o(q) ^ cr'(p) for all p G lhs(7£) and all substitutions a and a'. 

For e a c h p ( x i , . . . , x n ) G N1 and any (a,H) G Axp(B) with H = {bi,... ,bk}, 
we include in P any rule 

(a,H)(p(xi,... ,xn)) -»• p[(a,i, Hi)(xi),..., (an, Hn)(xn)], 

where 

(a) p[aL(a;i),.. . ,an(xn)} G A(a,p), and 

(b) there are terms si G B{b\,p), ... , sk G B(bk,p) such that, for all i = 1, 
. . . , n , 

Hi = st(si,Xi) U • • • U st(sk,Xi). 

The cases H = 0 and n = 0 are treated similarly as above. 

Type 3. For each (a, H) G Ax p(B), where H = {&i , . . . , bk], we add to P rules as 
follows. 

(1) For c G £o, we include in P the rule 

(a, H){c) -»• c 

if and only if a(c) —> c is in Pi and P2 contains l>i(c) —> c for every 
bi G H. 

(2) For / G £OT, m > 0, we add to P all rules 

(5, H)(f(x1}...,xm)) -> f((ai,Hl)(x1),...,(am,Hm)(xm)) 

where 
(a) a(f(x\,.. . ,£„ , ) ) - » / ( a i ( x i ) , . . . , a m ( s m ) ) is in Pi, and 
(b) there are rules bi{f(xi,..., xm)) f(bn(xi),...,bim(xm)) (i = 1, 

... , k) such that for each j = 1, . . . , m, Hj = {&i j , . . . , £»fcj } . 

We can show that C has the property described in (*). If t G T(C), then 
(a0, {i>o})(i) ^ c * a n d this derivation can be split into two parts 

(ao, {&o})№ i[(ai. H!)(ii), • • •, (a„, #„)(*„)] ¿[¿i , . . . , «„ ] = *, (**) 
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where n > 0, t £ T-£tll and, for every 1 < i < n, t{ £ Tz and (a^, Hi) £ A x p(B). 
In the first part of (**) only Type 1 rules are used, and hence t[a\ ( : / ; i ) , . . . , an(xn)] 
£ A(a0, t). Moreover, for some k > 0, s £ T-£ik, and S], . . . , s;. £ T j , 

# ( i ) = #{i[tu..., fn ] ) • • • s [ # ( s x ) , . . . , # ( ** ) ] = s, 

where every sj is a copy of exactly one of the ij. (Of course, Sj may be equal to 
more than one £{.) For each i = 1 , . . . ,n, let K(i) = { j \ Sj is a copy of ij } . Then 
for some u £ B(bo, s), Hi = |J{ st(u, Xj) | j £ K(i) } for all i = 1 , . . . ,n. 

In the second part of (**), it is first checked using Type 2 rules that s [ s i , . . . , Sfc] 
£ lrN-R.(i), and the computations (a^, Hi)(ti) U are finished using Type 3 rules. 
That means for every i = 1 , . . . , n, that (a) U £ T(A, en) and (b) i; £ T(B, b) for 
all b £ Hi. Therefore 

ao(t) ¿[al (¿l); • • • ! Qn(in)] t[tl ,...,£„] = t 

and there are b\, ... £ B such that 

6 0 ( s [ s i , . . . , Sfc]) =>b s [ b l ( s i ) , . . . , bk{sk)] s [ s i , . . . , Sfc]. 

The converse of (*) can be proved similarly. • 
The corresponding result for sentential forms can be proved by modifying suit-

ably the definition of the recognizer C. 

T h e o r e m 4.2. For any left-linear TRS H = (T,,R ) , the following one-pass root-
started sentential form, inclusion problem is decidable. 

Instance: Recognizable E-tree languages 7\ and T2 . 
Question: lrSTi(Ti) C T2? • 

P r o o f . Consider a left-linear TRS 71 = ( £ , i ? ) and any recognizable E-tree lan-
guages Xi and T2 . Let A = ( A , E , P i , a 0 ) and B = (B,T,,P2,b0) be top-down 
E-recognizers for which T{A) = Ti and T(B) = T 2 . We shall now construct a 
generalized top-down E-recognizer V such that for any E-term t, 

t £ T(D) iff t £ T(A) and s £ T(B) for some s £ lrSyi(t). 

Then lrS-R(Ti) C T2 if and only if T{V) = 0, and the latter condition is decidable. 
Let V = (C, E, P', (a0 , {bo})) be the generalized top-down E-recognizer, where 

the state set is that of the recognizer C used in the proof of Theorem 4.1 and the set 
P' of transition rules is defined as follows. All rules of C of Type 1 or of Type 3 will 
be included also in P'. The rules of Type 2 are replaced by the rules (a, H)(c) —> c 
and 

(a, H)(f(x x,.. .,xm)) f((ai,Hi)(xi),..., (am, Hm){ xm)) 

which are identical to the Type 3 rules of C except that the a's have no bars in the 
left-hand sides. 

The recognizer V is almost the same as C, but it may stop following the chosen 
one-pass root-started reduction of 1Z at any moment and switch to states in which 
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it checks whether the input tree is in T(A) and whether the one-pass root-started 
sentential form produced by the corresponding simulated reduction sequence of 7Z 
is in T(B). • 

5 The one-pass leaf-started inclusion problems 
First we consider the one-pass leaf-started sentential form inclusion problem. Again 
the tree languages are assumed to be given in the form of tree recognizers. 

T h e o r e m 5.1. For any left-linear TRS 1Z — (E,iZ), the following one-pass leaf-
started sentential form inclusion problem is decidable. 

Instance: Recognizable S-tree languages Ti and T2. 
Question: 1£SK(TI) C T2? 

Proof . Let A = (A, E, Pi, Af) and B = ( B , E , P 2 , 5 / ) be bottom-up £ -
recognizers that recognize the tree languages Ti and T2, respectively. We may 
assume that B is total deterministic. We construct a generalized bottom-up £ -
recognizer C such that T(C) = 0 if and only if l£S-n(Ti) C T2. This recognizer 
C = (C,S,P,Cf) is defined as follows. 

(1) Let C = (A x B) U (A x B), where A = { a | a E A} and B = {b \b E B). 

(2) The set P consists of the following rules which are of three different types. 

Type 1. For every rule p -> r E Re with p, r E T-£,n, n > 0, and for all states 
ai, ... , an, a E A, bi, ... , bn, b E B such that p [a i , . . . ,an ] and 
r [6 i , . . . , bn] b, let P contain the rule p[(ai, &i) , . . . , (an , bn)] —>• (a, b). 

Type 2. For all a E A and b E B, let (a, b) -t (a, b) be in P. 
Type 3. For all / E £TO with m > 0, all a i , . . . , am, a E A and bi,..., bm, b E B 

such that / ( a i , . . . , a m ) —> a E Pi and f{bi,...,bm) —> b E P-2, let P 
contain the rule / ( ( a i , 6i), • • •, (a m ,b m ) ) (a, b). 

(3) Let Cf = { a \ a E Af } x { b | b E {B \ Bf) }. 

The way C processes a E-tree t can be described as follows. First C, using rules 
of Type 1, follows some one-pass leaf-started rewriting sequences by 1Z on subtrees 
of t computing in the first components of its states the evaluations by A of these 
subtrees and in the second components the evaluations by B of the translations of 
the subtrees produced by these one-pass leaf-started rewriting sequences. At any 
time C may switch by rules of Type 2 to a mode in which it by rules of Type 3 
computes in the first components of its states the evaluation of t by A and in the 
second components the evaluation by B of the one-pass leaf-started sentential form 
of t produced by 7Z when the rewriting sequences on the subtrees are combined. 
This means that for any t E Xs, a E A and b E B, 

t=>c(a,b) iff t a and s b for some s E l£S-ji(t)-
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By recalling the definition of Cf we see that the above equivalence implies imme-
diately that T(C) = 0 if and only if USn(Tx) C T2, as required. • 

Finally we consider the one-pass leaf-started normal form inclusion problem. 

Theorem 5.2. For any left-linear TRS TZ = (E, /?,), the following one-pass leaf-
started normal form inclusion problem is decidable. 

Instance: Recognizable E-tree languages Tx and T2. 
Question: 1£Nn{T x ) C T2? 

Proof. Let A = {A,T,,Pi,Af) and B = (B,T,,P2,Bf) be total deterministic 
bottom-up E-recognizers such that T(A) = Tx and T(B) = T2. We shall construct a 
generalized bottom-up E-recognizer C such that T(C) = 0 if and only if 11 N-r.(Ti ) C 
T2. 

Let mx = max{ hg(p) | p £ lhs(7£e) } and let Tmx = { t £ | hg(i) < mx }. 
Now we define C = (C, E, P, Cf) as follows. 

(1) C = (A x B)U(A x B x (Tmx U {ofc})), where A = {a \ a £ A} and 
B = {b I b £ B}. 

(2) P consists of the following rules which are of five different types. 

Type 1. For every rule p r £ Re with p, r £ Ts i n , and any states ax, 
..., an, a £ A, bi, ..., bn, b £ B such that p[ax,... ,an] a and 
r [6 i , . . . , bn] =>*B b, let P contain the rule f>[(ai, £>i),..., (an , 6„)] -> (a, b). 

Type 2. For all a £ A and b £ B, let (a, b) (a, b, xx) be in P. 

Type 3. For any / 6 E m with m > 0, ax, ... , am, a £ A, bx, ... , bm, b £ B and 
Ul, ... , Urn £ Tmx such that f(ax,..., am) a £ Px, f(bx,..., bm) 
b £ P2, u = ||/(MI, • • •,Um)|| and u G TfYix \ lhs(7^e), let P contain the 
rule f((di,bi,ux),..., (am,bm,um)) (a,b,u). 
In case m = 0, the rule has the form / —> (a, b, /). 

Type 4- For any / 6 E m with m > 0, ai, . . . , am, a £ A, bx, ... , bm, 
b £ B and ui, . . . , um £ Tmx such that f(ax,... ,am) —> a £ Px, 
f(bi, • • • ,bm) b e P2 and ||/(ui,... !Wm)|| ^ Tmx, let P contain the 
rule / ( ( a i , 6 i , u i ) , . . . , ( a m , 6 m , u m ) ) (a,b,ok). 

Type 5. For any / £ £ m with m > 1, ax, ... , am, a £ A, bx, ... , bm, b £ B, 
and sequence yx, ... , ym £ Tmx U {ok} such that ok £ {yx,... ,ym}, 
f(ax,...,am) —¥ a £ Px, f(bx,...,6m) —> b 6 P2, let P contain the rule 
f((ax,bx,yi),-- •, (dm,bm,ym)) (a, b, ok). 

(3) Let Cf = {a \ a £ Af} x {b \ b £ (B \ Bf) } x (TmxU{ok}). 

The recognizer C evaluates an input tree t by rules of Type 1 so that it simulates 
both the computation by A on subtrees of t and the computation by B on the 
translations of those subtrees produced by TZ. Then C checks that the sentential 
form produced from t by the computation with TZ is a normal form. For this C 
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switches by rules of Type 2 into a mode in which it, by rules of Type 3, forms in 
the third components of its states sufficiently large portions of the tree above the 
nodes where the rewriting with 7Z ended. If one of these parts turns out to be the 
left-hand side of a rule of 7Z, then the evaluation by C stops and t is rejected. If not, 
then the sentential form produced by 1Z is a normal form, which is acknowledged by 
rules of Type 4 by putting ok in the third components of the corresponding states 
of C. Then C evaluates t in the same way as it was done in the proof of Theorem 
5.1 by rules of Type 3. 

This means that for any t £ Ts, a £ A, b £ B, and y £ Tmx U {ok}, 

t=>*c(a,b,y) iff t=>*Aa and s=>gb for some s £ 1*N-R,(i). 

Thus T(C) = 0 if and only if C T2. • 
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