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Abstract 
An automaton is directable if it has a directing word which takes it from every 
state to the same state. For nondeterministic (n.d.) automata directability 
can be defined in several meaningful ways. We consider three such notions. 
An input word w of an n.d. automaton A is 

(1) Dl-directing if the set of states aw in which A may be after reading 
w consists of the same single state c for all initial states a; 

(2) D2-directing if the set aw is independent of the initial state a; 
(3) D3-directing if some state c appears in all of the sets aw. 

We consider the sets of D1-, D2- and D3-directing words of a given n.d. 
automaton, and compare the classes of D1-, D2- and D3-directable n.d. au-
tomata with each other. We also estimate the lengths of the longest possible 
minimum-length D1-, D2- and D3-directing words of an n-state n.d. automa-
ton. All questions are studied separately for n.d. automata which have at 
least one next state for every input-state pair. 

1 Introduction 
An input word w is called a directing (or synchronizing) word of an automaton A 
if it takes A from every state to the same fixed state, i. e. if there is a state c such 
that aw = c for all states a of A. An automaton is directable if it has a directing 
word. Directable automata and directing words have been studied extensively in the 
literature from various points of view (c/. [1],[3], [4],[8],[9], [10],[11], for example). 
The main challenge from the very beginning has been Cerny's Conjecture [3] which 
claims that any n-state (n > 1) directable automaton has a directing word of length 
(n — l)2 or less. The bound suggested by the conjecture is the lowest possible, 
but the best known upper bounds are of order 0(n3), and the conjecture remains 
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unsettled. On the other hand, for some special classes of automata even better and 
accurate bounds have been found (cf. [8],[9],[10],). 

For nondeterministic (n.d.) automata directability can be defined in several 
meaningful ways three of which we will study here. An input word w of an n.d. 
automaton A is 

(1) Dl-directing if the set of states aw in which A may be after reading w 
consists of the same single state c whatever the initial state a is; 

(2) D2-directing if the set aw is independent of the initial state a; 
(3) D3-directing if there exists a state c which appears in all sets aw. 

The Dl-directability of complete n.d. automata was already studied by 
Burkhard [1]. In a paper [6] on games of composing relations on a finite set Goralcik 
et ai, in effect, considered Dl- and D3-directability and also two special types of 
D2-directability for general n.d. automata. In [1] an exact exponential bound for 
the length of minimum-length Dl-directing words of complete n.d. automata was 
given, and in [6] it was shown that neither for Dl - nor for D3-directing words the 
bound can be polynomial for general n.d. automata, and that the same holds for 
the two special types of D2-directability considered. On the other hand, Carpi [2] 
has found 0 ( n 3 ) bounds for Dl-directing words of unambiguous automata and for 
synchronizing pairs of maximal rational codes recognized by such automata. 

In this paper we consider the three types of directability from several points of 
view both for complete n.d. automata and for general n.d. automata. Section 2 
contains the general preliminaries. In Section 3 we give the formal definitions of 
D1-, D2 and D3-directing words and study the sets of Di-directing words of a given 
automaton (i = 1,2,3). Moreover, a diagram showing the inclusion relationships 
between the various classes of directable n.d. automata is presented. In Section 4 
we study the preservation of directability properties when one forms subautomata, 
epimorphic images or finite direct products of n.d. automata. Finally, in Section 5 
we derive lower and upper bounds for the lengths of the shortest directing words 
of the three different types. For Dl-directing words it only remained to note that 
Burkhard's exact value applies also to general n.d. automata. For D2- and D3-
directing words exponential lower bounds are obtained by utilizing an idea used in 
[6], and by considering recognizers of the sets of D2- or D3-directing words of a 
given automaton we get also upper bounds for them. The gaps between the lower 
bounds and the upper bounds are, however, considerable. Here the D3-directing 
words of complete n.d. automata form a notable exception: for them we obtain a 
lower bound of order 0(n2) and an upper bound of order 0 (n 3 ) . 

2 Preliminaries 
The cardinality of a set A is denoted by |A|. If f : A —^ B is a mapping, the image 
f(a) of an element a € A is often denoted by af. Similarly, we may write Hf for 
f(H) = {af : a e H) when H C A. The composition of two mappings / : A B 
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and g : B —> C is the mapping fg : A —> C, a ( a f ) g , and the product of two 
relations 6 C A x B and p C B x C is the relation 

6p = {(a, c) 6 A x C : {3b £ B) a6b, bpc} 

from A to C; that (a, b) £ 9 holds is also expressed by writing aOb. 

In what follows, X is always a finite nonempty alphabet. The set of all (finite) 
words over X is denoted by X* and the empty word by e. The length of a word w 
is denoted by lg(w). 

An automaton is a system A = {A,X,S), where A is a finite nonempty set of 
states, X is the input alphabet, and S : A x X —> A is the transition function. The 
transition function is extended to A x X* in the usual way. A recognizer is a system 
A = (A, X, S, ao, F), where (A,X, 5) is an automaton, oo(€ A) is the initial state, 
and F(C A) is the set of final states. The language recognized by A is the set 

L{A) = { w e r : S(a0,w) £ F}. 

A language is called recognizable, or regular, if it is recognized by some recognizer. 
The set of all recognizable languages over the alphabet X is denoted by Rec(X) . 

An automaton A = {A, X, 5) can also be defined as an algebra A = {A, X) in 
which each input letter x is realized as the unary operation xA : A A, a M-
S(a,x). Nondeterministic automata may then be introduced as generalized au-
tomata in which the unary operations are replaced by binary relations. Hence 
a nondeterministic (n.d.) automaton is a system A = ( A , X ) where A is a fi-
nite nonempty set of states, X is the input alphabet, and each letter X(E X) is 
realized as a binary relation xA(C A x A) on A. For any a £ A and x & X, 
axA = {b £ A : (a, b) £ xA} is the set of states into which A may enter from 
state a by reading the input letter x. For any C C A and x £ X, we set 
CxA = U {axA : a £ C}. For w £ X* and CCA, CwA is obtained inductively 
thus: 

(1) CeA = C; 

(2) CwA = (CvA)xA for w = vx, v £ X* and x £ X. 

If w £ X* and a £ A, let awA = {a}wA. This means that if w = XiX2 • • • Xk, then 
WA = xAxA... xA(C A x A). If C is the set in which A could be at a certain 
moment, then by the usual interpretation of nondeterminism CwA is the set of 
possible states after A has received the input word w. When A is known from the 
context, we usually write simply aw and Cw for awA and CwA, respectively. 

An n.d. automaton A = (A, X) is complete if axA ^ 0 for all a £ A and x £ X. 
Complete n.d. automata are called c.n.d. automata for short. In what follows, 
we denote a deterministic automaton by A = (^4,X,(5) and a nondeterministic 
automaton by A = {A, X). 
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3 Directable nondeterministic automata 
An automaton A = {A, X, S) is said to be directable if it has a directing word 
iu{£ X*) such that 5(a,w) = S(b,w) for all a,b £ A (cf. [3],[4], [8],[11], for ex-
ample). Hence a directing word sends the automaton to a known state which is 
independent of the present state. This idea can be extended to n.d. automata 
in several nonequivalent ways. In the following definition three natural notions of 
directability of n.d. automata are introduced. 

Definition 3.1. Let A = ( A , X ) be an n.d. automaton. For any word w £ X* we 
consider the following three conditions: 

(Dl) (3c £ .4)(Va £ A)(aw = {c } ) ; 
(D2) (Va,6 £ A)(aw = bw)\ 

(D3) (3c 6 A)(Va £ A) (c£ aw). 

If w satisfies (Di), then w is a Di-directing word of A (i = 1,2,3). For each 
¿ = 1,2,3, the set of Di-directing words of A is denoted by Dj(^t), and A is called 
Di-directable if Dj(.4) ^ 0. The classes of Dz-directable n.d. automata and c.n.d. 
automata are denoted by Dir(z) and CDir(i ) , respectively. 

A Dl-directing word drives the n.d. automaton from any state, or any nonempty 
set of states, to some fixed state. D2-directability generalizes the notion of di-
rectability in the sense that after reading a D2-directing word the set of possible 
states is independent of the starting state. In fact, if w £ D2(-4), then the set CwA 

is independent of C(C A) as long as C ^ 0. Finally, if w is a D3-directing word 
of A — (A, X), then at least one state in CwA is known even if the initial set C 
of possible states is unknown, but nonempty. Of course, if the n.d. automaton is 
complete, the current set of possible states is always nonempty. 

In [1] Burkhard considered Dl-directing words ("homogeneous experiments") 
for complete n.d. automata. The game of composing a constant relation from a 
set of relations studied in [6] amounts to the forming of a Dl-directing word for an 
n.d. automaton, and other variants of such games correspond our D3-directability 
and two special types of D2-directability. 

Let us begin the study of the relationships between the various notions of di-
rectibility by considering the directing words of a given n.d. automaton A = (A,X). 
For this purpose and future use we define the n.d. automata Ai, A2, A3 and A4 
by the following transition tables: 

-4i X X y A3 X A4 X 1J 

1 2 1 2 - 1 1,2 1 1,2 -
2 1,2 2 1 - 2 2 2 2 

It is clear that any Dl-directing word is also D2- and D3-directing. Moreover, 
the inclusion Di(.4i) C Ü2(.4i)nD3(.4i) is proper since the word xx is D2- and D3-
directing, but not Dl-directing. That D2(.4) and D3(.4) may be incomparable can 
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be seen by considering the n.d. automaton A j ; obviously x G D3(^44) \ D 2 (A i ) and 
y G T>2{A4) \D3 (AI)- On the other hand, it is clear that DI(.4) C T)2{A) C D3(.A) 
for any c.n.d. automaton A• That both of these inclusions may be proper can be 
seen by considering the c.n.d. automaton Ai . These observations may be summed 
up as follows. 

Remark 3.2. For any n.d. automaton A, Di(.4) C D2(.4) n D3(.4), and if A is 
complete, then Di(.A) C D2(.4) C D3(.4). Moreover, any one of the inclusions may 
be proper. 

The following observations are also easily verified. 

Remark 3.3. For any n.d. automaton A = (A,X), T>2(A)X* = D2(.A). If A 
is complete, then X*Di(.4) = Dj(.4), X*D2(A)X* = D2(.4), and X*D3(A)X* = 
DsM). 

Next we note that the directing words of each type of any given n.d. automaton 
form a regular language. 

Proposition 3.4. For any n.d. automaton A, the languages Di(»4) ; D2(.4) and 
D3(.4) are (effectively) recognizable-

Proof. Let A = {A,X) be any n.d. automaton. Suppose that A has n states 
and let A = { a i , . . . , a „ } . First we define an automaton B = (B,X,5) so that 
B = {{axuA,..., anuA} :ueX*} and <*({Ci,.. . , Ck},x) = {CxxA,..., CkxA} for 
all { C i , . . . , Ck} G B and x G X. Furthermore, let b0 = { { a j } , . . . , { a n } } (G B). It 
is clear that 5(b0,u) = {aiuA,..., anuA} for every u e X*. Hence L(Bi) = DJ(.4) 
for Bi = (B,X,S,bo,Fi), i = 1,2,3, when we set Fx = { { { c } } : c e A} n B, 
F2 = { { C } : C C A} fl B and JF3 = { { C i , . . . , Ck] : Cx D ... D Ck ± 0} n B. The 
constructions of the recognizers Bj, B2 and B3 are clearly effective. 

Corollary 3.5. The D1-, D2- and D3-directability of an n.d. automaton are 
decidable properties. 

Next we investigate the relationships between the various classes Dir(z) and 
CDir(i). 

Proposition 3.6 The pairwise inclusion relations between the classes Dir(i) and 
CDir(z), i — 1,2,3, are given by the Hasse diagram shown in Figure 1. All inclu-
sions are proper and the pairwise intersections are as indicated by the diagram. 

Proof. Since A2 G Dir(2)\Dir(3) and A3 G Dir(3)\Dir(2), the classes Dir(2) and 
Dir(3) are incomparable and Dir(2)flDir(3) is contained properly in both of them. 
The inclusion Dir(l) C Dir(2)nDir(3) follows from Remark 3.2, and its properness 
is witnessed by Ax. The inclusions CDir( l ) C CDir(2) C CDir(3), also implied by 
Remark 3.2, are proper since Ax G CDir(2)\CDir(l) and A3 G CDir(3)\CDir(2). 
It is clear that CDir(z) C Dir(i) for every i = 1,2,3, and it follows now directly 
from the definitions that the intersections of all pairs of classes are correctly given 
by the diagram. 
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Dir(2) Dir(3) 

Dir(2)ADir(3) CDir(3) 

Dir(l) CDir(2) 

CDir(l) 

Figure 1: 

4 Algebraic constructions and directability 
In [8] it was noted that subautomata, epimorphic images and finite direct products 
of directable automata are directable. Here we consider these matters for nonde-
terministic automata. Throughout this section A = ( A , X ) and B = ( B , X ) are 
n.d. automata which have the same input alphabet. 

Let us call B a subautomaton of A if B C A and bxB = bxA for all b G B and 
x G X. It is easy to show that if B is a subautomaton of A, then bwB = bwA for 
all b G B and w € X*. This observation yields immediately the following facts. 

Propos i t ion 4.1. If B is a subautomaton of an n.d. automaton A, then Dj(.4) C 
D i {B) , and hence every subautomaton of a Di-directable n.d. automaton is Di-
directable, i = 1,2,3. 

In [5] a weaker notion of subautomaton was used which can be derived from the 
general notion of a substructure (cf. [7], for example). Let us say that B is a weak 
subautomaton of A if B C A and bxB = bxA fl B for all b € B and x G X. None of 
the claims of Proposition 4.1 holds for weak subautomata. 
Example 4.2. The n.d. automaton A = ( {1 ,2 ,3} , {a;}), where xA = 
{(1,2), (2,3), (3,3)} is D1-, D2- and D3-directable, but the weak subautomaton 
corresponding to the subset {1 ,3} has none of these properties. The c.n.d. au-
tomaton B = ( {1 ,2 ,3} , {a;}), where xB = {(1,2), (2,1), (2,3), (3,2), (3,3)} is D2-
and D3-directable, but the weak subautomaton ( {1 ,2} , {(1, 2), (2,1)}) is neither 
D2- nor D3-directable although it is complete. 

Also homomorphisms of n.d. automata can be defined in different ways. We 
consider a notion used in [5]: a mapping ip : A —t B is a morphism from A to 
B, and we express this by writing ip : A —• B, if axAip = aipxB for all a G A 
and x G X. A surjective morphism is an epimorphism, and if there exists an 
epimorphism tp : A B, then B is an image of A. 

It is clear that if <p : A —> B is a morphism of n.d. automata, then CxAip = 
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CipxB whenever CCA and x £ X, and hence awA<p = a<pwB for all a € A and 
w £ X*. Using this observation one proves easily the following proposition. 

Proposition 4.3. If ip : A —> B is an epimorphism of n.d. automata, then 
Dj(-4) Q Dj(0), and hence any image of a Di-directable n.d. automaton is Di-
directable (i = 1,2,3). 

The direct product of A and B is the n.d. automaton AxB = (AxB, X) defined 
so that (a,b)xAxB = axA x bxB for all (a,b) £ A x B and x £ X. Of course, this 
definition could be formulated more generally to give the direct product of n (n > 0) 
n.d. automata. It is easy to show that 

(a,b)wAxB = awA x bwB 

for all (a,b) £ A x B and w £ X*. It is also obvious that A x B is complete iff A 
and B both are complete. 

For ordinary automata the catenation uv of a directing word u of A and a 
directing word v of B is a directing word of A x B. In the case of Dl - and D3-
directability this construction does not always work since buB may be empty for <• 
some b £ B, and it may fail even for complete Dl-directable n.d. automata because 
(auA)vA is not necessarily a singleton set. Indeed, it is easy to show by examples 
that the classes Dir( l) , CDir(l) , Dir(2), Dir(3) and Dir(2)nDir(3) are not closed 
under direct products. For the two remaining classes the following positive results 
can be noted. 

Proposition 4.4. The direct product of two D2-directable c.n.d. automata is 
D2-directable, and the direct product of any two D3-directable c.n.d. automata is 
D3-directable. 

Proof. Let A = ( A , X ) and B = ( B , X ) be complete n.d. automata. 

If A and B are D2-directable, then there are words u, v £ X* and subsets CCA 
and D C B such that auA = C and bvB = D for all a € A and b G B. Then for all 
(a, b) e Ax B, 

(a, b)uvAxB = (C x buB)vAxB = CvA x (buB)vB = CvA x D, 

and hence uv £ D2(^l x B). Here we naturally need the fact that buB ^ 0 for all 
b e B. 

Assume now that u € D3 (.4) and v € D3 (B), and that c G auA and d £ bvB for 
all a £ A and b £ B. Then for all (a, b) £ Ax B, 

(a, b)uvAxB = (auA)vA x (buB)vB 

contains the state (c',d), where c! is any given state from cvA. 
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5 Minimum-length directing words 
If A = (A, X) £ Dir(i) for some i, 1 < i < 3, let 

di(^4) = min{lg(w) : w £ Dj (A) } . 

For all i = 1,2,3 and n > 1, we set 

d,(n) = max{di(.4) : A £ Dir(i), = n} , 

and 

cdj(n) = max{dj(^4) : A £ CDir(i), = n} 

Moreover, we denote by d(n) the usual maximal length of the minimum-length 
directing words of a deterministic n-state directable automaton as defined in [3], 
[4] or [8], for example. 

It is clear that d(n) < cd*(n) < d¿(n), for all n > 1 and i = 1,2,3. In [1] 
Burkhard proved that cdi(n) = 2n - n - 1 for n > 2. To obtain this result he 
constructs for each n > 2 an n-state c.n.d. automaton for which the shortest D l -
directing words are of length 2™ — n — 1. On the other hand, he observes that if 
w = X\ .. .xmxm+i is a minimum-length Dl-directing word of a c.n.d. automaton 
A = ( A , X ) , then Aw is a singleton set and the sequence Ax±,..., Ax± .. ,xm 

consists of pairwise different subsets of A with at least two elements. Hence, lg(w) < 
2" — n — 1. Since this observation is valid also for general n.d. automata, the 
functions cdi(n) and di(n) are as follows. Moreover, the bound is accurate also for 
n = 1 since the empty word is a Dl-directing word of any 1-state n.d. automaton. 

Proposition 5.1. (Burkhard 1976) For any n > 1, cdi(?i) = di(n) = 2™ — n — 1. 
In [6] Goralcik et al. proved that the number of factors needed to form a 

constant relation as a product of some given relations on an n-element set may 
grow exponentially with n. This result gives exponential lower bounds for d\(n) 
and d${n). Since we already have an exact expression for d\ (n), we use the example 
of [6], in a slightly modified form, to obtain a lower estimate for d-${n). By changing 
the construction suitably we obtain such lower bounds also for d2(n) and cd2(n). 

For any n > 2, let w(n) denote the maximal order of any permutation on the 
set [n] = { 1 , . . . ,n } . In [6] it was shown that u>{n) > when n is the sum of 
the first k primes for some k. From this it is easy to infer that u{n) > [v^ ~~ 1J' 
for every n > 2. 

Proposition 5.2. For any n > 2, 

(a) 

and 
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(b) L ^ - i J ! < < f e ( n ) < E ( 2 f c n ) . 

Proof. First we establish both of the lower bounds. Since they are obviously valid 
for all small values of n, we may suppose that the permutations on [n — 1] of 
maximal order u>(n) consist of at least two cycles. Let a be such a permutation and 
C\,.. •, Cr its cycles. Obviously, we may also assume that the lengths m i , . . . , m r 

of these cycles are relative primes. Let us now define an n-state c.n.d. automaton 
A = ([n], {x,y,z}) as follows. 

Firstly, let xA = { ( l , c r ( l ) ) , . . . ,(n— l,cr(n — 1)), (n,n)} . In each cycle Ci we fix 
arbitrarily an element aj and set bi = cr(aj). Now yA is defined so that ayA = {bj} 
if a £ Ci (1 < i < r), and nyA = {n} . Finally, zA is defined so that 

A _ / { " } if a e { a i , . . . , a r , n } , 
aZ \Ci i f a e C i \ { o i } , ( l < i < r ) . 

Clearly, nwA = {n } for all words w £ {x,y, z}*. On the other hand, awA = { n } 
also for all other states a £ [n — 1] only in case we may write w — uzv, where u 
is such a word that for all 1 < i < r and a £ Ci, auA = a .̂ It should now be 
clear that YXMIM2 -M'-~1Z is the shortest D2-directing word of A, and its length is 
w(n) + 1 > L ^ n - l J ! -

The upper bounds are obtained simply by estimating in each case the number 
of non-final states of the recognizer B 2 defined in the proof of Propsition 3.4. 
Remark. For values of n less than 1331=(113) the lower bounds of Proposition 
5.2 are well below the bound (n — l)2 given by Cerny's well-known automata. 

Proposition 5.3. For any n > 1, (n - l )2 < cd3(n) < \n(n - 1 )(n - 2) + 1. 
Proof. Since the D3-directing words of an ordinary automaton are exactly its 

directing words, the lower bound is given by Cerny's [3] well-known examples of 
n-state automata (n > 1) for which the the shortest directing words are of length 
( n - 1 ) 2 . 

A word w (€ X*) is said to D2>-merge two distinct states a, b of an n.d. automa-
ton A = (A, X) if aw fl bw ^ 0. We have the following lemmas. 

Lemma 5.4. A c.n.d.. automaton A = (A,X) is D3-directable if and only if there 
is a D3-merging word for every pair of distinct states a, b £ A. 

Proof. The condition is necessary since any D3-directing word D3-merges every 
pair of states of A. Suppose now that for each pair a,b £ A, a ^ b, there is a 
D3-merging word waand let A — { 1 , . . . ,n} . We define inductively a sequence 
vq, vi, . . . , vn-i of words as follows. For each i = 1 , . . . , n — 1, let 

M(i) = li>i-\ n n . . . fl ifi-y. 

1. Let i/0 = e. Then M{ 1) ^ 0. 
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2. Suppose that for some i, 1 < i < n — 2, we have defined a word Ui-i (G X*) 
such that M(i) ^ 0. If M{i) n {i + l)vi-\ # 0, then let v{ = v^. Otherwise, 
choose any a G M{i) and any 6 G (z + l)fi-i and set Vi = Vi-iWa^. In both cases 
M(i + 1) 0, and hence G D3(A). 

Lemma 5.5. Let A = {A, X) be an n-state n.d. automaton. If a pair a,b E A, 
a ^ b of states has a D3-merging word, then it has a DZ-merging word of length 

Proof. If w = x\ ... xk is a D3-merging word for a,b £ A, then there are 
sequences of states ao,a\,... ,ak and bo,b\,... ,bk such.that 

(1) o0 = a, b0 = b, 
(2) ai G ai-iXi and bi G h-iXi for all z = 1 , . . . , k, and 
(3) ak=bk. 

If w is of a minimal length, the pairs {ao,6o}, • • •, {afc-i> bk-1} are all distinct and 

We may now complete the proof of Proposition 5.3. If a nontrivial e n d. au-
tomaton A = ( A , X ) is D3-directable, there must exist a pair of states a, b 6 A, 
a b such that ax fl bx ^ 0 for some x G X. By appending to such an x n — 2 D3-
merging words of length < (") as in the proof of Lemma 5.4 we get a D3-directing 
word of length < 1 + (ra — 2) (™). It is clear that the bound is valid also for n = 1. 

Propos i t ion 5.6. For any n > 1, 

№ - Ij. < d,w < t C Y ' ) - E s c - i r ' ( : ) ( 7 ) • 
k=2 v 7 k=2 r = 1 \ / \ / 

where m(k) = max{i : k < 2n~1}. 
Proof. For the lower bound it suffices to modify the construction of the automaton 
A used in the proof of Proposition 5.2 so that azA = 0 if a G Ci \ {a ; } (1 < i < r). 
The upper bound is obtained by considering any n-state D3-directable automaton 
A = (A, X) and estimating the number of possible non-final states of the recognizer 
B 3 (defined in the proof of Proposition 3.4) from which a final state can be reached. 
First of all, we may discard all states containing the empty set. On the other hand, 
any state consisting of just one non-empty set is final. These two observations yield 
the first sum expression. From this number we should subtract the number of final 
states consisting of at least two subsets of A. Consider any k, 2 < k < n. By the 
Principle of Inclusion and Exclusion the number of states {C\,... ,Ck} of B 3 such 
that C\ n ... n Ck £ 0 is given by 

The double sum to be subtracted from the first sum is now obtained by forming 
the sum of theses sums for k = 2 . . . . , n. 
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