
Acta Cybernetical4 (1999) 331-339:

Improved Greedy Algorithm for Computing
Approximate Median Strings

Ferenc Kruzslicz *

Abstract

The distance of a string from a set of strings is defined by the sum of
distances to the strings of the given set. A string that is closest to the set is
called the median of the set. To find a median string is an NP-Hard problem
in general, so it is useful to develop fast heuristic algorithms that give a good
approximation of the median string. These methods significally depend on
the type of distance used to measure the dissimilarity between strings. The
present algorithm is based on edit distance of strings, and constructing the
approximate median in a letter by letter manner.

1 Introduction
If the solution of the optical character recognition (OCR) problem is considered
as a "black box" process where images are mapped to character strings, then 'we
usually use a certain kind of off-line approach. In this way the efficiency of some
OCR processes could be increased in an OCR software and language independent
manner. Suppose we have a set of strings as the result of several OCR processes
of the same input bitmap. When the same OCR software was used to produce this
set, with different paper orientation, changed resolution or simply repeated OCR
processes we can eliminate the effects of noise (fingerprints on the glass etc.). While
in case of different OCR software their efficiency can be compared to each other
[7]-

2 String distance
Finding a median string that is minimal in sum of distances form a given input set
of strings, is known to be an NP-hard problem [8]. Therefore it is interesting to find
fast algorithms, that give us good approximations. One of the latest algorithms can
be found in [3]. It is called greedy algorithm, because it builds up the approximate
median string letter by letter, by always choosing the best possible continuation.
In this paper an improvement of this algorithm is described.

'Department of Business Informatics, Janus Pannonius University, Rákóczi út 80, 7622 Pécs,
Hungary. Email: kruzslic@ktk.jpte.hu

331

mailto:kruzslic@ktk.jpte.hu

332 Ferenc Kruzslicz

Suppose that all the strings are defined over the same fixed alphabet E (for
European countries E is usually a certain kind of extended ASCII). The most
widely used edit distances are similar to the Levenshtein distance. The improved
greedy algorithm is based on the dynamic programming approach [4], therefore it
is suitable for all cl: (E*)2 —> R distances that satisfies the following properties.

d(t, s) > 0
d(t,s) = 0 <=>t = s
d(s, t) = d(t, s)
d{s,r) + d(r,t) > d(.s,t)
for all r, s,t € E*.

In case of c 6 E let c i n s (c , r) , Cdei{c,r), cSUb{c,r) denote the cost of insertion,
deletion and substitution of letter c in string r. The costs of edit operations do
not depend on letter c and on the place of operations in r.

The Levenshtein distance is derived from this class of distances by choosing
the following values: c i n s (c , r) = cdei(c,r) = csuf,(c,r) = 1. To establish the
Levenshtein distance between two strings, the dynamic programming approach
can be used with 0(nm) time and 0(n) space complexity. The general algorithm
to compute the minimal edit distance, using the dynamic programming technique
is given in the paper of Kruskal [5]. With the aid of this method, we get the
following in the case of two strings (s and t):

Let D[i,0] = i and D[0,j] = j for i=0..|s| and j=0..lt|.

For i=l..|s| and j=l..|t| calculate the next elements of matrix D

D [i i j] = min (D [i-1, j]+ cins, D[i,j-1]+ cdel, D[i-l,j-l]+<5([i,j]), where

¿([i.j] = c
s u b

 if s[i]^t[j] , and 0 otherwise.

It is clear that the distance is d(s,t) = Z?[|s|, |i|].
Much space can be saved if the matrix D is computed in a row by row manner.

3 Approximate median
This dynamic programming technique is suitable for a large number of heuristics.
Almost all of the "natural" heuristics can be described by the following informal
scheme, where |r| denotes the length of r, and A is the empty string.

function ApproximateMedian (si,«2 ••• s
n
) : string;

preprocess (s i, s 2, . . . sn)
median = A;

do
c

ijest
 = a r

g best (weight (median, c, si, S2. •••. s
n
) c 6 S) ;

median = median + Cb
es
t

while (it was worth to append Cf,est);
returnC best prefix of median).

Improved Greedy Algorithm for Computing Approximate Median Strings 333

Basically, an ApproximateMedian algorithm of this type builds the median
string letter by letter, and in case of each letter it uses a weight decision function
to select the next letter for median string to continue with. It makes judgements
on the base of input strings si, s2,..., s„ and the prebuilt median appended with
letter c. The previous loop has to be continued, until a stopping condition holds.
In the last step we can select the best prefix of median to return.

The time and space complexity of these algorithms is determined by the com-
plexity of the preprocessing phase and the weight function. The previous scheme
is general enough, because any type of algorithm can be written in this high level
form. In case of greedy algorithms no preprocessing phase is allowed, and the
weight function must be linear.

4 The Improved Greedy Algorithm
The earlier scheme of algorithms gives a large variety of heuristics. We have
freedom to choose the weight functions, the stopping condition, and the last prefix
correction.

A fairly good greedy heuristic can be obtained if we use the method in [3], i.e.

• The weight function is the sum of minimal elements in the last rows containing
letter c in the'dynamic programming matrix, computing d(median + c,Si).

The next letter to be appended is the letter with the minimal weight.

• The main loop is stopped if the length of median reaches the length of the
longest input string.

• The prefix of median is returned, that minimise the sum of distances from
the input strings.

The greedy algorithm computes the whole dynamic programming matrixes, but
stores only the last rows of them, and it loses a lot of information, because it uses
only the minimal element of this vector. Let the algorithm improve by gaining
more information from this vector.

If we sum these vectors, we get information on what would happen if we stop
the algorithm immediately. The values of the summed vector show the sum of
distances of median from the input strings, and the sum distances of median from
the input strings without their last letter, etc. For example strings aabb, ab, bbb
and median string ab will be examined:

334 Ferenc Kruzslicz

b 2 1 1 1 2 b 2 1 0 b 2 1 1 2
a 1 0 1 2 3 a 1 0 1 a 1 1 2 3
A 0 1 2 3 4 A 0 1 2 A 0 1 2 3

A a a b b A a b A b b b

The sum of the last rows of matrixes D is defined as follows:

aabb 2 1 1 1 2
ab 2 1 0

bbb 2 1 1 2
S 2 3 4 3 4

or more precisely, let m denote the length of median string,
and k = maa;(|si|, js2U •••> ls«l)- Moreover the last row of the ith matrix is denoted
byVj = < £)[|m|,0],£>[|m|, 1], ...,£)[|m|, 5j|] >. For convenience, we also assume that
the'co-ordinate Vi[t] = 0, whenever t is not in the 0...|.sl| interval. The summarised
vector S is defined with the following expression

5 [t]= - i : " ! = 1 V-[i - / !+|s i |]) f or« = 0>...,fc.
With these notations the weight function in the greedy algorithm can be for-

mulated in a simple way:
weight (median, c, s\,s-2, •••, s n) = Ylj=\ min(Vj[0], Vj\\], . . . , Vj [|s j|])

and the letter with the least weight will be appended to the median string.

Unfortunately this weight function frequently gives the same value for different
letters, and in such a case the next letter is selected arbitrary. The weight function
behaves better if we use the whole V vector to pick the best continuation of the
median. Let us choose the letter in case of draw, that is minimal in lexicographic
order of the reversed sum vectors < S[fc]; S[k — 1]; ...; 5(0] >. Clearly the choice of
next letter tries to minimise the expected sum of distances, furthermore the time
and space complexity of the algorithm remains the same.

The improved algorithm runs in 0(k2n\T,\) time, and it is given in the following
pseudocode.

function ImprovedApproximateMedianisi, s2, . . . , s n) : string;

constants

k = max(|si|, |saj, .. . , |s
n
|);

C-ins, c.del, c_sub; /* Cost of edit operations */

variables

Vi : array [0..|sj|] of integer; /* for i=l..n */

Dist, S , S_best, tmp : array [0..k] of integer;

c : char;

min.best, min_sum, i, j :• integer;

median : array [l..k] of char;

algorithm

median = A; /* Initialization */

Dist [0] = 0;

for i=l to n do

Improved Greedy Algorithm for Computing Approximate Median Strings 125

f o r j=0 t o Is; I do V j [j] = j ; od
D is t [0] = D i s t [0] + | j

od
f o r i = l t o k do / * B u i l d i n g the median l e t t e r by l e t t e r * /

S .bes t := [0 , 0 , . . . , 0] ;
f o r j = l t o n do S .bes t := add.vect (S . b e s t , Vj , k - |sj |); od
f o r each c £ £ do / * S e l e c t i n g the b e s t l e t t e r * /

min.sum 0 ;
S := [0 , 0 , . . . , 0] ;
f o r j = l t o n do test-letter (c, j , FALSE); od
min.sum := min.sum + min .bes t ;
S := add.vect (S, tmp, k - |s;|)
i f weight (min.sum, S, m i n . b e s t , S . b e s t) < 0 then

S .best := S;
min.best := min.sum;
m e d i a n [i] := c ;
Dis t [i] := S .bes t [k] ;

f i
od
f o r j = l t o n do tes t.let ter (m e d i a n [i] , j , TRUE); od

od
i := 0 ;
f o r j = l t o k do

i f D i s t [j] < D i s t [i] then i = j ; f i
od

r e t u r n m e d i a n [1 . . i]

f u n c t i o n test-letter(c, i , update) ; i n t e g e r ;
local variables

j ; i n t e g e r ;
procedure /* C a l c u l a t i n g the e d i t d i s t a n c e * /

min .best := + o o ;
tmp[0] := i ;
f o r j = l t o |si| do

t m p [j] : = m i n (Vi [j - 1] + c . i n s , V; —1 [j] + c . d e l , V i - \ [j - l] + c _ s u b) ;
i f m e d i a n [j] = c then

t m p [j] = mini t m p [j] , K j - j i j - l]) ;
f i
i f t m p [j] > min.best then

min .best = t m p [j] ;
f i

od
i f update then / * Updating v e c t o r s when a * /

Vi := tmp[0. . |sj|] ; / * new l e t t e r was appended. * /
f i

r e t u r n min .bes t ;

f u n c t i o n add-vect (S , V , o f f s e t) : array [0 . . k] of i n t e g e r ;
local variables

i : i n t e g e r
procedure /* V e c t o r a d d i t i o n with o f f s e t * /

f o r i=0 t o k - o f f s e t do
S [i] := S [i] + V [i - o f f s e t] ;

r e t u r n S [0 . . k] ;

336 Ferenc Kruzslicz

f u n c t i o n weight (min, S, min .bes t , S - b e s t) : b o o l e a n ;
local v a r i a b l e s

d i f f , i : i n t e g e r / * Negative value i s re turned i f the new * /
procedure / * charac ter i s b e t t e r than the o l d one. * /

d i f f := min - min .best ; / * Greedy h e u r i s t i c * /
i := k ;
whi le (i > 0 and d i f f = 0) do / » L e x i c o g r a p h i c o rder * /

d i f f := S [i] - S . b e s t [i] ;
i := i - 1 ;

od
r e turn d i f f

To illustrate how the algorithm works and to show the improvement, let us
examine the following example:

The alphabet contains only two letters E = {a, ' ' } , and the input strings are
Sj = ab, s2 = bab.

a 1 0 1 a 1 1 1 2 b 1 I 1 b 1 0 1 2
\ 0 1 2 A 0 1 2 3 A 0 1 2 A 0 1 2 3

A a b A b a b A a b A b a b

It is easy to see that we are in the draw situation, since for
median = a, min_sum = 1, S = ¡1,2,1,3^, and for
median = b, min_sum = 1, S = ¡1,1,2,3^.

By the rule of the improved greedy algorithm letter a will be selected as the
first letter of the median string.

5 Experimental Results
The improved approximate algorithm was tested on the same garbled strings as the
greedy algorithm. In the test sets the string were deformed with equally probable
delete, insert and substitute operations, with probability of 1/4.

11X11)

V00
mi

27110 S!
v
O500
-g 400
Z300

200

100

0

Figure 1: Efficiency of the improved versus the greedy algorithm

Improved Greedy Algorithm for Computing Approximate Median Strings 337

Original words:
hector helsinki iapr ojo pepermint recognition sim patica

Garbled strings:
erth eksh arr j j etepi etorgon icpsa

ttohr ielkhnnki rpp 00 petpnrmin tricogntionr sic. static

ectoo hlsinhki iaria j pepeprmiimtn recggginiiong simpsatiapat

heceor hislnsiki iaprr ojjo peermmint receniicion. . sipatpica

htoor hselsekni iapri j jo epneemine egcoogeieion imtpit ici

ecttor eelseskli iappp oj merpeement regtoggniitocn pimmpitaca

hetroe hlliinki irap ojo pepitrmminnt recortoit - siaatpta

hecetrc hiklssinnksl iappr oojo mrpermimm ecgnittin satica

heeter elsinss iai oooj eentin reoritoc pppttca

hectter esnkki iraar oj pepterintm enoeniiion smpactia

hector helsinki iapr ojo pepermint recognition simptatica

Greedy approximate medians:
hector helsinki iapr ojo pepermint recognition simp tatica

[26] [39] [19] [12] [39] [50] [45]

Improved approximate medians:
hector helsinki iapr ojo pepermint recogniion simptatica

[26] [39] [19] [12] [39] [47] [45]

When we used the new algorithm for the second test sets published in [6], there
were no improvements at all.

Original words:
hector helsinki iapr recognition

Garbled strings:
hetcr cheinni cianr rgfkfgnition

heptor h lei si ki iap recoxsniimoi

hector hesenkc iapi riecoxgnifon

hevor velskki Iapr jeognitigqn

hetuor ceeltsinkmi ilp resonigior

hscor elnsgxnki riapr reoinitiggn

htuctor gbheklsink ialr rciorgnitvihn

fjhecto htosini iar recognin

getoqr hxlsiky iapd ecotnritiin

hetofr heklusnkk iuar grecpoginitko

Greedy and improved approximate medians:
hector helsinki iapr recognition

[13] [34] [13] [42]

The real advantage of the improved algorithm appeared when the probability of
the edit operations has been increased. The Fihure 1 is obtained by the following
test sets. The string recognition was garbled with delete, insert and substitute edit
operations. For substituting and inserting only the letters r, e, c, g, t, _i, o, n, s,
p, a were used, and each of the operations and its place was uniformly distributed.

338 Ferenc Kruzslicz

Every test consists of 10 garbled strings, and the index of a test means how many-
operations was performed in the garbling procedure. All column of the diagrams
represents the results of 1000 tests of the same type. The greedy and the improved
algorithms were compared, the bars show in how many cases which one was the
better. In some cases the greedy algorithm proved to be superior to the improved
one. The reason for this is, that in a case of draw in the greedy algorithm the next
letter was chosen randomly, that could result in a better performance.

I4(X)
I2(X)
IIXX)

ai
c
§ SIX)

4IX)
21X1

0
ill d2 il3 <14 (15 ilfi [17 dX iiy till) (III (112 (113 (114 dl5 (116 dl7

Test set d iss imilar i ty

Figure 2: Improvements measured in edit distance.

In Figure 2 the total distances were summed (i.e. the distances of the approxi-
mate median from the test set). The same garbled sets were used as in Figure 1 and
values of diagram are the difference between the totals for the improved and the
greedy algorithm. We see that a slight modification in the greedy algorithm results
in computing better medians whenever the problem becomes more difficult. Since
the total sum of distances is bounded from above by the total length of strings
from the test set, the results remain stable when we choose the dissimilarity value
higher than the length of the distorted string.

6 Conclusions

The improved approximate median algorithm is a simple refinement of the greedy
algorithm [3]. It has the same time complexity 0(k'2n\'S\) as the previous one. The
space complexity was a bit reduced by the help of storing only the last rows of the
distance matrixes. This idea is based on [9], in this way the new algorithm runs in
0(kn) space. The closer the garbled strings are to each other the improvement is
less significant. Therefore the improved algorithm presented in this paper is more
suitable for searching approximate median of highly dissimilar strings.

Improved Greedy Algorithm for Computing Approximate Median Strings 339

Acknowledgement
I am grateful to the anonymous reviewers for their helpful comments which helped
me improve the quality of the paper. In particular, I thank the anonymous referee
who provided an improved English version of my manuscript, and Dr. Jänos Csirik
for calling my attention to the median string problem.

References
[1] D. Lopestri, J. Zhou: Using Consensus Voting to Correct OCR Errors. Series

in Machine Perception and Artifical Intelligence Vol. 14 pages 157-168, 1995

[2] A. Juan, E. Vidal: An Algorithm For Fast Median Search. Pattern Recog-
nition and Image Analysis Vol. 1 pages 187-192, 1996

[3] F. Casacuberta, M. D. Antonio: A greedy algorithm for computing approxi-
mate Median Strings. Pattern Recognition and Image Analysis Vol. 1 pages
193-198, 1996

[4] M. Crochemore, W. Rytter: Text Algorithms. Oxford University Press, 1994

[5] J.B. Krushkal: An overview of sequence comparison: Time warps, string
edits, and macromolecules. SIAM Review Vol. 25 pages 201-237, 1983.

[6] H. Rulot: Un Algoritmo de Inferencia Gramatical mediante Correccin de
Errores. Tesis Doctoral. Universität de Valencia, 1992.

[7] S. V. Rice, J. Kanai, T. A. Nartker: A difference algorithm for OCR-
generated text. Proceeding of the IAPR Workshop on Structural and Syn-
tactic Pattern Recognition, Bern, 1992.

[8] T. Kohonen: "Median strings". Pattern Recognition Letters Vol. 3 pages
309-313, 1985.

[9] L. Allison, T. I. Dix: A bit-string longest-common-subsequence algorithm.
Information Processing Letters Vol. 23 pages 305-310, 1986

