
Acta Cybernetica 14 (1999) 239-250.

A Family of Fast Constant-Space Substring Search
Algorithms

Harri Hakonen* and Timo Raita^

Abstract

This paper describes a new strategy for searching a substring in a given
text. The method is based on the well-known Boyer-Moore algorithm com-
plementing it with a technique called q-slicing, a form of probabilistic 5-gram
matching. As a result, we get a family of highly parametric algorithms apt for
adaptation to the special properties inherent to the source which generates
the input strings. The search procedure is independent of the alphabet size
and appropriate for efficient and practical on-line implementations. Simula-
tion results show that they are comparable to the fastest currently known
Boyer-Moore variants.

1 Introduction

In the string scorching (pattern matching) problem our task is to determine all posi-
tions in a given text, text[l..n], where the pattern, pat[\..m], occurs. This problem
has been studied extensively (see e.g. [1] for a good survey) and several efficient
and elegant solutions have been devised. The most efficient implementations, from
the practical point of view, are based on the seminal ideas of Boyer and Moore [6].
The original Boyer-Moore algorithm (BM for short) aligns the pattern with a text
position j, compares the corresponding symbols of pat[l..m] and t,ext[j — m + l..j]
starting from the last symbol of the pattern and advancing to the left. If a mis-
match (if any) is found, the pattern is shifted forward with respect to the text and
the process is repeated:

"Turku Centre for Computer Science (TUCS), e-mail: hat®cs .utu . f i
^Department of Computer Science, University of Turku, Lemminkäisenkatu 14 A, SF-20520

Turku, Finland, e-mail: r a i t a 0 c s . u t u . f i . The author acknowledges support by the Academy of
Finland under grant No. 865431

239

240 Harri Heikonen and Timo Raita

Boyer-Moore search(pat[l..m], text[l..n])
Preprocess pattern,
while all text is not scanned do

(i) Perform skip loop.
if witness for a match is found then

(ii) Perform match loop.
if pattern is found then

Report match,
endif

endif
(iii) Shift pattern,

endwhile

The search procedure consists of three distinct phases: (i) fast skipping over non-
matching text regions, (ii) match checking when some evidence of a pattern occur-
rence has been found and (iii) shift to the next position. All these steps have been
subject of refinements [7, 8, 10, 13, 15, 16]. A detailed analysis of the various BM
substep combinations can be found in [10].

The power of the BM algorithm is largely based on a sophisticated strategy to move
the pattern forward relative to the text in steps (i) and (iii). This is accomplished by
forming two tables in 0(m) time prior to the actual search. The match heuristic
table determines how much the pattern must be moved in order to realign the
matched region of the text, text[j — k..j], with an identical pattern substring also
in the new position. For this, we need to determine the rightmost substring pat\p —
k..p], p < m, which is identical to the matched suffix pat[m — k..m] (not overlooking
the special case 0 < p < k). In fact, when we find that pat[m — k — 1] ^ text[j —
k — 1], we know that in order to succeed at the next probe position, the condition
pat\p — k — 1] = text[j — k — 1] must also hold. Because of the large amount
of space and time overhead, however, the match heuristic is usually not made so
fine-grained. As a reasonable and quick approximation, it is only required that
pat\p — k — 1] ^ pat[m — k — 1]. The occurrence heuristic table expresses the
position of the rightmost occurrence of each symbol of the input alphabet £ in the
pattern. Thus, the occurrence heuristic determines, how much we can shift the
pattern in order to align the mismatched text symbol with an identical pattern
symbol. The length of the shift in step (iii) is then given by the maximum of the
match and the occurrence heuristic values.

Let us consider the role and importance of the two heuristics. The well-known
and widely used BM variant devised by Horspool [8] (BMH) discards the match
heuristic due to its small significance with non-periodic patterns. This results in
0(mn) worst case complexity. However, on the average, the complexity is only
0(n/m), the same as that for the original BM method, implying that the BMH
method is very fast in practice. Evidently, BMH makes shorter shifts (on the
average) than BM because it uses less information. This behaviour is emphasized
when cr, the size of the input alphabet, is small. On the other hand, the role of the

A Family of Fast Constant-Space Substring Search Algorithms 241

match heuristic becomes insignificant when a becomes large (this is studied in more
detail in [14]). As suggested in [13], we should try to compensate the omission of
the match heuristic in other ways during the search. One alternative is to extend
the occurrence heuristic for bigrams, incorporating thus both heuristics (at least
partly) into one. This idea was introduced in [16] and was shown to give improved
running times, especially for small input alphabets. Moreover, if we follow the idea
of BMH and choose always (independently of the position where the mismatch
occurred during the right to left scan) the bigram composed of the text symbols
aligning with pat[m — 1] and pat\m], we obtain a very close approximation to the
match heuristic. In the special case, where the mismatch occurs at pat[m — 2],
they are used identically. Thus, if we can generalize the approach (as suggested
in [2, 3, 12]) and use g-grams (q > 2) of arbitrary length, we obtain a heuristic which
is a hybrid of the two original ones. However, the disadvantage of the approach
is that both the preprocessing time and the space demand increase rapidly, being-
proportional to aq . In Section 2 we show how this can be avoided by retrieving
only the most important information scattered around the current text position
and storing it into a compact unit. After this, we give an intuitive analysis of the
selection strategy which maximizes the length of the shift. Simulation results of the
new search method are also given in Section 3. Concluding remarks are presented
in Section 4.

/

2 The g-slicing method

During the search, the pattern pat[l..m] is always aligned with a substring text[j —
m + l..j], where j is the current text position (m < j < n). Thus, when we
say that the current position is increased, it means that the pattern, which is
considered to be positioned above the text, is shifted forward relative to the text.
The information, on the basis of which the shift is made, is typically gathered from
the text region text[j — m + 2..j}\ the symbol text[j — m + 1] does not contribute
any information, because the length of the shift is always at least one. To increase
the average shift length, the symbol text[j + 1] can also be used [15]. In the sequel,
the text symbols which are used as the basis for the shift are defined by a template
t = (t i , . . . ,tQ) containing a strictly increasing sequence of integers tk- Each tk is
an offset from the current text position j. Thus, the symbol text[j + tk] aligns with
the pattern symbol pat[m + tk], iff —m + 1 < tjt < 0. Otherwise (1 < tk < n — j),
the text symbol does not reside 'under' the pattern. Clearly, the elements of the
template can have a chance to push the pattern forward only, if the condition

— tk < m (k = 1 , . . . ,q — 1) holds. Figure 1(a) presents an example of a
template giving four offsets.

To give some insight into the efficiency of some commonly used templates, as
well as some alternative choices, the following table summarizes the average shift
lengths when a pattern of length 13 was searched for in an English book text (see

242 Harri Heikonen and Timo Raita

table on page 247 for more details of this input text).

template t (0) (-1,0) (0,1) (0,2)
average shift 9.65 12.53 13.44 13.72

template r (0,3) (-2,-1,0) (-1,0,1) (0,1,2)
average shift 13.97 12.83 13.81 14.54

The text sampling processes defined by templates (0) and (—1,0) are used in the
Horspool [8] and Zhu-Takaoka [16] algorithms, respectively. Also, (0,1) can be
seen as a generalization of Sunday's idea to exploit text[j + 1] in shifting [15]. The
general tendency is clear: longer templates yield longer shifts. However, a carefully
selected sampling strategy compensates short templates, as can be seen e.g. from
the figures for (0,3) and (- 2 , - 1 , 0) .

(a) template r = (- 2 , 0,1, 4)

pgppT
_ l ü l l Hi

• • • •
(b) selective mappings /j, = {bi(text[j — 2]),
b2{text\j]),b3{text\j + 1]), bi{text[j + 4]))

Figure 1: A structure of a 4-slice defined by T:/J, = (—2:b\, 0:b2,1 :b3, 4:&})

In order to avoid the excessive time and space requirements during preprocessing
and still achieve large shifts, we combine two ideas. First, the template is kept fixed
during the search. The symbols indicated by the template are picked from the text
at each probe position j. Second, we reduce the size of the alphabet at the cost of
losing some accuracy in symbol comparison. The idea is to partition the symbols
of the input alphabet E into equivalence classes and tag each class uniquely with
a symbol of a reduced alphabet £ ' for which a' < a. Now, instead of comparing
individual symbols, we compare tags of the classes. Thus, the approach is related to
the 'shift-or' algorithm of Baeza-Yates and Gonnet [4], which can be used to search
for substrings composed of metacharacters representing a set of symbols from the
original alphabet. However, in the new scheme the tag is formed by mapping a
symbol according to its position in the sampling template. In other words, the tag
of text[j + t-k] is the value of the corresponding function bk : E »-> E' (1 < k < q).

A Family of Fast Constant-Space Substring Search Algorithms 243

The collection of these selective mappings is defined by the vector /t = (bi,... , bq).
The combination of r and /1 is denoted by r : ¡i = (i j : b\,... ,tq\bq). Figure 1(b)
shows an example of fi for the template r = (—2,0,1,4). Concatenation of the
(reduced) symbols defined by the current text position j and the pair r : /1 is called
a q-slice:

q
q-s\iceT:ll(text,j) = Concat bi(text[j + £,]) 1

The g-slice scheme can be regarded as a hash function defined by r giving the po-
sitions and /i representing the amount of information to be gathered. The equality
of two slices is a necessary, but not a sufficient condition for the equality of the
corresponding patterns [11]. The g-slice scheme introduces a general information
sampling concept, and it has some interesting properties intrinsic to the string-
searching problem:

• The loss of information caused by the selective mappings is minimized, when
the symbols of E' are uniformly distributed into the mapped sequences. Inter-
estingly, by taking the three least significant bits from the (ASCII encoded)
symbol representation has a nice property for natural languages: the most fre-
quent symbols of the skew distribution fall into different equivalence classes.
Because of this, and the fact that support for this type of operation can be
found in most machine architectures, we restrict the form of the bk functions
(A; = 1 , . . . , q) in the sequel as follows:

bk{a) = a AND 0 . . . O i l . . . 1, a G S.

The number of one-bits in the mask, Isbk, determines how many least signifi-
cant bits (LSBs) of the original symbol a we want to select. This specialized
//, is called an LSB-mask. In what follows, each b^ function is denoted by the
corresponding integer Isb -̂ Naturally, other kinds of mappings are possible
also, but they are not studied in this paper.

• Because the value of the hash function realized by the g-slice scheme is a
concatenation of the mapped values, the function does not scramble the bits
of the constituent symbols. Since important order information is preserved,
it could be taken advantage of in the implementation of the search procedure:
for each shift value calculated, we check whether the suffix of the previous
hash value overlaps the prefix of the next one and in such a case, leads to a
conflict. With a high probability this will happen, and we can increase the
length of the shift. This improvement resembles the search strategy of Galil [7]
and also the principles used in the construction of the BM match heuristic
(cf. the description given in the Introduction). Although the proposed hash
function is very simple, false matches occur rarely.

244 Harri Heikonen and Timo Raita

Collision probability of (/-slice. Let B = log2 o and fix B' = Isb^ for all
k = 1 , . . . ,q. Assuming that the text and the pattern have been generated
by a uniform symbol distribution, the probability of a (/-slice hash address
collision is

2q(B-B') _ x
P^-slice matches | pattern mismatches) = — — „ — - — .

Proof. This follows from the probabilities P((/-slice matches) = 2 , ,B and
P(pattern mismatches | (/-slice matches) = 1 - 2~q(-B~B \ •

A simple but good approximation for this formula is the (/-slice match-
ing probability 2~qB'. For example, if q = 2. B = 8 and B' = 3, then
P(collision) « 0.0156.

• The 7-slice can be used efficiently for searching when its length, lsb\ + .. .+lsbq,
is conveniently chosen to fill a machine-dependent unit, e.g. a byte or a word,
and the sampling strategy is supported by the architecture. Unfortunately,
the latter is often true only for the trivial case q = 1. Therefore, this pa-
rameter is usually chosen to be small and a balanced intertwining of r and /x
becomes crucial. This is discussed in more detail in section 3.

The actual search procedure starts by preprocessing the pattern as follows. In the
description below, we use the notation »r| »,.+1 |... | »s (1 < r < s < q), when we
want to refer to a part of a g-slice. Also, the set of all possible bit combinations
of length Isbk for the fc'th component is denoted by *k- For simplicity, we shall
assume that there exists an index i for which — m + 2 < ti < 1. Without this
restriction, the algorithm would contain unnecessary details obscuring the basic
idea; these special cases can be easily incorporated into the scheme by analysing
them carefully (left as an easy exercise to the reader).

Define a proper template t (of length q) and LSB-mask /¿.
shiftLength[*i| *2 |... |*9] := m + tq

I I Each of the lsbi table values is initialized to the maximal shift,
for c := m + tq — 1 downto 1 do

Find all ifc values in range —m + 1 + c..m + c.
/I These are characterized by indices r and s for which tT < t^ < ts.
/I Each tk aligns with pat[tk — (m + tq — c)] after a shift of
/I length c. Thus, we call these offsets bound (template)
/I positions. The others (i.e. t\,... , i r_ 1 and i s + i , . . . , tq)'
/I are free positions.

Determine the unique part of the q-slice *r| •,-+! |... |»s corresponding
to the bound positions.

shiftLength[*! |... | * r_i | |... | *s | * s + 1 |... |*,] := c

A Family of Fast Constant-Space Substring Search Algorithms 245

/ / Make lsb< updates.
endfor

After preprocessing, the search is performed by mapping the text symbols to the
reduced alphabet on-the-fly using the g-sliceT:M(iexi, j). The slice contains infor-
mation which is scattered into a large region near the current context. This gives
a basis to increase the average length of a shift using only a small amount of com-
parisons. A minor drawback of the approach is, that when we encounter a (/-slice
match, we must confirm that an identical symbol pattern has been found.

Example. Let us assume that the symbols are ASCII encoded and that the
pattern is pai[1..14] = abracadabracab. The two least significant bits of the
symbols 'a', '6', V , 'd' and V are '01', '10', '11', '00' and '10', respectively. The
template (—1,0,1) and the LSB-mask (2,1,1) generate 16 different (/-slices and
their corrsponding shift lengths:

g-slice 00|0|0 00|0|1 00|1|0 00|1|1 01|0|0 01|0|1 01|1|0 01|1|1
shift 15 14 6 14 5 7 13 2

g-slice 10|0|0 10|0|1 10|1|0 10|1|1 11|0|0 11|0|1 11|1|0 11|1|1
shift 15 4 13 3 15 14 1 14

For example, the shift value for the g-slice 10|0|1 is 4 because pa£[10..12] = rac is
the rightmost pattern region that matches it. Obviously, the shift values are always
in the range l..rn + tq. Assuming that the pattern and text are aligned as in (a):

pat ... a c ab
text ... a c a d b a r b a c ...

(a)

pat ... adabracab
text ... acadbarbac

(b)

we find that g-slice 01|0|0 obtained from the text symbols a, d, b tells us to shift the
pattern 5 positions forward (as shown in (b)) in order to align abr with adb. No
pattern occurrence is found here either, and the template symbols b, a, c generate
the ç-slice 10|1|1 yielding a new shift of length 3.

3 Experiments

Expectation of the shift length. The basic structure of the BM algorithm,
given in the introduction, shows that before the pattern shift is made in step (iii), we
have gathered a lot of information about the symbols near the current text position.

246 Harri Heikonen and Timo Raita

In this experimental analysis, however, we assume that no such information is
available. To obtain a realiable comparative analysis and at the same time keep
the various parameter combinations practically feasible, we restrict ourselves to a
2-slice of type r : /x = (0 : i, (D + 1) : u). In other words, the pattern is shifted
according to the ¿-bit tag of text[j] and u-bit tag of text[j + D + 1]. The i bits are
extracted from the text symbol which resides under the €ast pattern symbol. This
information produces an 'initial shift' for the pattern. The (D + 1): u component
gives an 'additional push', since it probes further information from an -upcoming
text symbol at the distance D from the current text position. This special algorithm
family is denoted by I <3 D o u, where <•••[> symbolizes the distance between the
two units from which the bits are extracted.

Let us study the expectation of the shift lengths for the I < D t> u algorithm
when m = 13; £, u = 0 , . . . , 8 and D = 0,1, m/2. To analyze the behaviour of
the expectation for natural languages, a simulation over an English book text (see
table on page 247) was accomplished. The search was performed for 30 randomly-
selected patterns from the text. Figure 2 shows the expectation of the shift length
based on this test arrangement.

(a) D = 0 (b) D = 1

(c) D = 6

Figure 2: The expectation of the shift length for I <1 D t> u algorithms

A Family of Fast Constant-Space Substring Search Algorithms 247

The expectation behaves differently for the following two cases.

Case D = 0. The average shift values are almost symmetrical wrt the diagonal
£ = u (Fig 2(a)). For the region d + u > 6, the expected shift length is always
> 12. This suggests that even a shift table of size 64 gives a good performance
for English text.

Case D > 1. The shape of the expectation function differs from the previous case:
whenever t — 0, we have now no information to use any other shift length
except 1. The influence of the parameter I is more significant than that
of u and only with parameter values I + u > 7 constrained by i > 4, we
reach the average shift of at least 12 positions (Fig 2(b,c)). Referring back
to figure 2(a), we can observe that if u = 0 and £ approaches the length of
the original encoding of text[j], we quite quickly reach the situation where
the shifts are larger than m/2. Comparing this with the results of Fig2(c),
we can see how much more the upcoming symbol is able push the pattern
forward once the initial push has been given. This also explains why we can
have an average shift length which is significantly larger than m, the length
of the pattern.

Running times. After extensive test runs, we suggest the schemes 4 <1 0 t> 2
and 3 < 0 t> 3 as general purpose substring searching algorithms. Evidently, if the
properties of the input strings differ significantly from those of English, some other
parameter values may result in better performance. Furthermore, the implemen-
tations of the fastest currently known search algorithms are extremely carefully
designed and the hardware architecture may have a large effect on their speed.

The 4 C 0 O 2 algorithm was tested and compared to the basic Horspool variant
BMH [8] and to the Hume-Sunday variant TBM [10]. To our knowledge, TBM is
one of the fastest, widely known algorithms for natural language text search. Tests
were run on a Sparc machine (architecture sun4m, kernel SunOS 5.6) and the C
programs were compiled with gcc (version 2.7.2.3) using the optimization switch
-03.

The input data consisted of the English book text and a dna text, having the
following properties.

text type source used file a length
English book Calgary Corpus [5] book2 96 611 kB
Dna sequence [10] dna.test 4 988 kB

The simulation was accomplished by selecting 30 patterns of length m randomly
in the text and then searching for all of their occurrences in the text. This was
repeated for m = 4 , . . . ,20. To make the comparison fair, the running times include

248 Harri Heikonen and Timo Raita

both searching and preprocessing phases. Figure 3 shows the results of this test
set.

(a) English text

(b) Dna sequence

Figure 3: The running times of BM, BMH, 4 <3 0 > 2 and 2 < 0 > 2 algorithms

The running times of the 4 <3 0 £> 2 algorithm are quite modest for natural languages
(see Fig 3(a)). This is due to the hardware architecture, which does not support
multicharacter sampling. However, the shape of the curve of the new scheme shows
that the information obtained from a (/-slice is at least as good as if we used more
local, but exact information. When the size of the input alphabet is decreased, the
'traditional' methods begin to lose their power because the machine-level size of a
symbol unit is typically kept fixed although the information content of a unit is

A Family of Fast Constant-Space Substring Search Algorithms 249

smaller. This deficiency is handled in the new method, as it gathers and utilizes data
of size q extracted from the neighbourhood of the current position.. The effect can
be seen strikingly in Fig. 3(b): the form of the curve for the g-slice method remains
identical to that for large alphabets whereas the smoothness of the performance for
the two other methods disappears. Moreover, it is not only the 0(n/m) behaviour
which is lost but BMH and TBM are also clearly much slower than the new method.
Since a = 4 for dna sequences, 2 <3 0 O 2 was chosen as the representative of the
new approach (Fig 3(b)). As a final remark, recall that the running times of the
t<i Dt> u algorithms are independent of E, unlike the BMH and TBM methods.

4 Summary

A new family of fast substring searching algorithms using g-slices is devised. The
concept of a g-slice combines the idea of using g-grams together with the mapping
of symbols to a reduced alphabet. This new strategy makes on-line text sampling
to skip fast over regions where the pattern cannot occur. In spite of the fact that
most machine architectures do not support the core operation of g-slicing on the
hardware level, the efficiency of the new method is comparable to the fastest known
substring search algorithms. Tests have shown that this approach typically results
in average shift lengths which are even larger than the size of the pattern. This
algorithm family is highly parametric and can thus easily be adapted to specific
application environments when necessary.

References

[1] Baeza-Yates, R.A.: Algorithms for String Searching: A Survey, SIGIR Forum,,
Spring/Summer 1989, Vol. 23, No. 3,4, pp. 34-58

[2] Baeza-Yates, R.A.: Improved String Searching, Softw. Pract. Exp., Vol. 19,
No. 3, March 1989, pp. 257-271

[3] Baeza-Yates, R., Krogh, F.T., Ziegler, B., Sibbald, P.R. & Sunday, D.M.:
Notes on a Very Fast Substring Search Algorithm, Comm. ACM, Vol. 35, No.
4, April 1992, pp. 132-137

[4] Baeza-Yates, R.A. & Gönnet, G.H.: A New Approach to Text Searching, Proc.
of the SIGIR Conference 1989, pp. 168-175

[5] Bell, T.C., Cleary, J.G. & Witten, I.H.: Text Compression, Prentice-Hall, 1990

[6] Boyer, R.S. & Moore, J.S.: A Fast String Searching Algorithm, Comm. ACM,
Vol. 20, No. 10, October 1977, pp. 762-772

250 Harri Hakonen and Tiino Raita

Galil, Z.: On Improving the Worst Case Running Time of the Boyer-Moore
String Matching Algorithm, Comm. of the ACM, Vol. 22, No. 9, September
1979, pp. 505-508

Horspool, R.N.: Practical Fast Searching in Strings, Softw. Pract. Exp., Vol.
10, 1980, pp. 501-506

Galil, Z. & Seiferas, J.: Time-Space-Optimal String Matching, ./. Comput.
System Sci., Vol. 26, 1983, pp. 280-294

Hume, A. & Sunday, D.M.: Fast String Searching, Softw. Pract. Exp., Vol. 21,
No. 11, November 1991, pp. 1221-1248

Karp, R.M. & Rabin, M.O.: Efficient Randomized Pattern-matching Algo-
rithms, IBM J. Res. Develop., Vol. 31, No. 2, March 1987, pp. 249-260

Knuth, D.E., Morris, J.H. & Pratt, V.R.: Fast Pattern Matching in Strings,
Siam J. Comput., Vol 6, No. 2, June 1977, pp. 323-350

Raita, T.: Tuning the Boyer-Moore-Horspool String Searching Algorithm,
Softw. Pract. Exp., Vol. 22, No. 10, October, 1992, pp. 879-884

Tarvainen, H.: A Theoretical Framework for the Substring Searching Algo-
rithms, M.Sc. Thesis (in Finnish), University of Turku, Finland, May 1995

Sunday, D.M.: A Very Fast Substring Search Algorithm, Comm. of the ACM,
Vol. 33, No. 8, August 1990, pp. 132-142

Zhu, R.F. & Takaoka, T.: On Improving the Average Case of the Boyer-Moore
String Matching Algorithm, J. of Inf. Proc., Vol. 10, No. 3, 1987, pp. 173-177

