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Abstract 

The distance of a string from a set of strings is defined by the sum of 
distances to the strings of the given set. A string that is closest to the set is 
called the median of the set. To find a median string is an NP-Hard problem 
in general, so it is useful to develop fast heuristic algorithms that give a good 
approximation of the median string. These methods significally depend on 
the type of distance used to measure the dissimilarity between strings. The 
present algorithm is based on edit distance of strings, and constructing the 
approximate median in a letter by letter manner. 

1 Introduction 
If the solution of the optical character recognition (OCR) problem is considered 
as a "black box" process where images are mapped to character strings, then 'we 
usually use a certain kind of off-line approach. In this way the efficiency of some 
OCR processes could be increased in an OCR software and language independent 
manner. Suppose we have a set of strings as the result of several OCR processes 
of the same input bitmap. When the same OCR software was used to produce this 
set, with different paper orientation, changed resolution or simply repeated OCR 
processes we can eliminate the effects of noise (fingerprints on the glass etc.). While 
in case of different OCR software their efficiency can be compared to each other 
[7]-

2 String distance 
Finding a median string that is minimal in sum of distances form a given input set 
of strings, is known to be an NP-hard problem [8]. Therefore it is interesting to find 
fast algorithms, that give us good approximations. One of the latest algorithms can 
be found in [3]. It is called greedy algorithm, because it builds up the approximate 
median string letter by letter, by always choosing the best possible continuation. 
In this paper an improvement of this algorithm is described. 
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Suppose that all the strings are defined over the same fixed alphabet E (for 
European countries E is usually a certain kind of extended ASCII). The most 
widely used edit distances are similar to the Levenshtein distance. The improved 
greedy algorithm is based on the dynamic programming approach [4], therefore it 
is suitable for all cl: (E*)2 —> R distances that satisfies the following properties. 

d(t, s) > 0 
d(t,s) = 0 <=>t = s 
d(s, t) = d(t, s) 
d{s,r) + d(r,t) > d(.s,t) 
for all r, s,t € E*. 

In case of c 6 E let c i n s ( c , r ) , Cdei{c,r), cSUb{c,r) denote the cost of insertion, 
deletion and substitution of letter c in string r. The costs of edit operations do 
not depend on letter c and on the place of operations in r. 

The Levenshtein distance is derived from this class of distances by choosing 
the following values: c i n s ( c , r ) = cdei(c,r) = csuf,(c,r) = 1. To establish the 
Levenshtein distance between two strings, the dynamic programming approach 
can be used with 0(nm) time and 0(n) space complexity. The general algorithm 
to compute the minimal edit distance, using the dynamic programming technique 
is given in the paper of Kruskal [5]. With the aid of this method, we get the 
following in the case of two strings (s and t): 

Let D[i,0] = i and D[0,j] = j for i=0..|s| and j=0..lt|. 

For i=l..|s| and j=l..|t| calculate the next elements of matrix D 

D [i i j] = min (D [i-1, j]+ cins, D[i,j-1]+ cdel, D[i-l,j-l]+<5([i,j]), where 

¿([i.j] = c
s u b

 if s[i]^t[j] , and 0 otherwise. 

It is clear that the distance is d(s,t) = Z?[|s|, |i|]. 
Much space can be saved if the matrix D is computed in a row by row manner. 

3 Approximate median 
This dynamic programming technique is suitable for a large number of heuristics. 
Almost all of the "natural" heuristics can be described by the following informal 
scheme, where |r| denotes the length of r, and A is the empty string. 

function ApproximateMedian (si,«2 ••• s
n
) : string; 

preprocess (s i, s 2, . . . sn) 
median = A; 

do 
c

ijest
 = a r

g best (weight (median, c, si, S2. •••. s
n
) c 6 S ) ; 

median = median + Cb
es
t 

while ( it was worth to append Cf,est ); 
returnC best prefix of median ). 
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Basically, an ApproximateMedian algorithm of this type builds the median 
string letter by letter, and in case of each letter it uses a weight decision function 
to select the next letter for median string to continue with. It makes judgements 
on the base of input strings si, s2,..., s„ and the prebuilt median appended with 
letter c. The previous loop has to be continued, until a stopping condition holds. 
In the last step we can select the best prefix of median to return. 

The time and space complexity of these algorithms is determined by the com-
plexity of the preprocessing phase and the weight function. The previous scheme 
is general enough, because any type of algorithm can be written in this high level 
form. In case of greedy algorithms no preprocessing phase is allowed, and the 
weight function must be linear. 

4 The Improved Greedy Algorithm 
The earlier scheme of algorithms gives a large variety of heuristics. We have 
freedom to choose the weight functions, the stopping condition, and the last prefix 
correction. 

A fairly good greedy heuristic can be obtained if we use the method in [3], i.e. 

• The weight function is the sum of minimal elements in the last rows containing 
letter c in the'dynamic programming matrix, computing d(median + c,Si). 

The next letter to be appended is the letter with the minimal weight. 

• The main loop is stopped if the length of median reaches the length of the 
longest input string. 

• The prefix of median is returned, that minimise the sum of distances from 
the input strings. 

The greedy algorithm computes the whole dynamic programming matrixes, but 
stores only the last rows of them, and it loses a lot of information, because it uses 
only the minimal element of this vector. Let the algorithm improve by gaining 
more information from this vector. 

If we sum these vectors, we get information on what would happen if we stop 
the algorithm immediately. The values of the summed vector show the sum of 
distances of median from the input strings, and the sum distances of median from 
the input strings without their last letter, etc. For example strings aabb, ab, bbb 
and median string ab will be examined: 
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b 2 1 1 1 2 b 2 1 0 b 2 1 1 2 
a 1 0 1 2 3 a 1 0 1 a 1 1 2 3 
A 0 1 2 3 4 A 0 1 2 A 0 1 2 3 

A a a b b A a b A b b b 

The sum of the last rows of matrixes D is defined as follows: 

aabb 2 1 1 1 2 
ab 2 1 0 

bbb 2 1 1 2 
S 2 3 4 3 4 

or more precisely, let m denote the length of median string, 
and k = maa;(|si|, js2U •••> ls«l)- Moreover the last row of the ith matrix is denoted 
byVj = < £)[|m|,0],£>[|m|, 1], ...,£)[|m|, 5j|] >. For convenience, we also assume that 
the'co-ordinate Vi[t] = 0, whenever t is not in the 0...|.sl| interval. The summarised 
vector S is defined with the following expression 

5 [ t ]= - i : " ! = 1 V-[ i - / !+|s i |] ) f or« = 0>...,fc. 
With these notations the weight function in the greedy algorithm can be for-

mulated in a simple way: 
weight (median, c, s\,s-2, •••, s n ) = Ylj=\ min(Vj[0], Vj\\], . . . , Vj [|s j|] ) 

and the letter with the least weight will be appended to the median string. 

Unfortunately this weight function frequently gives the same value for different 
letters, and in such a case the next letter is selected arbitrary. The weight function 
behaves better if we use the whole V vector to pick the best continuation of the 
median. Let us choose the letter in case of draw, that is minimal in lexicographic 
order of the reversed sum vectors < S[fc]; S[k — 1]; ...; 5(0] >. Clearly the choice of 
next letter tries to minimise the expected sum of distances, furthermore the time 
and space complexity of the algorithm remains the same. 

The improved algorithm runs in 0(k2n\T,\) time, and it is given in the following 
pseudocode. 

function ImprovedApproximateMedianisi, s2, . . . , s n ) : string; 

constants 

k = max( |si|, |saj, .. . , |s
n
|); 

C-ins, c.del, c_sub; /* Cost of edit operations */ 

variables 

Vi : array [0..|sj|] of integer; /* for i=l..n */ 

Dist, S , S_best, tmp : array [0..k] of integer; 

c : char; 

min.best, min_sum, i, j :• integer; 

median : array [l..k] of char; 

algorithm 

median = A; /* Initialization */ 

Dist [0] = 0; 

for i=l to n do 
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f o r j=0 t o Is; I do V j [ j ] = j ; od 
D is t [0 ] = D i s t [0 ] + | j 

od 
f o r i = l t o k do / * B u i l d i n g the median l e t t e r by l e t t e r * / 

S .bes t := [ 0 , 0 , . . . , 0 ] ; 
f o r j = l t o n do S .bes t := add.vect ( S . b e s t , Vj , k - |sj |); od 
f o r each c £ £ do / * S e l e c t i n g the b e s t l e t t e r * / 

min.sum 0 ; 
S := [ 0 , 0 , . . . , 0 ] ; 
f o r j = l t o n do test-letter (c, j , FALSE); od 
min.sum := min.sum + min .bes t ; 
S := add.vect ( S, tmp, k - |s;| ) 
i f weight (min.sum, S, m i n . b e s t , S . b e s t ) < 0 then 

S .best := S; 
min.best := min.sum; 
m e d i a n [ i ] := c ; 
Dis t [ i ] := S .bes t [k] ; 

f i 
od 
f o r j = l t o n do tes t.let ter ( m e d i a n [ i ] , j , TRUE); od 

od 
i := 0 ; 
f o r j = l t o k do 

i f D i s t [ j ] < D i s t [ i ] then i = j ; f i 
od 

r e t u r n m e d i a n [ 1 . . i ] 

f u n c t i o n test-letter(c, i , update ) ; i n t e g e r ; 
local variables 

j ; i n t e g e r ; 
procedure /* C a l c u l a t i n g the e d i t d i s t a n c e * / 

min .best := + o o ; 
tmp[0] := i ; 
f o r j = l t o |si| do 

t m p [ j ] : = m i n ( Vi [ j - 1 ] + c . i n s , V; —1 [ j ] + c . d e l , V i - \ [ j - l ] + c _ s u b ) ; 
i f m e d i a n [ j ] = c then 

t m p [ j ] = mini t m p [ j ] , K j - j i j - l ] ) ; 
f i 
i f t m p [ j ] > min.best then 

min .best = t m p [ j ] ; 
f i 

od 
i f update then / * Updating v e c t o r s when a * / 

Vi := tmp[0. . |sj|] ; / * new l e t t e r was appended. * / 
f i 

r e t u r n min .bes t ; 

f u n c t i o n add-vect ( S , V , o f f s e t ) : array [ 0 . . k ] of i n t e g e r ; 
local variables 

i : i n t e g e r 
procedure /* V e c t o r a d d i t i o n with o f f s e t * / 

f o r i=0 t o k - o f f s e t do 
S [ i ] := S [ i ] + V [ i - o f f s e t ] ; 

r e t u r n S [ 0 . . k ] ; 
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f u n c t i o n weight (min, S, min .bes t , S - b e s t ) : b o o l e a n ; 
local v a r i a b l e s 

d i f f , i : i n t e g e r / * Negative value i s re turned i f the new * / 
procedure / * charac ter i s b e t t e r than the o l d one. * / 

d i f f := min - min .best ; / * Greedy h e u r i s t i c * / 
i := k ; 
whi le ( i > 0 and d i f f = 0 ) do / » L e x i c o g r a p h i c o rder * / 

d i f f := S [ i ] - S . b e s t [ i ] ; 
i := i - 1 ; 

od 
r e turn d i f f 

To illustrate how the algorithm works and to show the improvement, let us 
examine the following example: 

The alphabet contains only two letters E = {a, ' ' } , and the input strings are 
Sj = ab, s2 = bab. 

a 1 0 1 a 1 1 1 2 b 1 I 1 b 1 0 1 2 
\ 0 1 2 A 0 1 2 3 A 0 1 2 A 0 1 2 3 

A a b A b a b A a b A b a b 

It is easy to see that we are in the draw situation, since for 
median = a, min_sum = 1, S = ¡1,2,1,3^, and for 
median = b, min_sum = 1, S = ¡1,1,2,3^. 

By the rule of the improved greedy algorithm letter a will be selected as the 
first letter of the median string. 

5 Experimental Results 
The improved approximate algorithm was tested on the same garbled strings as the 
greedy algorithm. In the test sets the string were deformed with equally probable 
delete, insert and substitute operations, with probability of 1/4. 

11X11) 

V00 
mi 

27110 S! 
v 
O500 
-g 400 
Z300 

200 

100 

0 

Figure 1: Efficiency of the improved versus the greedy algorithm 
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Original words: 
hector helsinki iapr ojo pepermint recognition sim patica 

Garbled strings: 
erth eksh arr j j etepi etorgon icpsa 

ttohr ielkhnnki rpp 00 petpnrmin tricogntionr sic. static 

ectoo hlsinhki iaria j pepeprmiimtn recggginiiong simpsatiapat 

heceor hislnsiki iaprr ojjo peermmint receniicion. . sipatpica 

htoor hselsekni iapri j jo epneemine egcoogeieion imtpit ici 

ecttor eelseskli iappp oj merpeement regtoggniitocn pimmpitaca 

hetroe hlliinki irap ojo pepitrmminnt recortoit - siaatpta 

hecetrc hiklssinnksl iappr oojo mrpermimm ecgnittin satica 

heeter elsinss iai oooj eentin reoritoc pppttca 

hectter esnkki iraar oj pepterintm enoeniiion smpactia 

hector helsinki iapr ojo pepermint recognition simptatica 

Greedy approximate medians: 
hector helsinki iapr ojo pepermint recognition simp tatica 

[26] [39] [19] [12] [39] [50] [45] 

Improved approximate medians: 
hector helsinki iapr ojo pepermint recogniion simptatica 

[26] [39] [19] [12] [39] [47] [45] 

When we used the new algorithm for the second test sets published in [6], there 
were no improvements at all. 

Original words: 
hector helsinki iapr recognition 

Garbled strings: 
hetcr cheinni cianr rgfkfgnition 

heptor h lei si ki iap recoxsniimoi 

hector hesenkc iapi riecoxgnifon 

hevor velskki Iapr jeognitigqn 

hetuor ceeltsinkmi ilp resonigior 

hscor elnsgxnki riapr reoinitiggn 

htuctor gbheklsink ialr rciorgnitvihn 

fjhecto htosini iar recognin 

getoqr hxlsiky iapd ecotnritiin 

hetofr heklusnkk iuar grecpoginitko 

Greedy and improved approximate medians: 
hector helsinki iapr recognition 

[13] [34] [13] [42] 

The real advantage of the improved algorithm appeared when the probability of 
the edit operations has been increased. The Fihure 1 is obtained by the following 
test sets. The string recognition was garbled with delete, insert and substitute edit 
operations. For substituting and inserting only the letters r, e, c, g, t, _i, o, n, s, 
p, a were used, and each of the operations and its place was uniformly distributed. 
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Every test consists of 10 garbled strings, and the index of a test means how many-
operations was performed in the garbling procedure. All column of the diagrams 
represents the results of 1000 tests of the same type. The greedy and the improved 
algorithms were compared, the bars show in how many cases which one was the 
better. In some cases the greedy algorithm proved to be superior to the improved 
one. The reason for this is, that in a case of draw in the greedy algorithm the next 
letter was chosen randomly, that could result in a better performance. 

I4(X) 
I2(X) 
IIXX) 

ai 
c 
§ SIX) 

4IX) 
21X1 

0 
ill d2 il3 <14 (15 ilfi [17 dX iiy till) (III (112 (113 (114 dl5 (116 dl7 

Test set d iss imilar i ty 

Figure 2: Improvements measured in edit distance. 

In Figure 2 the total distances were summed (i.e. the distances of the approxi-
mate median from the test set). The same garbled sets were used as in Figure 1 and 
values of diagram are the difference between the totals for the improved and the 
greedy algorithm. We see that a slight modification in the greedy algorithm results 
in computing better medians whenever the problem becomes more difficult. Since 
the total sum of distances is bounded from above by the total length of strings 
from the test set, the results remain stable when we choose the dissimilarity value 
higher than the length of the distorted string. 

6 Conclusions 

The improved approximate median algorithm is a simple refinement of the greedy 
algorithm [3]. It has the same time complexity 0(k'2n\'S\) as the previous one. The 
space complexity was a bit reduced by the help of storing only the last rows of the 
distance matrixes. This idea is based on [9], in this way the new algorithm runs in 
0(kn) space. The closer the garbled strings are to each other the improvement is 
less significant. Therefore the improved algorithm presented in this paper is more 
suitable for searching approximate median of highly dissimilar strings. 
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