
Acta Cybernetica 14 (1999) 135-149. 

Generalized fairness and context-free languages 

Kai Salomaa* Sheng Yu*t 

Abstract 

The notion of fairness for generalized shuffle operations was introduced in 
[10]. The n-fairness property requires, roughly speaking, that in any prefix 
of a word the difference of the numbers of occurrences of two symbols is at 
most n. Here we give a new simplified proof for the decidability of uniform 
n-fairness for context-free languages. Also, we show that the more general, 
linear or logarithmic, fairness notions are decidable. 

1 Introduction 

Fairness constraints can be used to restrict the behavior of concurrent processes. 
For a state sequence to be fair, a minimal requirement is that a process that is 
enabled infinitely often will occur infinitely often. Many different notions of fairness 
have been studied in modeling concurrency [3], some recent references are [2, 5,14]. 
Fairness of automata on infinite objects and of cooperating grammar systems is 
considered in [8, 13, 15]. 

Questions of fairness in formal language theory were initiated by the study of 
trajectories [9, 10]. A trajectory is a word over a two-letter alphabet that is used 
to "control" the shuffle operation on given words. Trajectories yield very general 
operations of parallel composition of words and languages and have applications 
in the parallelizatiori of languages, in representing a language in terms of simpler 
components. 

A trajectory t € {b, c}* is said to be n-fair if the difference in the number of 
occurrences of the symbols b and c in any prefix of t is at most n. The shuffle of 
two words that is controlled by an n-fair trajectory satisfies thus the property that 
at any point neither word is more than "n steps ahead". It is easy to see that for 
a context-free set of trajectories T we can effectively decide whether or not T is 
n-fair. The uniform fairness question asks, for a given set of trajectories T, whether 
or not there exists an integer n such that T is n-fair. 

'Department of Computer Science, University of Western Ontario, London, Ontario N6A 5B7, 
Canada, Email: {ksalomaa, syu}@csd.uwo.ca 

^Research supported by the Natural Sciences and Engineering Research Council of Canada 
Grant OGP0041630. 

193 



194 ft'ai Salomaa, Sheng Yu 

It was shown in [11] that also the uniform fairness property is decidable for 
context-free languages. The proof establishes that for a given context-free gram-
mar G there exists a constant mc, such that the uniform fairness of L(G) can be 
verified by checking only the derivation trees of height at most mc- The result-
ing algorithm is not efficient since it uses an exhaustive search of an exponential 
number of derivation trees (in terms of the size of the grammar). Furthermore, the 
argument used to establish the existence of the constant m c uses fairly complicated 
operations on the derivation trees. 

Here we give a new proof for the decidability of uniform fairness for context-free 
languages. The fairness property for a context-free language L is determined by-
considering a regular language that is letter-equivalent to the prefix-language of L 
and thus it is, essentially, sufficient to decide the property for a regular language. 
The argument for the correctness of the algorithm is much simpler than in the 
original proof that relies directly on properties of context-free derivations. Here 
the adjective "simpler" naturally ignores the fact that we are using the powerful 
result of Parikh's theorem [12, 4, 16]. Another drawback is that the size of the 
nondeterministic finite automaton (or regular grammar) obtained by Parikh's the-
orem to accept a language letter-equivalent to the given context-free language can 
be much larger than the size of the original context-free grammar. Furthermore, 
although the algorithm is now conceptually simpler, in the worst case it needs to 
check an exponential number of cycles in the automaton. 

An advantage of the new decidability proof is that exactly the same method 
allows us to decide the generalized (linear or logarithmic) fairness conditions for 
context-free languages that were left open in [10]. 

2 Definitions 

Here we present some definitions needed later. More details on formal languages 
and finite automata can be found e.g. in [1, 4, 16, 17]. For all unexplained notions 
we refer the reader to these references. 

The symbol IN denotes the set of non-negative integers. The cardinality of 
a finite set S is denoted # 5 . The set of words over an alphabet E is E* and 
£ + = E* — {A}. Here A denotes the empty word. If not otherwise mentioned, by 
an alphabet we mean always a finite alphabet. A word wi is a prefix of w £ £* if 
we can write w = wiw2> (wi,w2 EE*) . For L C £*, the prefix-language of L is 
defined as 

pref(L) = {w E E* | (3w' E £*) wiu' £ L}. 

The length of a word w E E* is |w| and, for a symbol c E E, |w|c denotes the 
number of occurrences of c in the word w. 

Words wi,u>2 E £* are said to be letter-equivalent if for each c £ E we have 
|iui|c = \vj2jc- Languages Li and L> (C £*) are letter-equivalent if for each wi £ L\ 
there exists w2 £ L2 such that wi and w2 are letter-equivalent, and vice versa. This 
means that the words of L2 are exactly some permutations of the words of L\. 



Generalized fairness and context-free languages 195 

A finite automaton is a four-tuple A = (Q, £, s, Q1, S) where Q is the finite 
set of states, £ is the input alphabet, s G Q is the initial state, Q' C Q is the 
set of accepting final states, and i C Q x E x Q i s the transition relation. Note 
that for given q G Q and a € £ there may exist more than one state q' such that 
(,q,a,q ') G S, that is, the automaton is allowed to be nondeterministic. 

The transition relation is extended in the natural way from symbols of £ to 
arbitrary words of £* and we denote also the extended transtion relation (C Q x 
£* x Q) by the same symbol S. The language accepted by A is 

L(A) = {w G £* | (3q G Q') (s,w,q) G 6}. 

A path of the automaton A is a sequence 

a= (qi,ai,q2,a2,... ,am-i,qm) (1) 

where m > 1, m G Q, i = 1 , . . . ,m, aj G £ , j = 1 , . . . ,m — 1, and ( q j , a j , q j + i ) G S 
for all j G { 1 , . . . , m - 1}. 

The above path is said to be accepting if qi = s and qm G Q'. The automaton 
A is said to be reduced if all states of Q occur in some accepting path of A. It 
is well known that we can determine the unnecessary states of an automaton and, 
thus, we can effectively transform A into an equivalent reduced automaton. The 
underlying word of a path a as in (1) is 

word(a) = a\a2 • • • a m _ i G £*. 

A path (1) is said to be a cycle if m > 2 and qi = qm. Note that a sequence 
(gi) consisting of a single state (with no transitions) is a path but not a cycle. A 
cycle as in (1) is said to be primitive if for no (i,j) ^ ( l , m ) , 1 < i < j < m, the 
sequence 

(qi,ai,qi+i,ai+1,... ,aj-i,qj) (2) 

is a cycle. A path as in (1) is said to be primitive, if for no 1 < i < j < TO, the 
sequence (2) is a cycle. 

Intuitively, a primitive cycle does not contain any proper subcycles and a prim-
itive path does not contain any subcycles. In (1) the qi's need not be distinct and, 
thus, an automaton A may have an infinite number of cycles (or paths). However, 
the number of primitive cycles and paths is always finite. 

We can define in the natural way the catenation of two paths provided that the 
first one "ends" with the same state as the second one "begins" with. Let a be as 
in (1) and 

P = ( p i , h , . . . , b r - i , p r ) , 

where Pi G Q, bj G £ , 1 < i < r, 1 < j < r — 1. If qm = pi then the catenation of 
the paths a and /3 is defined to be 

a- /3 = (qi,ai,q2,a2, • • •, a m _ i , qm, h,p2,... ,& r - i ,Pr)-

If 9m Pi then the catenation of a and ¡3 is not defined. Note that a cycle can 
always be catenated with itself. 



196 ft'ai Salomaa, Sheng Yu 

Finally we fix the notation used for context-free grammars. A context-free gram-
mar is a four-tuple G = (N, T,,S,P), where N is the nonterminal alphabet. E 
is the terminal alphabet. (N fl E = 0). S £ N is the initial nonterminal, and 
P C iV x (N U E)* is the finite set of productions. A production ( X . w ) £ P is de-
noted as X w. The productions define in the standard way the rewrite relation 
of the grammar =>GQ (N U E)* X (N U £)*, and the language generated by G is 
L(G) = {w € E* | tu}. 

A context-free grammar G = (Ar, E, S, P) is in Chomsky normal form if all 
productions of P are of the form X —» YZ or X —> b where X,Y,Z £ N and 
b £ E. The grammar G is said to be regular (or right-linear) if all productions of 
P are of the form X -» wY or X —> w where X and Y are nonterminals and w 
is a terminal string. Every context-free language not containing the empty word 
can be generated by a grammar in Chomsky normal form. The regular grammars 
generate exactly the regular languages. 

When speaking about the complexity of determining some property of context-
free grammars, by the size of the grammar we mean the length of an encoding 
over a fixed (e.g. a binary) alphabet of the nonterminals, the terminals and the 
productions of the grammar. Similarly, the size of a finite automaton is determined 
by an encoding of the states, the input alphabet and the transition relation. 

3 Generalized fairness 
The n-fairness condition [10, 11] requires that for any distinct symbols b and c and 
any prefix w' of a given word w. the difference between the numbers of occurrences 
of b and c in w' is bounded by n. A more general notion of fairness was also 
informally discussed in [11]. Below we present the more general definition. 

Definition 3.1 Let g : IN —> IN be a function. We say that a language L C E* 
has the g-fairness property if the following condition holds. For all b,c £ £, if 
w = W1W2 £ L then 

I K | b - |wi |c | < g ( K | ) . 

The definition requires that the difference between the numbers of occurrences 
of distinct symbols in any prefix of a word belonging to the language is bounded 
by the <?-image of the length of the prefix. As a special case we get the notion of 
n-fairness, n £ IN, by choosing g to be the function with constant value n. 

When we are using a fairness condition as given in Definition 3.1, the function 
g is referred to as the fairness function associated with the condition. 

It is a straightforward observation that given a context-free language L and 
n £ IN the question whether or not L is n-fair is decidable [10]. The uniform 
constant-fairness question asks for a given language L whether or not there exists 
n £ IN such that L is n-fair. The following result was shown in [11]. 

Theorem 3.1 The uniform constant-fairness problem is decidable for context-free 
languages. 



Generalized fairness and context-free languages 197 

Below we give a new simplified proof for Theorem 3.1. We will use the following 
two propositions. A proof of Parikh's theorem can be found for instance in [12, 
4, 16]. A more elegant proof using equations over a commutative semigroup is 
presented in [1, 7]. 

Proposition 3.1 (Parikh's Theorem) Each context-free language is letter-
equivalent to a regular language. Given a context-free grammar we can effectively 
construct a regular grammar (or finite automaton) for a letter-equivalent regular 
language. 

Proposition 3.2 The prefix-language of a context-free language is context-free. 

Proposition 3.2 follows from the observation that if a language L is generated by 
a grammar G = (N, T,,S,P) in Chomsky normal form (with possibly an additional 
production S —> A) then pref(L) is generated by the grammar G' defined as follows. 
Denote N' = {X' | X £ N} and let G' = (N U N', S, S', P U P') where 

P' = {X1 YZ', X' -> y' | X -+YZ £ P; X,Y,Z £ N} 
U {X' b I X b £ P; X £ N, b £ £ } U {S" A}. 

We assume that S, and hence also S', does not appear in the right side of any 
production. 

Now we can prove Theorem 3.1 relying on the above results. 
Proof of Theorem 3.1. Let G be a given context-free grammar with terminal 
alphabet £. By Proposition 3.2 there exists effectively a context-free grammar G' 
such that L(G') = pref(L(G)). Now there exists n £ IN such that L(G) has the 
n-fairness property iff there exists n £ IN such that for all w £ L(G'), 

(V6,cG £) | H 6 - |w|c| < n. (3) 

By Parikh's theorem there exists effectively a finite automaton A such that L(A) is 
letter-equivalent to L(G'). This means that, given n £ IN, the condition (3) holds 
for all w £ L(G') iff the same condition holds for all w £ L(A). 

Without loss of generality we can assume that A is reduced. Let n £ IN be fixed. 
We claim that the condition (3) holds for all w £ L(A) iff the below conditions (i) 
and (ii) hold. 

(i) For all accepting primitive paths a of A, and all b,c £ £, 

| |word(a)|6 — |word(a)|c | < n. 

(ii) For all primitive cycles (3 of A, and all b, c £ £, 

|word(/?)|t = |word(/3)|e. 



198 ft'ai Salomaa, Sheng Yu 

For the "only if" part assume that (3) holds for all w € L(A). Consider arbitrary 
b. c G E. Now (i) follows from the fact that word(a) £ L(A) if a is an accepting 
path. For the sake of contradiction assume that 

P = (<7l,al> • • • i9m-l ,am-l ,9 l ) , 

qi € Q, a,j € E, 1 < i,j < m — 1, rn > 2, is a (primitive) cycle where, for instance, 

|word(/?)|6 > |word(/?)|c. 

Since A is reduced, the state qi is reachable from the initial state and a final state 
is reachable from qi. Thus, there exists an accepting path of A that can be written 
in the form 71 • ¡3 • 72- Denote 

k = | |word(71 • 72)|b - |word(71 • 72)|c |-

Then 
rj = 1 1 . 0 k + n + l • 72 

is an accepting path such that word(f?) does not satisfy (3). 
Conversely, assume that the conditions (i) and (ii) hold and let 6, c € E be 

arbitrary. Starting from an arbitrary cycle we can delete primitive cycles one-by-
one without changing the difference between the numbers of occurrences of the 
symbols b and c. The process eventually results in a primitive cycle and, thus, it 
follows that any cycle of A has equally many occurrences of the symbols b and c. 
An arbitrary accepting path can be written in the form 

7i • Vi • 72 • • • • • Vk-i • 7k, 

where k > 1, 1 < i < k — 1, is a cycle and 71 • 72 • • • • • 7fc is a primitive accepting 
path. This completes the proof since the words of L(A) are exactly the underlying 
words of accepting paths of A. • 

In the above proof, the answer for a reduced automaton A is "yes" for sufficiently 
large n iff the condition (ii) holds, that is, the condition (i) would not be needed at 
all. The condition (i) was included only to make more transparent the idea that the 
same method can be used below for the linear and logarithmic fairness functions. 
When considering a fixed fairness function, we need to have some condition also 
for the accepting primitive paths. 

The above proof of Theorem 3.1 is quite simple when compared to the proof 
given in [11], at least if we ignore the fact that we are relying on Parikh's theorem. 
On the other hand, the algorithm obtained from the original proof is more efficient, 
although it also requires exponential time. Note that the construction that for a 
given context-free grammar G produces a regular grammar generating a language 
letter-equivalent to L(G) greatly increases the size of the grammar [4, 12, 16]. We 
do not know whether the construction could be improved in this respect. 

The construction using Chomsky normal form grammars outlined above for 
the proof of Proposition 3.2 also increases the size of a given grammar since the 



Generalized fairness and context-free languages 199 

Chomsky normal form can have many more nonterminals and productions than 
the original grammar. However, this overhead could be avoided. The construction 
in the proof of Proposition 3.2 does not require that the grammar is in Chomsky 
normal form if one uses more carefully defined rules to determine the behavior of 
the primed nonterminal that denotes the end of the prefix in the derivation tree. 
Also, the assumption that the given finite automaton is reduced is not problematic 
since this property can be tested in low polynomial time. 

Although it is perhaps intuitively simpler than the construction of [11] that de-
termines properties of context-free derivations, the algorithm testing the primitive 
loops of a finite automaton still requires exponential time. This follows from the 
below example. 

Example 3.1 Let n G IN and consider the finite automaton An = (Q, E, s, Q', <5) 
where E = {a, fe}, Q = {1,2, . . . , n } , s = 1, Q' = {n}, and 6 consists of the 
transitions (i, x,i + 1), (n, x, 1) where i = 1 , . . . ,n — 1 and x G {a, b}. Then the size 
of An is 0(n • logn) and the number of primitive cycles in An is 0(2n). 

By the above remarks, the decision algorithm given by the proof of Theorem 3.1 
is extremely inefficient. However, it is useful because with small modifications the 
same method allows us to show that also the generalized (logarithmic or polyno-
mial) fairness condition is decidable. This question was left open in [11]. First we 
consider the case where the fairness function is linear. 

Theorem 3.2 Let g(x) = TX + K be a linear function where r and K are constants. 
For a given context-free grammar G we can effectively decide whether or not L(G) 
has the g-fairness property. 

Proof. Let E be the terminal alphabet of G. Similarly as in the proof of Theo-
rem 3.1, by Propositions 3.1 and 3.2, it is sufficient to check, for a reduced finite 
automaton A, and for each pair of symbols b, c G E, whether or not 

(Vw G L(A)) | \w\b - \w\c | < T\W\ + AC. (4) 

If T is negative, we can decide (4) by determining whether L(A) contains a word w 
that makes T\W\ 4- K negative and then going through the finite number of shorter 
words. Thus, we can assume that r is non-negative in the following. 

We claim that (4) is equivalent to the below two conditions: 

(i) For all accepting primitive paths a of A, 

| |word(a)|6 - |word(a)|c | < r|word(a)| + K. 

(ii) For all primitive cycles (3 of A, 

| |word(/3)|t - |word(/3)|c | < r|word(/3)|. 



200 ft'ai Salomaa, Sheng Yu 

First assume (4). This directly implies (i) since word(a) G L(A) for all accepting 
paths a. If (ii) would not hold then there exists a cycle ¡3 such that 

| |word(/3)|(, - |word(/3)|c | > r|word(/3)|. 

Since A is reduced, it follows that A has an accepting path of the form 71 • (3 • 72. 
(This is seen using a similar argument as in the proof of Theorem 3.1.) Since 
word(7i • 72) € L(A), we have 

| |word(71 • 72)16 - |word(7i • 72)|c | < r|word(7i • 72)! + k. 

Denote the constant r|word(7i • 72)| by D, and let 

77(771) = 71 • Pm • 72, m G IN. 

Then 
word(7?(2i? + 2K,+ 1)) G L{A) 

violates the condition (4). 
For the converse part assume the conditions (i) and (ii). Similarly as in the 

proof of Theorem 3.1, we observe that an arbitrary accepting path of A can be 
written in the form 

7i ' Vi • 72 • • • • • Vk-i • Ik, (5) 

where k > 1, r/i, 1 < i < k — 1, is a cycle and 71 • 72 • • • 7k is a primitive accepting 
path. The inequality of condition (ii) extends to arbitrary cycles and, thus, the 
underlying word of (5) has to satisfy (4). • 

We can naturally consider also the uniform linear fairness question: Given a 
context-free grammar G decide whether or not there exist constants r and K such 
that L(G) has the (TX + /c)-fairness property. From the proof of Theorem 3.2 
it follows that the answer to this question is "yes" iff all primitive cycles of the 
constructed automaton A contain occurrences of each symbol of E. 

As a corollary we see that also the logarithmic and polynomial fairness con-
ditions are decidable for context-free languages. The question of logarithmic or 
polynomial fairness is reduced, essentially, to the linear case by testing separately 
a finite number of special cases. 

Corollary 3.1 For a context-free language L it is decidable whether or not L has 
the \og-fairness property. 

Proof. Let E be the alphabet of L. Exactly as in the first part of the proof of 
Theorem 3.2, in order to decide the log-fairness property for L, it is sufficient to 
decide for a reduced finite automaton A, and for all b, c G E, whether or not 

( V w G L ( A ) ) I |TO11, - |W|c | < log(|w|). (6) 

Let b, c G E be fixed. We first observe that if for some cycle a of A we have 

|word(a)|& ^ |word(a)|c (7) 



Generalized fairness and context-free languages 201 

then the condition (6) does not hold. To see this observe that since A is reduced, 
there exists an accepting path 71 • a • 72 and, by pumping the cycle a sufficiently 
many times, we obtain an accepting path such that the corresponding underlying 
word violates (6). 

We can effectively test that no cycle a satisfies (7) just by going through the 
primitive cycles. If this is the case, then we can determine whether or not (6) holds 
by checking the finite number of primitive accepting paths. • 

Note that the above proof relies only on the fact that the fairness function grows 
asymptotically slower than any linear function. 

Corollary 3.2 Let p : IN -4 IN be a polynomial function. For a context-free lan-
guage L over an alphabet £ it is decidable whether or not L has the p-fairness 
property. 

Proof. Since the linear case was considered above we can assume that the rank of 
p(x) is at least two. Furthermore, we may assume that the coefficient of the term 
of highest rank in p(x) is positive because otherwise any infinite language would 
not have the p(a;)-fairness property. (Note that we can effectively decide whether 
or not a given context-free language is infinite.) 

Again it is sufficient to decide for a reduced finite automaton A, and for all 
6, c G £ , whether or not 

(Vii> G L(A)) | M f c - I H c I < P ( H ) - (8) 

In the following let b, c G S be fixed. By our assumptions concerning the polynomial 
p(x) we can effectively find M G IN such that 

p(x) > x for all x > M. 

Since | |in— |iu|c | cannot be greater than |id|, in order to decide (8), it is sufficient 
to test the condition for words of L(A) of length at most M. • 

Intuitively, we can say that a super-linear fairness condition is satisfied unless 
it is violated by some word of constant length, where the constant depends only 
on the fairness function. It can be noted that the decision algorithm given by the 
above proof is extremely inefficient since it uses an exhaustive search over all words 
of at most a certain length. 

Finally,' we may note that [11] considered also a notion called initial fairness, 
where the fairness condition for symbols b, c G E is required to hold only "as long 
as" the remaining suffix contains occurrences of both symbols b and c. It was 
shown that the uniform initial contant-fairness question is decidable for context-
free languages. The proof of Theorem 3.2 could fairly easily be modified to show 
that also the initial linear fairness (or polynomial fairness) condition is decidable. 
However, we feel that the notion of initial fairness is well motivated, perhaps, only 
in the constant case. The reason is that the standard constant fairness condition 
by itself is very restrictive as it requires that all words contain almost the same 
number of occurrences of arbitrary symbols b and c. 



202 ft'ai Salomaa, Sheng Yu 

References 
[1] J.-M. Autebert, J. Berstel and L. Boasson, Context-free languages and push-

down automata, in: Handbook of Formal Languages, Vol. I. (G. Rozenberg, 
A. Salomaa, eds.), pp. 111-174, Springer-Verlag, 1997. 

H.-D. Burkhard, Fairness and control in multi-agent systems, Theoret. Corn-
put. Sci. 189 (1997) 109-127. 

N. Francez, Fairness, Springer-Verlag, Berlin, 1986. 

M.A. Harrison, Introduction to formal language theory, Addison-Wesley, 
Reading, MA, 1978. 

C. Hartonas, A fixpoint approach to finite delay and fairness, Theoret. Corn-
put. Sci. 198 (1998) 131-158. 

M. Kudlek and A. Mateescu, On distributed catenation, Theoret. Comput. 
Sci. 180 (1997) 341-352. 

W. Kuich, Semirings and formal power series, in: Handbook of Formal Lan-
guages, Vol. I. (G. Rozenberg, A. Salomaa, eds.), pp. 609-677, Springer-
Verlag, 1997. 

A. Mateescu, CD grammar systems and trajectories, Acta Cybernetica 13 
(1997) 141-157. 

A. Mateescu, G.D. Mateescu, G. Rozenberg and A. Salomaa, Shuffle-like 
operations on w-words, manuscript 1996. 

A. Mateescu, G. Rozenberg and A. Salomaa, Shuffle on trajectories: Syntactic 
constraints, Theoret. Comput. Sci. 197 (1998) 1-56. 

A. Mateescu, K. Salomaa and S. Yu, Decidability of fairness for context-free 
languages, in: Proceedings of the Third International Conference on Devel-
opments in Language Theory, DLT'97 (Thessaloniki, July 20-23, 1997), S. 
Bozapalidis (ed.), pp. 351-364. 

R.J. Parikh, On context-free languages, J. Assoc. Comput. Mach. 13 (1966) 
570-581. 

D. Park, Concurrency and automata on infinite sequences, in: "Theoretical 
Computer Science", Proc. of the 5th GI Conference, P. Deussen (ed.), Lect. 
Notes Comput. Sci. 104, Springer-Verlag, (1981) 167-183. 

L. Priese, R. Rehrmann and U. Willecke-Klemme, An introduction to the 
regular theory of fairness, Theoret. Comput. Sci. 54 (1987) 139-163. 

J. Romijn and F. Vaandrager, A note on fairness in I /O automata, Inform. 
Process. Lett. 59 (1996) 245-250. 



Generalized fairness and context-free languages 

[16] A. Salomaa, Formal languages, Academic Press, New York, 1973. 

[17] S. Yu, Regular languages, in: Handbook of Formal Languages, Vol. I. 
Rozenberg, A. Salomaa, eds.), pp. 41-110, Springer-Verlag, 1997. 


