
Acta Cybernetica 14 (1999) 135-149.

Some Properties of Duplication Grammars

Victor MITRANA * Grzegorz ROZENBERG f

Abstract
This paper considers context-free variants of duplication grammars. We

investigate their generative capacity, their mutual relationship, and their rela-
tionship to the context-sensitive duplication grammars. We solve some prob-
lems left open in [6], e.g., proving that all regular languages can be generated
by nearly all types of context-sensitive duplication grammars. We also con-
sider some decision problems.

1 Introduction
String duplications or duplications of segments of strings are rather frequent in
both natural and genetic languages. We refer to [1], [2] and [10] for discussions
of duplication, and other operations related to the language of nucleic acids. For
motivations coming from linguistics, we refer to [5] and [9].

Based on [1], Martin-Vidé and Pâun introduced in [6] a generative mechanism
(similar to the one considered in [2]) based only on duplication: one starts with a
given finite set of strings and produces new strings by copying specified substrings
to certain places in a string, according to a finite set of duplication rules. This
mechanism is studied in [6] from the generative power point of view. The present
paper considers the context-free versions of duplication grammars - this formalizes
a possible hypothesis that duplications appear more or less at random within the
genome in the course of its evolution. We solve some problems left open in [6], prove
new results concerning the generative power of context-sensitive and context-free
duplication grammars, and compare the two classes of grammars. Finally, some
decision problems are discussed.

A context-sensitive duplication rule is a triple whose components are strings over
a given alphabet (in the case of DNA the alphabet consists of the four nucleotids),
say (u,x,v) , which has the following interpretation:

• the string x, which appears to the left of uv in the processed string, is inserted
in between u and v;

'University of Bucharest, Faculty of Mathematics Str. Academiei 14, 70109, Bucharest, Ro-
mania mitranaflfuninf.math.unibuc.ro

^Leiden Institute of Advanced Computer Science, Leiden University, PO Box 9512, 2300 RA
Leiden, The Netherlands, rozenberSwi. leidenuniv .ill and Department of Computer Science,
University of Colorado at Boulder, USA.

165

166 Victor MITRAN A, Grzegorz ROZENBERG

• the string x, which appears to the right of uv in the processed string, is
inserted in between u and v\

• the string x which appears in between u and v is doubled.

A context-free duplication rule is a string over the given alphabet, say x, whose
effect is the duplication of x either to the right of, or to the left of, or immediately
after, an already existing copy of x. Clearly, context-free duplication rules may be
viewed as context sensitive duplication rules whose contexts are empty.

In vivo, cross-over takes place just between homologous chromosomes (chromo-
somes of the same type and of the same length), see [4]. A model of a cross-over
between a DNA molecule and its replicated version is considered in [3] - this is a
model for a cross-over between "sister" chromatides. One specifies an initial finite
set of strings and a finite set of cross-over rules of the form (a,/3,7,5). It is as-
sumed that every initial string is replicated so that two identical copies of every
initial string are available. The first copy is cut between the segments a and (3 and
the other one is cut between 7 and Now, the last segment of the second string
gets attached to the first segment of the first string, and a new string is obtained.
More generally, another string is also generated, by linking the first segment of the
second string with the last segment of the first string. Iterating the procedure, one
gets a language. The main idea of this approach is schematically presented in the
Figure 1.

Hence, the splicing operation introduced by T. Head, see, e.g., [7] is performed
here between identical strings. It is easily seen that one obtains the insertion of a
substring of w in w\ this induces a duplication of some chromosomes into genome.
This type of recombination is considered to be the main way of producing tandem
repeats or block deletions in chromosomes.

Some Properties of Duplication Grammars 167

2 Basic definitions

In this section we give the basic notions and notations needed in the sequel. For
basic formal language theory we refer to [7] or [8]. We use the following basic
notation. The length of a word x is denoted by |a;|, the empty string is denoted
by e; we have |e| = 0. The mirror image of a word x is denoted by xR. The set
of all words over V is denoted by V*, and V+ = V* \ {e} . For sets X and Y,
X\Y denotes the set-theoretic difference of X and Y. If X is finite, then card(X)
denotes its cardinality; 0 denotes the empty set.

Here is the main notion of this paper.
A (context-sensitive) duplication grammar is a construct

A = (V,DhDr,D0,A),

where V is an alphabet, Di,Dr,D0 are finite subsets of V* x V+ x V*, and A
is a finite subset of V+. The elements of Di, Dr and Do are context-sensitive
duplication rules, and elements of A are called axioms.

Given a duplication grammar as above and two words x, y G V+, we define the
following three types of direct derivation relations in A:

X ==$>Di y iff X = X1UVX2ZX3, y — X\UZVX2ZX3,
with X\, x2,x3 G V*, and (u,z,v) G Di,

X =S>_Dr y iff X = X\ZX2UVX3, y = X\ZX2UZVX3,
with xi,x2,x3 G V*, and (u,z,v) G Dr,

X =$>D0 y iff X = X]_UZVX2, y = XiUZZVX2,
with xi,x2,x3 G V*, and (u,z,v) G Do-

The union of these relations is the direct derivation relation of A, denoted by
=S>, and the reflexive and transitive closure of is the derivation relation of
A, denoted by =£>*. The language generated by the duplication grammar A is
defined by

L(A) = {y G V* | x =S>* y, for some x G A}.

Thus, the language of A consists of all words obtained by beginning with strings in
A, and applying iteratively duplication rules from DiU DrL> Do- The application
of a rule to a string means to copy one of its substrings to the left of, or to the
right of, or next to its "given" occurrence. Because each of the three sets of rules
may be empty, one obtains seven families of languages denoted by DUPL(X), X G
{I, r, 0, Ir, 10, rO, IrO}: the presence of a letter within X means that the corresponding
set of rules is non-empty, e.g., for X = /0, Di ^ 0, Do 0 and DT = 0.

Analogously, we define a context-free duplication grammar as a construct A =
(V,Di,Dr,D0,A), where V and A have the same interpretation as above, but
Di,Dr,Do are finite subsets of V+ whose elements are context-free duplication
rules. Given a context-free duplication grammar as above and two words x, y G V+,

168 Victor MITRAN A, Grzegorz ROZENBERG

we define three types of direct derivation relations:

x (=£>, y iff x = xix2zx$, y = X1ZX2ZX3, with x\, X2, x3 G V*, and z G Di,

x |=o r y iff x = x\zx2xz, y = X1ZX2ZX2, with x\,x2,xz G V*, and 2 G Dr,

x |=£>0 y iff x = x\zx2, y = x 1 zzx2, with X\, X2,13 G V*, and z G D0.

Again, the union of these relations is the direct derivation relation, denoted by f=,
and the reflexive and transitive closure of |= is the derivation relation, denoted by
f=*. The language generated by the context-free duplication grammar A is defined
by

L(A) = {y G V* I x \=* y, for some x G A}.

Again, we get seven families of languages denoted by CFDUPL(X), X G
{I,r,0,lr,l0,r0,lr0}.

3 A short comparison
We begin by settling the relationships among the seven families of context-free
duplication languages.

Theorem 1. The relations in the following diagram hold, where an arrow indicates
a strict inclusion and a dotted line links two incomparable families.

CFDUPL(l)

, \
' \
| CFDUPL(0) " CFDUPL(lrO) — CFDUPL(l

/
| /

CFDUPL(r)

Proof. The language {anbmapbq\n,m,p,q > 1} is in CFDUPL(0) (one starts
with abab and doubles either an occurrence of a or an occurrence of b) but not in
CFDUPL(lr). To see the latter, we note that each context-free duplication gram-
mar having just left and right duplication rules generates strings in a+b+a+b+a+b+;
a contradiction.

By a similar reasoning, the language {anbm\n,m > 1} belongs to
CFDUPL(10) n CFDUPL(rO) n CFDUPL(lr) but not to CFDUPL(l) U
CFDUPL(r).

Some Properties of Duplication Grammars 169

The language {a,b,c}+ is in CFDUPL(r) nCFDUPL(l) (the initial set con-
tains all strings of length at most 3, each letter a,b,c appearing at most once;
duplication rules allow copying of any letter to the right/left of one of its occur-
rences.) Because there are arbitrarily long square-free strings in {a,b,c}+, [11], it
follows that { M , c } + i CFDUPL{0).

Finally,

{a, b, c } + { $ } + { d , e, / } + € CFDUPL(lrO) \ (CFDUPL(10) u CFDUPL(rO))

which concludes the proof. •
The following result concerning the relationships among the context-sensitive

families of duplication languages has been proved in [6].

Theorem 2.[6]
1. The families DUPL(l) and DUPL(r) are incomparable.
2. The following inclusions

DUPL{r) U DUPL{1) C DUPL(lr)

DUPL(0) C (DUPL(rO) n DUPL{10))

are proper.

It is an open problem whether or not DUPL(0) is included in DUPL(l) or in
DUPL(r). However, we have

Proposition 1. CFDUPL(O) is strictly included in DUPL(lr).

Proof. Let A = (V, 0,0, Do, A) be a duplication grammar with D 0 =
{xi,a;2, • • • ,xn}. Construct a duplication grammar A' = {V,Di,Dr,$,A'), where

Di = Di = {(xi,xi,e)\l < i < n},
A! = {z £ L(A)| each Xi has at most two non-overlapped occurrences

in z}.

It is easy to see that A' is a finite set, and L(A) = L(A'). •
Along the same lines, we have

Theorem 3. CFDUPL(X) C DUPL{X), for all X £ {0,Z,r,Z0,r0,Zr,Zr0}.

Proof. It suffices to provide languages that prove all inclusions to be strict.
The dupli-

cation grammar A = ({a, 6}, {(e, a, a), (e, b, b)}, 0,0, {ab, a2b, ab2, a2b2} generates
Lx = {anbm\n,rn > 1}. Hence Lx is in DUPL(l) (also in DUPL(r)) but not in
(•CFDUPL{1) U CFDUPL{r).

Similarly, {anbmapbq\n, m,p, q > 1} £ DUPL(lr) \ CFDUPL{lr).
One can show that {anbnab\n > 1} cannot be generated by any context-free

duplication grammar. On the other hand, {anbnab\n > 1} £ DUPL(lrO) (see [6]).

170 Victor MITRAN A, Grzegorz ROZENBERG

Take now the language L2 = {abncmdpe\l < n,m,p < 3 } + . This language can
be obtained by starting with the string abcde and iteratively applying rules from
the set

D0 = {(e, abcde, e), (a, b, c), (ab, b, c), (b, c,d), (be, c, d), (c, d, e), (cd, d, e) } .

Consider the homomorphism h : {a,b,c}* —> {a,b,c,d,e}* defined by h(a) =
ab3cde, h(b) = abc3de, h(c) = abcd3e. Let x be an arbitrarily long square-free
string over {a, b, c}. The string h(x) is in L2 • It is easy to notice that the ad-
jacent identical substrings in h(x) are only the letters from {a, b, c). If L2 were
in CFDUPL(0), then any context-free duplication grammar generating L2 would
generate strings containing arbitrarily many adjacent occurrences of the same letter
from {a, b, c}; a contradiction. •

4 Observations on the generative power
We start by considering unary alphabets. We will prove that in this case the gen-
erative power of duplication grammars equals the accepting power of deterministic
finite automata. To this end, we prove the following lemma.

Lemma 1. Over the unary alphabet, the equality DUPL(X) = CFDUPL(0) holds
for any X G {I,r,0,lr,l0,r0,lr0}.

Proof. Let A = ({a},Di,Dr,Do,A) be a duplication grammar. Let

Di = {(u<,a*',
Dr = {(u.oi'.y,)!! <'<"»>.

Do = {(zhak',wi)\l <1 <p}.

Take
a = max({\uxv\ : (u,x,v) G DiUDrUD0}u{\x\ : x G A}.

Consider now the context-free duplication grammar

A' = ({a}MD'0,A'),

where

A' = {x\x G L(A), |a;| < 3a},
n m p

D'0 = {a"\q = Y2asis+ Y2i3sjs+ Y2"fsks, a < q <2a}.
S=1 5=1 S=1

We claim that L(A) = L(A'). Note that each rule in D'0 is applicable to strings
of length at least a. Furthermore, each application of a rule in D'0 simulates the
application of a sequence of rules from D; UD, U f o - Consequently, L(A') C L(A).

Some Properties of Duplication Grammars 171

All strings of length at most 3a from L(A) are also in L(A') . Let z be the
shortest string in L(A) such that \z\ > 3a. Then there exists a derivation in A' :

x =S> + y = £ > + z

with

(i) x € A,
(ii) a < |j/| < 3a,

(in) a < \z\ — < 2a.

Because y G A' one may write y =$>D' Z, and so z G L(A'). Inductively, L(A) C
L(A') . ° •

Theorem 4. A language over a unary alphabet is regular if and only if it is gen-
erated by a duplication grammar.

Proof. By the previous lemma, it suffices to consider duplication grammars with
just context-free duplication rules whose effect is to double an occurrence of a
substring. Let L C {a}* be a regular language. Then, there exist a finite set F and
the positive integers fcj, 1 < i < m, and q > max{#(x)\x G F } such that

m
L = F u (J {a k i + n q\n > 1 }

i= 1

This can be easily seen if one considers a deterministic finite automaton accepting
L, for which the transition function is defined everywhere.

Consider now the duplication grammar:

A = ({a} , 0, 0, {aQ},F U {a* i+"|l < i < m}.

Clearly, L = L(A). Duplications can never be carried out on words of F.
Conversely, let us consider a duplication grammar A = ({a } , 0,0, D0, A), with

D0 = {a C l ,a C 2 , . . . , a c " } . Let

p = gcd(di,d2,.. • ,dm,ci,c2,... c„),

where gcd means the greatest common divisor. If L(A) is finite, then it is obviously
regular. If L(A) is an infinite set, then there are < i < s, s < p, such that

s

L(A) = Fu{J{ati+kp\k>0},
i=1

for some finite set F. Consequently, L(A) is regular which completes the proof. •
The next result settles a problem left open in [6].

Theorem 5. All regular languages are in DUPL(X), X G {I,r,l0,r0,lr,lr0}.

172 Victor MITRAN A, Grzegorz ROZENBERG

Proof. We present a proof for DUPL(r), the proofs for other cases are analogous.
Let R be a regular language recognized by the deterministic finite automaton M =
(Q, V, S, qo, F) with the total transition function <5. Let for each state q, Cq be
defined as follows:

Cq = {x G V+\6(q,x) — q by passing each state, different from q, at most once}.

For strings x,y G V*, we define the equivalence relation ~ H as follows:

(x ~R y) iff (uxv G R iff uyv G R), for any u, v G V*.

It is well-known (see e.g. [8]) that V*/ (the quotient of V* by is finite; let
k be the cardinality of V* / (the index of ~ R) .

Now, one constructs the duplication grammar A = (V, 0 , D r , 0, A), where

Dr = (J {(x,y,e)\xy x, |x| < k,y G Cq}, and
96 Q,Cq*<b

A = {w G i?| for each q G Q, each string in Cq

has at most k non-overlapping occurrences in w}.

We claim that A is finite. Indeed, no word longer than (k + 1)1 • card(Q), where
I = max{card(Cq)\q G Q}, is in A. To see this, assume that such a word, say w, is
in A; so \w\ = p> (k + 1)1 • card(Q). Let qo,qi, - • •, qP, qv G F, be the sequence of
states that accepts w. At least (k + 1)1 states in this sequence must be the same;
assume that q is such a state. But then w contains at least fc-l-1 identical substrings
in Cq\ a contradiction.

Clearly, L(A) C R. Let z be the shortest word in R \ L(A). Thus, there exists
x £ Cq, for some q G Q, such that x occurs more than k times in z. Let z = wxy,
with |w| > k, where the given occurrence of x is the last (rightmost) occurrence of
x in z. Let z = uvxy with = k. Thus v has k + 1 prefixes, and so there are
two prefixes V\,V2 of v such that vi v2 and |ui| < \v2\- We choose the closest
pair of such prefixes. By replacing by V] in v we get a string uv'xy which is
in L(A) because it is in R and it is shorter than z. Moreover, — vit, where t
must be in Cq, for some q G Q (because of the choice of v\ and V2). Consequently,
(v\,t,e) G Dr, and so uv'xy =^Dr 2. Thus z G L(A); a contradiction.

Analogously one proves that each regular language is in DUPL(l). •

We recall that the family DUPL(0) is incomparable with the family of regular
languages.

The position of the class of regular languages with respect to the classes of
context-free duplication languages is given by the next theorem.

Theorem 6. The family of regular languages is incomparable with any of the fam-
ilies CFDUPL(X),X ¿ 0.

Proof. The regular language V+{c}+V+, where V contains at least three symbols
and c ^ V, cannot be generated by any context-free duplication grammar. Indeed,

Some Properties of Duplication Grammars 173

if a context-free duplication grammar generates all strings in V+ {c}+V+, then it
must contain left/right duplication rules involving strings in V+ + c + . Therefore,
also strings in V+ {c}+V+ {c}+V+ can be generated.

Consider now the Dyck language over {a, b}, denoted by Dab: and the non-
regular language L — {ab}Dab. This language is in CFDUPL(r). The context-
free duplication grammar A = ({a , b}, 0, {aft}, 0, {abab}) with only right duplication
rules generates L. Clearly, L(A) C L\ let 2 be the shortest string in L \ L(A). If
z = abxy, with x,y & Da¡,, then ab yields z in A as follows:

ab |=* aby |=* abxy.

If z = abaxb, with x £ Dat,, then the derivation ab J= abab |=* abaxb is possible in
A. Consequently, L(A) = L. •

The relation between CFDUPL(Q) and the class of regular languages remains
open.

Recall that a homomorphism which erases some symbols and leaves the others
symbols unchanged is called a projection. A projection h : (V U V')* —> V* that
erases the symbols in V' only is the projection of V, denoted by pry.

Theorem 7. For each context-free language L £ V*, there exists a language L in
CFDUPL(r) (CFDUPL(l)) and a homomorphism h such that L = prv(/i"1 (L')).

Proof. Let G — (N, V, S, P) be a context-free grammar generating L. Assume that

n
P=\J{Ai—>xiij\l<j<ri},

i= 1

with S = Ai. Furthermore, we assume that e L. Let V' = N U V U {c¿|l < i <
n} U {d}, where Ci,d, are new symbols. Let then A be the duplication grammar
(V' ,0,£> r ,0 ,A), where

DT = {(cja^jll < i < n, 1 < j < r¿}, and
A = {cxi^dcxi^d... dcxi:ridcx2, id... dcxnyTn dAi}.

Now, let h be the homomorphism

h:(V U { M l 1 <i <n,l < j <n}U {c¿|l <i<n} —> (V')*

such that

HihJ]) = ci%i,jd, 1 < i < n, 1 < j < n,
h(ci) = A{Ci, 1 < i < n, and
h(a) = a, a £ V.

It is easy to see that prv(h~1(L(A))) = L(G). Clearly, whenever a substring
CÍXÍJ is copied, this is done somewhere to the right of the last occurrence of d -

174 Victor MITRAN A, Grzegorz ROZENBERG

otherwise one gets a string "rejected" by applying the inverse homomorphism h.
Also, all strings that contain nonterminal occurrences that are not immediately
followed by some Ci, to the right of the last occurrence of d, are rejected in the
same way. Moreover, every occurrence of a nonterminal Ai, situated to the right
of the last occurrence of d, has to be followed by just one occurrence of Cj. In this
way duplication rules simulate the application of production rules in G. •

5 Decision problems
We discuss in this section some basic decision problems. We begin by pointing out
that the "totality problem" is decidable for all families of duplication languages.

Theorem 8. Let A be a duplication grammar over the alphabet V. It is decidable
whether or not L(A) = V*.

Proof. We will consider duplication grammars having only left duplication rules
- the other types of duplication grammars can be treated in a similar way. Let
A = (V, Di, 0,0, A) be a duplication grammar. The main point of our argument is
the following property

L{A) = V* if and only if {x G y* : |a;| < k -f 1} C L(A),

where k = max{\x\ : x G A}.
The "only if ' part is obvious. For the "if' part of the proof, assume that z is a

shortest word in V*\L(A). This word can be written as z = ya with a G V. Hence
y G L(A) \ A, and so there exists x 6 A such that x y. Because \xa\ < \ya\,
it follows that xa G L(A). But, also xa ya — z. To conclude, it suffices
to note that the inclusion {x G V* : |a:| < k + 1} C L(A) is decidable due to the
decidabilty of the membership problem. •

It is proved in [6] that the membership of a context-free language in the family
of languages DUPL(X),X / 0, is not decidable. Our next theorem extends this
result to the families of context-free duplication languages, as well as to DUPL(0).

Theorem 9. It is not decidable whether or not a context-free language is in a family
CFDU PL(X),X i {r,/}-

Proof. The proof is similar to the one in [6]. Let G be an arbitrary context-free
grammar with the terminal alphabet {a, b}, and let

L = L(G){c, d}* U {o, b}*{cndn\n > 1}.

If L{G) = {a,b}*, then L = {a, b}*{c, d}* which is in CFDUPL(X), for all X $
{r, I}. It is easily seen that the grammar A = ({a, b, c, d}. 0,0, Do, A), with

Do = {a, b, c, d, ab, ba, cd, dc}, and A = {a, b, c, d, ab, aba, ba, bab, cd, cdc, dc, dcd},

Some Properties of Duplication Grammars 175

generates {a, b}*{c, d}*. The reader my easily check this assertion.
If L(G) ^ {a, b}*. then L cannot be generated by any context sensitive duplica-

tion grammar (see the proof of Theorem 4 in [6]). Consequently, L € CFDUPL(X')
for X {7-, I}, if and only if L(G) — {a, b}*. which is undecidable. •

This result can be also extended to.the families CFDUPL(r) and CFDUPL(l).

Theorem 10. It is not decidable whether or not a context-free language is in a
family CFDUPL(X),X e {rJ}.

Proof. The proof is based on a reduction to the Post Correspondence Problem
(PCP). Take an arbitrary instance, of PCP, i.e., two arbitrary 71-tuples of nonempty
strings over the alphabet {a,b}:

X — (x 1, X'2 , . • • , Xn),

2/= (?7j ,«2, • • • ^Aij-
Then, consider the languages

Lz = {baL'bah ...balhczlh z^zijk > 1} ior z £ {x,y},

Ls iu:icw-2cw2cwj \iui,v:2 £ {a:b}''}, and

L(x,y).= ¡ W . - r - (-MpK* n /.,}. -

It is known r,h;\t L(x, y) is a contact-free language. For every solution (¿1, ¿2 , . . . ,ik)
of PCP(x, y) the strings . ..

bak Ha*2. •. baih cx.ik .'.. .xia an.a^y" ...y" caih b'... bah bah b

are not in L(x, y).
Clearly, when L(x,y) = {a.b,c}*, then L(x,y) is in CFDUPL(r) n

CFDUPL(l).
Now, it is sufficient to prove that L(x,y) i CFDUPL(l) U CFDUPL(r) if

L(x,y) ^ {a,b,c}*.
Let us suppose that L(x,y) = L(A), A = (.{a, b. c}, 0, Dr, fi, A). We choose a
solution (¿ i , i2 , . . . ik) such that

\xikxik_1x-jj > max{\w\ ¡U' € .4}.-

For {a, ft}* C L(A), there exists a word w £ A such that

• •• w^y^yl-.'^eHA):

By the choice of the solution ('¿1, ¿2, ,'h) the word

z = ha" ba12... bo'kcxik ... x^x^cuica"'b... ba*aba" b

is in L(A).

176 Victor MITRAN A, Grzegorz ROZENBERG

Therefore, we get

2 |=* bah bah ... baik cxik ... xi2xu cy^y* ... y*caikb ... bai2bail b,

a contradiction. Hence the theorem holds. •
Finally, we consider "nonemptiness of the intersection problem" for

DUPL{X),X^ 0.

T h e o r e m 11. It is undecidable whether or not Li fl = 0? for arbitrary two
duplication languages in DUPL(X),X ^ 0.

Proof. Let x = (xi,x2, • • • ,xn),y = (2/1,1/2, • • • ,2/n) be an instance of PCP, and let

L x = {w$cdl1 $cd12 ... %cdlkXik ... x^x^\k > 1,1 < ij < n, 1 < j < k}

U {w$cdil $cd'2 ... $cdik$Xik ... xi2Xil\k > 1,1 < ij < n, 1 < j < k},

where w = cdx\cdy\cd2x2cd2y2 . • • cdnxncdnyn. Ly is defined analogously.
Clearly, the duplication grammar A = ({a , 6, c, d, $, # } , 0, Dr, 0, { ? « $ # }) , with

DT = {($,ccf a;*, #)|1 < i < n } u { ($, ctfxuX)\l < i < n,X £ {0 ,6}}

U {(d,$,a),(d,$,6)}

generates Lx.
This concludes the proof, because Lx fl Ly = 0 if and only if the instance (x, y)

of PCP has no solution. •

A c k n o w l e d g e m e n t s

The first author is grateful to Leiden Center for Natural Computing for sup-
porting his stay at Leiden University in June 1998, during which the work on this
paper was initiated.

References
[1] J. Dassow and V. Mitrana, On some operations suggested by the genome evolu-

tion. Pacific Symposium on Biocomputing'97 (R. Altman, K. Dunker, L. Hunter,
T . Klein eds.), Hawaii, 1997, 97-108.

[2] J. Dassow and V. Mitrana, Evolutionary grammars: a grammatical model
for genome evolution, Proc. German Conf. in Bioinformatics GCB'96, (R.
Hofestadt, T. Lengauer, M. Loffler, D. Schomburg eds.), LNCS 1278, Springer-
Verlag, 1997, 199-209.

[3] J. Dassow and V. Mitrana, Self cross-over systems. In Computing with bio-
molecules (Gh. Paun ed.), World Scientific, 1998 (in press).

[4] D. L. Hartl, D. Freifelder and L. A. Snyder, Basic Genetics, Jones and Bartlett
Publ., Boston, Portola Valley, 1988.

Some Properties of Duplication Grammars 177

[5] A. Manaster Ramer, Uses and misuses of mathematics in linguistics, Proc. X
Congreso de Lenguajes Naturales y Lenguajes Formates, Sevilla, 1994.

[6] C. Martin-Vide and G. Paun, Duplication grammars, Acta Cybernetica (sub-
mitted).

[7] G. Paun, G. Rozenberg, A. Salomaa, DNA Computing, New Computing
Paradigms, Springer Verlag, Berlin, Heidelberg, 1998.

[8] G. Rozenberg and A. Salomaa (eds.), Handbook of Formal Languages, vol. I,
Springer, Berlin, 1997.

[9] W. C. Rounds, A. Manaster Ramer and J. Friedman, Finding natural languages
a home in formal language theory. In Mathematics of Language (A. Manaster
Ramer ed.), John Benjamins, Amsterdam, 1987, 349-360.

[10] D. B. Searls, The computational linguistics of biological sequences. In Artificial
Intelligence and Molecular Biology (L. Hunter ed.), AAAI Press, The MIT Press,
1993, 47-120.

[11] A. Thue, Uber unendliche Zeitchenreihen, Norske Vid. Selk. Skr. I. Mat. Nat.
Kl. Christiania, 7(1906), 1-22.

