
Acta Cybernetica 14 (1999) 341-356.

On the Exact Solution of the Euclidean
Three-Matching Problem

Gábor Magyar Mika Johnsson Olli Nevalainen *

Abstract

Three-Matching Problem (3MP) is an NP-complete graph problem which
has applications in the field of inserting electronic components on a printed
circuit board. In 3MP we want to partition a set of n = 31 points into I
disjoint subsets, each containing three points (triplets) so that the total cost
of the triplets is minimal. W e consider the problem where the cost Cijk of
a triplet is the sum of the lengths of the two shortest edges of the triangle
(i, j, k)\ the reason for this assumption is the nature of the practical problems.

In this paper we discuss the optimal solution of 3MP. W e give two dif-
ferent integer formulations and several lower bounds of the problem based
on the Lagrangian relaxations of the integer programs. The different lower
bounds are evaluated by empirical comparisons. W e construct branch-and-
bound procedures for solving 3MP by completing the best lower bound with
appropriate branching operations. The resulting procedures are compared to
our previous exact method and to general MIP solvers.

1 Introduction
The task in Three-Matching Problem (3MP) is to form I disjoint triplets from
7i — 3/ points and to minimize the total cost of these triplets, i.e., to connect the
three points of each triplet by two line segments so that the total length of the
line segments is minimal. The 3MP can be illustrated with an Euclidean problem
instance, see Fig. 1.

The 3MP occurs in some industrial applications [3, 5, 7, 12]. In manual insertion
of electronic components on a printed circuit board, the operations are arranged into
close triplets to aid the worker's task. Furthermore, some flexible machines (e.g.,
General Surface Mounter) for automatic electronic component insertion have from
three to eight insertion heads and operate in cycles comprising component pickups
and insertions; the throughput of the machine can be improved by minimizing the
length of the inter-board head movements. Component insertions are performed
in two phases: in the first phase head nozzles pick up new components from the
component feeders, and in the second phase the head moves to the actual insertion

"Turku Centre for Computer Science (TUCS) and Department of Computer Science, University
of Turku, Lemminkaisenkatu 14 A, FIN-20520 Turku, Finland

357

358 Gábor Magyar, Mika Johnsson. Olli Nevalainen

Ä) ©

©

©

<s>
iS) %

© ©
® ® ®

©
©

ÍÍ, © @ © <S) (S)
© © (3) © ©

Ii)

©
<S)

w
©

©

(9

© (30)
@ a €> ©

<Z) ® (Si
®

—•(V)

I
''i CO-

ri)
© (.7) (,;)

©
(0) Í3*)

/

@
üs)
" \

© © e;
\ (*i) (33)

©

Figure 1: A sample 51-point 3MP problem instance ('eil51' from TSPLIB [15])
along with its optimal solution. The vertices are numbered as they appear in the
problem file.

points to perform the actual insertions. Careful selection of the point triplets (in the
case of a three-headed machine) is essential in minimizing the total printing time
of the board. A similar problem is encountered in the scheduling of an automated
assay analysis instrument (AutoDelphia).

3MP is closely related to the 3-dimensional assignment problem (3DA) [1, 3]
which is NP-complete and a restricted version of our problem (in 3DA the points
of the triplets are drawn from three disjoint subsets of the point set). Our previous
studies and the connection to 3D A indicate that 3MP is NP-complete [6]. Addi-
tionally, 3MP is closely related to the p-median problem [2], in which we search p
median points to which the remaining points are connected in such a way that the
total sum of the connecting edges is minimal. However, the p-median problem does
not restrict the number of allocated points to a median to be exactly ji/p. The
3MP can therefore be viewed as a specialization of the p-median problem.

The 3MP can be solved heuristically by standard approaches, like local search
heuristics using pairwise interchanges, simulated annealing, tabu search and genetic
algorithm [6, 9, 10]. Several lower bounds can be given to the problem. By knowing
the optimal solution to the problem we can evaluate the quality of the lower bound
and the upper bound solutions of the heuristic approaches. Here we will discuss a
number of design alternatives of B&B algorithms for 3MP and their trade-offs in
this study.

The plan of the paper is as follows. Two different integer programming formu-
lations for 3MP are given in the next section. In Section 3 we discuss briefly the
branch-and-bound method and its main components. Section 4 describes four lower
bounds to the problem and compares them empirically. The best lower bound is

On the Exact Solution of the Euclidean Three-Matching Problem 359

completed with three different branching rules in Section 5. Test results comparing
the branch-and-bound procedures and previous methods are discussed in Section 6.
This section also compares our procedure to general MIP solver packages. Finally,
the conclusions are drawn in Section 7.

2 Problem formulations

In this section, we give two integer programming formulations for 3MP. Firstly, the
problem can be formulated by the following 0-1 program [6]:

Let dij represent the cost of the edge j —» i, V the set of vertices and Xij the
decision variable where

_ J 1 if the edge j —• i is present in the solution,
y [0 otherwise.

The problem is to

minz/pi = £ £ dijXij (1)
iev jev

subject to

+ = 1

 (2)

iev kev
i i j e { o , i } W e v j e v (3)

In the above formulation the edges are directed and the first index stands for
the central point of the triplets. The first term in constraint (2) is equal to 1 if and
only if the point j is not a central triplet point, whereas the second sum is equal
to 1 if and only if the point j is a central point.

Our second formulation considers 3MP as a modification of the p-median prob-
lem (e.g., see [2]), where p = n/3 and every median has exactly two other points
allocated to it. The decision variable xu is equal to 1 if and only if point i is a
median vertex. Concerning the other variables,

_ J 1 if point j is allocated to median i in the solution,
\ 0 otherwise.

The problem is to

min zjp-2 = £ £ dijXij (4)
iev jev

subject to

360 Gábor Magyar, Mika Johnsson. Olli Nevalainen

5 > y = 1 V i e v (5)
iev

xu = n / 3

iev
(6)

xij = 2xn viev (7)
jevscj^i

Xij £ {o, 1} Vî g v , j e v (8)

Equations (5) ensure that each point is allocated to a median. Equation (6)
says that there are exactly n/3 medians. Equations (7) ensure that every point is
allocated only to a median point and every median has exactly two other points al-
located to itself. The above program is also valid for the 3MP if we have inequalities

When we describe the Lagrangian relaxations of the above integer programs in
Section 4, we will refer to the first program as "IP1", the second one with signs
" = " in (7) as "IP2a", and with signs "<" as "IP2b".

It must be noted that the p-median formulation does not hold for natural gen-
eralizations of the three-matching problem: for example, in the case of 4-matching
when the objective is to find point groups of four points with a minimal total
distance of the path crossing the four points, there is no median point.

The branch-and-bound (B&B) method (e.g., see [8]) is an intelligent enumerating
procedure for finding the exact solution of a given combinatorial optimization prob-
lem. The method maintains a set of live leaves of an enumeration tree. The tree
represents partitions of the feasible solutions in its nodes. The classes of the parti-
tions are usually defined by storing some fixed variables or partial solutions in the
nodes. The procedure begins with the root, which has no fixed variables; it rep-
resents all the feasible solutions of the optimization problem under consideration.
The branching operation is used to partition the feasible solutions of a selected
branching node into its descendant nodes. The partitioning is done by fixing some
further variables in the descendant nodes in a systematic way depending on the
structure of the problem. The effectiveness of the method comes from the bound-
ing operation, where we calculate sharp lower bounds (in case of a minimization
problem) of the object values of the feasible solutions represented in the nodes of
the tree. We do not have to build up the whole enumeration tree in general, i.e.,
if a node does not contain any better solutions than a known one, then that node
and the respective subtree can be discarded. A more precise description of the
branch-and-bound procedure is as follows:

1. (Initialization) Let the set L of live leaves contain only one node, the root,
which represents all the feasible solutions. Calculate the lower bound for the

in (7).

3 Outline of the algorithm

On the Exact Solution of the Euclidean Three-Matching Problem 361

root. Calculate a sub-optimal solution s* with some heuristics if possible and
store its value to z*.

2. (Iteration) If L is empty, then terminate. Return s* as the optimal solution
and 2:* as the optimal value.

3. (Selection) Select a branching node Node from L with some leaf selection
rule.

4. (Branching) Form the partition ip(Node) = {N1,... ,Nk} of the selected
branching node.

5. (Bounding) Calculate the lower bounds g(N{) for all the new nodes, i =
1, . . . ,k. If a feasible solution arises during the bound calculations, then
modify the current best solution s* and its object value z* when necessary.

6. (Fathoming) Update the set L of live leaves according to the explored node
and the actual value of z*:

(a) add N1,... ,Nk to L,
(b) delete Node from L,

(c) delete all TV e L for which g(N) > z*.

7. (Next iteration) Go to the next iteration (step 2).

We have two major alternatives to select a leaf at step 3. We can select the
leaf with the minimal assigned lower bound. This way the set of live leaves usually
grows very rapidly since we build the tree more or less level by level horizontally.
A more practical approach selects the leaf for which the ratio of the assigned lower
bound and the number of fixed variables is minimal. In this case we traverse the
tree in a depth-first fashion. This action provides feasible solutions at an early
phase of the processing and uses less memory. We will apply the second selection
criterion in our branch-and-bound procedures.

The main components of a B&B procedure are the branching operation tp,
the bounding function g, and the primal heuristics available for generating initial
solutions. Furthermore, upper bound heuristics can also be applied to generate
candidate solutions based on the partial solutions of the tree nodes. Next we
consider all these components in detail and give a complete branch-and-bound
procedure.

4 Lower bounds
In this section we discuss four lower bounds for the 3MP. The first bound is problem-
specific, while the other three are based on the Lagrangian relaxations of IP1 and
IP2a. The latter program provides two alternatives for the relaxation, either by
relaxing the constraints (5) or (7).

362 Gábor Magyar, Mika Johnsson. Olli Nevalainen

The first lower bound ("LB1"), introduced in [6] (as bound "D") is applicable
for the Euclidean case only:

1. For each point, calculate the distance to the closest point, store these distances
together with the indices in the list Si.

2. For each point, calculate the distance to the second closest point, store these
distances together with the indices in the list S<>.

3. Sort lists Si and S--> into an increasing order on the distances.

4. Omit duplicates from Si and S2 (i.e., rule out the edge b — a if a — b has
occurred previously), also rule out a — c if a — b and b — c are already in the
list and a — c is the longest distance in the triplet (a — b — c). The deletion is
done first in S2 and in Si only if Si itself requires the deletion (all deletion
conditions are met in Si). When selecting the distances from the sorted lists
Si and S2, we omit those distances that would connect a point to more than
two other points.

5. If there are less than 2/3n values in Si, move 2/3n — |Si| elements with
the shortest distances from S2 to Si. Alternatively, if |Si| > 2/3n, delete
at a maximum |Si| — 2/3n values from Si. Deletion is allowed only if the
points connected by the deleted edge are still connected after the deletion to
some other point in Si by an edge. Deletions are started from the end of Si
(the largest values first). The operation is implemented by maintaining a list
R — (r 1,... , r| Sl |) where is the degree of point i in Si. So the deletion of
the element (dij , i , j) is allowed only if r.L > 1 and rj > 1. After a successful
deletion, R is updated, r-j = rj — 1, rj = rj — 1.

6. Sum the first 2/3n distances in Si to get the lower bound.

The Lagrangian relaxation (see e.g. [4, 14]) is a general way for obtaining high
quality lower bounds for hard combinatorial optimization problems. By attach-
ing Lagrangian multipliers to some of the constraints of the original problem and
relaxing these constraints into the objective function, we get a Lagrangian relax-
ation, which is easier to solve than the original problem. Maximizing the optimal
values of the Lagrangian relaxation for A, we obtain the Lagrangian dual program.
The optimal value of the Lagrangian dual is a valid lower bound (in the case of
minimization) and in the optimal case it can reach the optimal value of the linear
programming relaxation of the original problem. The main advantage of the La-
grangian relaxation is that the solution process is much faster than solving the LP
relaxation. The maximization of the value of the Lagrangian dual is often done by
the subgradient optimization method, in which we update the Lagrangian multipli-
ers in a systematic way to achieve the best lower bound. The Lagrangian relaxation
technique has been applied successfully to many hard combinatorial optimization
problems, see for example, [1, 2, 4].

On the Exact Solution of the Euclidean Three-Matching Problem 363

Next we describe three Lagrangian lower bounds and the subgradient, opti-
mization procedure for maximizing the bounds. Our first bound is based on the
Lagrangian relaxation of IP1 [6]. The latter two relaxations were introduced in [2]
for the general p-median problem. Here we recall them with such modifications
that make them applicable to the 3MP.

In the case of the relaxation for the problem formulation of IP1, we relax the
constraints (2) into the objective function by introducing the Lagrangian multipliers
A j (j G V) and get the following Lagrangian relaxation:

min zjji = Y^ d i i X i i + X ! (X ! X ii + \ X ! x i k

iev jev jev \ev kev

= J2 Y,\dii + Xi + x*i ~ H A i
iev jev ^ ' jev

subject to

Xij G { 0 , 1 } ViGVjGV (10)

This program is easy to solve. The solution becomes straightforward after ex-
amining the signs of the terms D^ = d^ + Aj + 0.5Ai since the second sum of (9)
is constant with respect to x. Hence, the optimal solution of zdi is:

, . - / 0 if D^ > 0,
\ l if D^ < 0. 1 J

Now we describe two Lagrangian relaxations for the program IP2a. Let I\y
denote the set of vertices that have been previously fixed to be medians and Kq
the vertices that have been fixed to be non-medians by the branching rules of the
B&B procedure.

As a second relaxation, we relax the constraints (7) by introducing the multipli-
ers Ai(i G V). The resulting program allows us to allocate the points to non-medians
and, in addition, a point may have an arbitrary number of other points allocated
to itself. We get the following Lagrangian relaxation:

minZD2 — X ! X I ^jXij -j- Y -M E Xij-2xu) =
iev-K0 jev-Ki iev-Ki S'ev&j^i * '

= XI X! + + X (dii
 ~

iev-k0 jev-KiSijjH iev-K0

subject to

364 Gábor Magyar, Mika Johnsson. Olli Nevalainen

5 3 xij — 1 Vj e i / - /v 1 (13)
iev-Ko-K-,

xu = n /3 - \Ki\ (14)
Ki

Ai = 0 Vi e Ki (15)
xu = 0 Vi e KQ (16)

— 1 \/i e Ki (17)
Xij G {0 ,1} Vi e v,j e v (18)

To solve this program, we define aj as the minimum cost of allocation vertex j
other than to itself, i.e., the minimal arising cost if vertex j is not a median:

otj = min (dij + Ai) Vj G V - ICi (19) iEV — Koiii^j

The Lagrangian relaxation (equations (12)-(18)) then can be changed for the
following problem which has the same optimal value as the Lagrangian relaxation.
The basis; of this substitution is that the minimal value of ^ 2 i e V _ K o ^ (dij + Ai)r,ij
is equal to aj if j £ V - K\, by (13).

min zD2 = 53 aj + 53 dii + 5 3 ~ 2Xi ~ ai)xij (20)
jav-Ki j e « , jev-i<o-Ki

subject to

J] xii=n/3-\K1\ (21)
iev-Ko-Ki

xu = 1 V? 6 Ki (22)
xu£{ 0 ,1} Vi€V-Ko (23)

The optimal solution of this program is found by setting xa to 1 for i g K\ and
the remaining n/3 — |/iTi| xa with the smallest (da — 2 A j — c^) (i £ V — K0 — Ki)
to 1, while all the other xu are set to zero. If the values of the variables xa are
denoted by x*u the optimal solution of the above program, then the other variables
(,x*j) are calculated as follows:

if x*j = 0 and i corresponds to the minimum
for a j in (19) (i ¿ j) , (24)
otherwise (i ^ j).

On the Exact Solution of the Euclidean Three-Matching Problem 365

Thirdly, we relax the constraints (5) of IP2a by introducing the Lagrangian
multipliers A j (j G V) and get the following Lagrangian relaxation:

min zm = E E dvXii ~ E Xi (Xii ~ 1

iev-Kojev-K! jev \ev

- E E i^ j A,)*,, -] T (rfj, - A,) ! E 'V
iev-Kojev-K! jei<i jev

subject to

E Xii = n/Z-\Ki\ (26)
iev-Ko-Ki

^ ^ Xij — 2Xa Vi G V (27)
jev-K^jjti

xu = 0 Vi G Ko (28)
— 1 Vi G Kl • (29)

Xij e {o, 1} Vi G V,j G V (30)

The relaxation disregards the constraint that every point must be allocated to
a median. Therefore, every selected median point will still have exactly two other
points allocated to it, but a point can be allocated to several medians.

To solve this program, let us consider the effect of specifying that k is a median
vertex. This implies the settings xkk — 1 a n d xk j — 1 where j corresponds to the
indices of the smallest or second smallest value of (dkj — Aj), j G V — Kx — {fc}.
This is true, because the constraints (27) ensure that every selected median will
have the two points with the smallest (dkj — Aj) allocated to itself. Because the
constraints (5) have been relaxed, a point can be allocated to several medians. We
denote by the arising cost when deciding that vertex k will be a median:

ak = (dkk - Ak) + min (dkj - \k) + 2ndmin (dkj - Xk), Vk G V - I(0 jev-KxUj^tk jev-Ki&j^tk
. (31)

where "2ndmin" denotes the second smallest value of the expression.
The solution of the Lagrangian relaxation of (25)-(30) now can be obtained by

solving the following problem which has the same optimal value:

min zD3 = E aixa + E (32)
iev-Ko jev

subject to

366 Gábor Magyar, Mika Johnsson. Olli Nevalainen

E = n / 3 - l ^ i I (33)
iev-Ko-Ki

Xu = 1 V i e Ki
zu e {o, 1} Vie v-Ko

(34)
(35)

The optimal solution of this program is found by selecting the needed n/ 3— 11\ \ \
medians as follows: set xn to 1 for the indices i (i £ V — Kq - Ki) which give the
smallest a* values. The other xu values (except i e Ki) are set to 0. Denoting the
optimal assignment of the diagonal elements by x*u, the remaining variables (x*j)
are allocated as follows:

The problem reduction by calculating penalties is a common technique in La-
grangian relaxations. Suppose that we have solved the Lagrangian relaxation to
optimality. We can then estimate the increase in the lower bound which would
result from forcing a variable to either 0 or 1. If the lower bound resulting from
imposing some condition on a variable is above some known upper bound to the
problem, then that condition cannot be satisfied in the optimal solution of the orig-
inal problem. This means that we can fix the value of the given variable as it is in
the optimal solution of the Lagrangian relaxation. For example, if a variable x*j is
0 in the optimal solution of the Lagrangian relaxation, and the penalty for forcing
x*.j to be 1 results in exceeding the known upper bound, then the value of x*̂ can
be fixed to 0 and the size of the problem can be reduced. For the third relaxation,
we include the calculation of the penalties, where we have four cases for = 0
and two cases for x*- = 1. i j

Finally, we describe the method that is applied for maximizing the optimal
values of the Lagrangian dual programs. We will denote the three described La-
grangian relaxations by "LR1", "LR2" and " LR3" and "LR3P" (LR3 with penal-
ties). In the above relaxations, the Lagrangian multipliers are unconstrained in
sign, because the relaxed constraints are equalities in every case. We apply the
following subgradient optimization procedure in order to maximize the value of the
Lagrangian dual programs:

1. Determine an upper bound zub to the problem. This can be done by any of
our previous heuristic methods, see for exapmle, [6, 9, 10]. Set z*L to —oo,
which will denote the maximal lower bound.

2. Initialize the Lagrangian multipliers to Xj = 0, j £ V.

3. Solve the Lagrangian relaxation with the actual set of Lagrangian multipliers.
Let z*D denote the optimal value of the relaxation, x*i} the optimal solution
and M* the associated median set (in the case of LR2 and LR3).

if x*- = 0 and j corresponds to the smallest or the
second smallest index for ai in (31) (i ^ j),
otherwise (i /])•

(36)

On the Exact Solution of the Euclidean Three-Matching Problem 367

4. S e t z*L = ma,x(zQ,zl).

5. Terminate if zub < z l , which means that the maximal lower bound is found.
Otherwise go to step 6.

6. Perform the penalty tests outlined above (case LR3P).

7. Calculate the subgradient vector S:

S j = Y , + \ £ x h - 1 V i e Vfor LRl (37)
iev kev

Si= E x*j - 2x*n Vi e yfor LR2 (38)
jevgij^i

S j = 1 - E x i j G y f o r L R 3 (3 9)
ieM'

8. If Sj '= 0 for all j G y , then terminate; the optimal solution of the original
problem is found. Otherwise go to step 9.

9. Calculate the step size T for updating the multipliers by

T = (40)

where n is a constant (0 < it < 2) controlling the step size of the procedure.

10. Update the multipliers by

A j = A j + T S j , V j € y (4 1)

11. Go to step 3 for the next subgradient iteration unless some termination cri-
teria (see below) is satisfied. Else stop and return z*L as the maximal lower
bound.

We set the value of it initially to 2. After that it is halved after every 30 itera-
tions if the value of the best lower bound has not been improving. The procedure
terminates after reaching a predefined total number of iterations which is set to
200.

Now we are in the position to compare the lower bounds. Table 1 shows a
summary of the results of practical tests with 20 Euclidean problem instances1. It
should be noted that all the above bounds except the first one (LB1) can deal with

1 T h e test problems are available from http : / /www.cs .utu. f i / research/pro jects /3mp/

http://www.cs.utu.fi/research/projects/3mp/

368 Gábor Magyar, Mika Johnsson. Olli Nevalainen

Prob Pts LR3P LR3 LR1 LR2 LB1 max LB O P T
f21 21 0,00 0,03 8,31 8,31 7,52 159,73 159,73
f27 27 1,22 1,22 7,88 7,91 10,45 7913,53 8011,08
f33 33 0,00 0,00 7,31 7,32 8,31 255,69 255,69
f39 39 10,63 10,63 15,79 15,79 14,31 252,31 282,31
39a 39 1,56 1,56 9,98 9,98 7,55 771,74 783,96
39b 39 7,47 7,47 17,03 17,06 16,76 764,45 826,14
39c 39 0,54 0,54 9,81 9,84 11,44 954,21 959,38
39d 39 1,65 1,65 10,41 10,44 10,34 768,33 781,22
39e 39 6,25 6,25 13,00 13,01 16,11 817,82 872,35
42a 42 6,14 6,14 15,14 15,16 15,77 890,83 949,09
42b 42 5,41 5,41 15,43 15,48 15,28 814,00 860,59
45a 45 0,55 0,55 10,92 10,94 10,52 1007,60 1013,14
45b 45 4,20 4,20 20,34 20,36 22,62 944,18 985,60
48a 48 0,00 0,00 5,12 5,13 4,84 996,61 996,61
48b 48 0,00 0,00 15,52 15,53 11,66 967,83 967,83
51a 51 1,78 ' 1,78 14,19 14,20 13,26 966,01 983,55
51b 51 3,01 3,01 11,07 11,09 9,17 973,57 1003,82

eil 51 51 2,36 2,36 8,33 8,33 8,66 259,34 265,61
f99 99 0,89 0,89 5,99 5,99 6,88 382,78 386,23

rat99 99 1,07 1,07 8,88 8,89 9,60 743,48 751,53
Average 2,7367 2,7382 11,5233 11,5372 11,5542

Table 1: Test results for different lower bounds and the effect of the penalties for the
bound of LR3. The values show the difference from the optimal value in percents.

any kind of distance matrix. The problem instances "rat99" and "eil51" are from
the TSPLIB [15] and the instances "f21", "f27", "f33", "f39", "f99" are prefixes
of the files "eil51", "krobl50", "rat99", "rat783" and "eillOl" of the TSPLIB,
respectively. The other 13 files are generated by picking the co-ordinates of the
points randomly and independently within the range [1,300]. The results of Table 1
show the difference from the optimum. Column 8 shows the value of the maximal
lower bound of the five bounds and the last column shows the optimal value, which
we calculated with the B&B procedure. The averages of the differences from the
optimum are indicated in the last row.

The results indicate that LR3 outperforms the other bounds. Furthermore, the
penalties still improve the bound in one case (f21). The average difference between
the bound LR3 (LR3P) and the optimum is 2.7367% for the test problems. Some
problems (e.g., f39, 39b and 39e) are harder than the others because the bound is
farther from the optimum. On the other hand, the bound can also be very close
to the optimum. In some cases it even reaches the optimum, for exapmle, f21, f33,
48a and 48b.

The results of LR1 and LR2 are practically identical and LB1 also seems to
be as good as these two bounds. The difference between LR3 and the three other
bounds is relatively large. Therefore, the application of LR3 is justified in the B&B
procedure, as the quality of the lower bound is essential. However, the calculation ̂

On the Exact Solution of the Euclidean Three-Matching Problem 369

of the bound LB1 is much faster than of the other three, which require many
hundreds of iteration steps of the subgradient method. Therefore, we will examine
the application of this bound in the B&B procedure.

Finally, the results of Table 1 are also in line with the observations of [2], i.e.,
the bound LR3 clearly outperforms LR2.

5 Branching rules
Next we equip LR3P with appropriate branching rules to build up a complete
branch-and-bound procedure for the 3MP. We describe three different branching
rules. The first one was introduced in [2] for LR3. The other two can be considered
as enhancements or extensions of the first one. The branching rules choose variables
to the sets of K0 (non-medians) and K\ (medians) (cf. Section 4) systematically.
A variable is referred as a free variable unless the branching rules or some other
operations, for example the application of the penalties, have fixed its value.

Rule 1. The first branching rule [2] selects the variable Xjj corresponding to

Q; = min a-, (42) J ieM'-Ki

and sets Xjj either to 0 (non-median, K0 = K0 -I- { j }) or to 1 (median,/^ =
K\ -I- { j }) in the descendant nodes. This rule selects the median point from the
selected free medians of the Lagrangian relaxation and gives a binary enumeration
tree.

Rule 2. This rule performs a 3-ary branching based on a free variable Xjk, where
j is determined by (42) as above. The vertex k corresponds to min djk among the
free variables Xjk (i.e., it represents the smallest possible allocation cost of a point
to j). In one branch, we perform the partitioning by fixing Xjj to 0 (I<0 = Ko + {;j}).
In the other two branches, we set j as a median by fixing xjj — 1 (K1 = Ki + {j}).
The latter two branches differ in the value of the variable namely we fix Xjk = 1
in one of them (this also yields that k becomes a non-median), and Xjk = 0 in the
other. This rule is an extension of rule 1 in the sense that in addition to deciding
whether point j is a median or not, we also decide an allocated point k in the case
when j was selected as a median.

Rule 3. This rule is a modification of rule 2. We select now the branching
variable Xjk corresponding to mindjk, where j € V — Kq — Ki,k £ V — K\,k ^ j
and Xjk is free. The difference from the previous rule is that the candidate for
the median point (j) is not determined by (42), but it is selected according to the
minimal value of djk, where j can be any of the possible candidates for a median.
The branching is similar to rule 2, this again yields a 3-ary tree.

The above branching rules are exhausted when we have fixed the required num-
ber of medians, i.e., |Ii\| = n/3 (or |A'0| = 2n/3). It seems to be problematic
that in the p-median problem the solution resulting from the relaxation LR3 is
restricted to find the n/3 median points. In the general p-median problem, the

370 Gábor Magyar, Mika Johnsson. Olli Nevalainen

remaining points are allocated to the closest medians and a median can have an
arbitrary number of other points allocated to it. The solution of 3MP, however,
requires that each median has exactly two other points allocated. This difficulty
can be overcome by applying the Hungarian method (e.g., see [13]) as follows: Let
us create an assignment problem where we put the median points in duplicates
into the first set (i.e., every selected median point will appear twice). The other
set includes the non-median points. Performing the Hungarian method for the
assignment of the elements of the two sets results for each median point a match-
ing to exactly two non-median points, where the allocated points are different for
each pair of median points. With this additional procedure, the solution of 3MP
is complete after solving the appropriate restricted version of the general p-median
problem. For this reason, it is enough to select the n/3 median points optimally
(central points of the triplets), and the exact solution of the 3MP can be derived
from that.

In order to find tight upper bounds during the B&B procedure, we perform the
Hungarian method also on the median set M* which is associated with the best
Lagrangian lower bound from the subgradient procedure. This way the size of the
tree can be reduced since the better upper bounds enable us to fathom some more
unnecessary leaves, see step 6 of the B&B procedure in Section 3.

It was noted above that the calculation of a high quality lower bound is achieved
by 200 iterations of the subgradient method. This is applied at the root node. We
perform only 30 iterations at other levels of the tree. The Lagrangian multipliers of
the tree nodes are initialized to their best values in the parent nodes; this common
practice enables a smaller number of iterations at the lower levels of the tree. The
value of 7t is initialized to 1 in the tree nodes, and it is halved after every fifth
iteration.

When adding a variable to the set Kq, all the variables in its row are also fixed to
0, as it cannot have any points allocated. If a variable is added to K\, the variables
in its column (except the diagonal) are fixed to 0, as it cannot be allocated to other
points. We apply some additional tests on the fixed variables, and, if it is possible,
we still fix some more variables. These additional tests take place after the penalty
tests and they work recursively until no new variable has been fixed.

The following tests are performed:

1. If all three variables have been assigned to the median (the median and the
two allocated points), then all the other free variables of the row of the median
can be fixed to 0.

2. If a row of a median contains only the required number of free variables
(i.e., 1 or 2), then those variables are automatically allocated to the median;
furthermore, the appropriate columns are included in the set of Kq. The other
variables in the row and column of the automatically allocated variables are
fixed to 0.

3. If a row has less than three free variables and no variable has been fixed
to 1, then it is impossible for it to be a row of a median. Therefore, the

On the Exact Solution of the Euclidean Three-Matching Problem 371

Time (sec) Nodes
Problem Pts PI P2 P3 PI P2 P3

f27 27 17 7 12 91 19 73
£39 39 N / A 76803 31903 N / A N / A 323599
39a 39 24 27 16 127 169 73
39b 39 N / A 16935 4946 N / A 143098 29068
39c 39 28 20 9 131 115 13
39d 39 44 29 24 195 208 109
39e 39 9490 5034 741 46847 46789 3718
42a 42 14359 7093 2348 65345 52468 12310
42b 42 51916 17670 9847 120969 142495 59497
45a 45 19 9 11 59 13 25
45b 45 5720 5226 5573 22121 33475 33484
51a 51 558 58 105 2169 259 439
51b 51 6832 2962 554 29471 17557 2296

eil51 51 4216 1010 284 15243 4984 1141
f99 99 N / A 3667 4055 N / A 10546 7228

rat99 99 N / A 9692 3444 N / A 23731 7012

Table 2: A comparison of the branching rules

corresponding vertex is included in Ko and all the elements of the row are
fixed to 0.

4. If there is only one free variable in a column, then it is fixed to 1. The neces-
sary additional operations are also performed, i.e., the index corresponding to
the row of the fixed variable is included in K\ if it has not yet been included.

Finally, some feasibility tests are also performed after each subgradient, iteration,
i.e., if too many medians or non-medians have been fixed by the deterministic rules,
or all the elements of a column have been fixed to 0, or there is no free point to
allocate to a previously identified median, then the corresponding tree node will be
fathomed.

Now we have the components for a complete branch-and-bound procedure. In
the light of the previous experiments on the quality of the lower bounds, we will
apply the bound which is based on our third relaxation (LR3). Next we examine
the efficiency of the branching rules, see Table 2. All three procedures apply the
penalties and the additional variable tests when calculating the lower bound. They
differ only in the branching rules they apply, and we denote them by "PI" , "P2" and
" P3", respectively. The running times2 (in seconds) and the number of examined
nodes are indicated in Table 2 for the selected problem instances.

The results show that the second and third branching rule have significantly
better performance than the first rule. Furthermore, the third rule is better than

2 All computational tests were performed on a 133MHz Pentium PC.

372 Gábor Magyar, Mika Johnsson. Olli Nevalainen

Time (sec) Nodes
Problem Pts P3 P3- P3- - P3 P3- P3- -

m 21 1 2 19 1 16 40
f27 27 12 26 187 73 244 436
f33 33 1 1 3 1 1 1
39a 39 16 28 298 73 169 346
39c 39 9 29 171 13 181 139
39d 39 24 32 275 109 160 268
39e 39 741 1617 26072 3718 10867 17242
45a 45 11 15 205 25 43 130
51a 51 105 675 7515 439 4096 5284
51b 51 554 4086 32615 2296 22360 23635

eil51 51 284 851 11843 1141 4663 9352

Table 3: The effect of the penalty tests and the additional variable tests

the second one, and therefore, the application of that rule is desirable in an effi-
cient branch-and-bound procedure. The average ratio of the running times of the
procedures PI and P3 was roughly five; for P2 and P3 the corresponding value was
two. On average, the procedure PI generated ca. five times more nodes than P3,
while the average ratio of the number of nodes for P2 and P3 was about three.
The average processing time per a node was approximately the same for all three
procedures.

Concerning the efficiency of the penalties and the additional variable tests, Ta-
ble 3 presents a comparison which is based on some of the easier problem instances.
In the light of the experiments with the branching rules (see Table 2), the third
branching rule is applied in all three procedures. The procedures differ only in the
way they apply the penalties and the variable tests: "P3" denotes the variant which
applies both the penalties and the additional tests (this variant was also included
in the previous tests), "P3-" denotes the variant where the penalties are applied
but the additional variable tests are not, "P3- -" denotes the variant without the
penalties and without the additional variable tests. The table indicates the running
times in seconds and the number of examined nodes for the selected problems.

The results of Table 3 clearly show the advantages of applying both the penalties
and the additional variable tests. The penalties generally enable to fix a large
portion of the variables and have two main advantages. Firstly, by fixing many of
the variables, the calculation of the lower bound becomes much faster. Secondly,
the performance of the branch-and-bound procedure based on the lower bound
equipped with the penalty tests is much better, since eliminating many of the free
variables reduces the size of the enumeration tree.

The average ratio of the running times of the procedure without the penalties
(P3- -) and with the penalties (P3-) was roughly ten, while the average ratio of the
number of nodes was two for the same procedures. Concerning the effect of the
additional variable tests, the average ratio of the running times of the procedure

On the Exact Solution of the Euclidean Three-Matching Problem 373

without these tests (P3-) and with these tests (P3) was roughly three, whereas the
average ratio of the number of nodes was six for the same procedures. The average
processing time of one tree node was approximately 3.5 seconds for P3, 5.7 for P3-,
and 1.0 for P3- -. These values correspond to the observation that the application
of the penalties demands more processing time. The number of nodes is, however,
much smaller when penalties are applied. The additional variable tests speed up
the calculation, and their application also yields a smaller number of tree nodes on
average. To summarize, the experiments confirm that the application of both the
penalties and the additional variable tests is advantageous.

6 Comparisons to other approaches

In this section, we compare the performance of P3 with our previous B&B variant
("P-LB1") [6] and with general MIP solver packages "OSLMIP"3 and "lp-solve"4.
The P-LB1 is based on the quickly computable lower bound LB1. The branching is
done by selecting the free variable with the smallest cost and fixing its value either
to 0 or to 1 in the two descendant nodes. The P-LB1 also performs some variable
manipulating procedures, which can fix certain additional variables on the basis of
the previous branching decisions.

Table 4 shows the running times for the different procedures in seconds. The
better solver (OSLMIP) was performed on all the three integer programs, i.e., on
IP1, IP2a and IP2b, while the other (lp-solve) is performed on IP1 only.

The results of lp-solve with IP2a and IP2b are not included in Table 4, because
they were much worse than with the formulation IP1. We could obtain results
only for the first two problems. These results were roughly 6-10 times worse than
the ones with IP1. For the other problems, we interrupted the execution of the
procedures after 8-10 hours without termination. These observations are especially
interesting if we compare them with the results of the other solver, which showed
that the latter two formulations are much more promising to solve.

The results of Table 4 show that the procedure P3 outperforms the procedure
P-LB1 due to the sharper bounding function. The calculation of the specific bound
of P-LB1 is much faster than the bound of P3, but the improvement in the quality
of the bound yields a much smaller tree size and total running time.

Concerning the comparison with the general MIP solvers, the results are diverse.
The highly optimized machine code of the first solver (OSLMIP) gives better results
than our procedure, while the general package (lp-solve) was much worse than our
method. We think that differences in the running time between our procedure and
the better solver may lay mainly in technical details, as we used general techniques
and high-level programming languages for the implementation. The ratios between
the running times of P3 and OSLMIP show that the difference does not grow with

3 T h e package called O S L M I P is developed by IBM and it is one of the market lead-
ers with respect to the performance. We downloaded the 60-day trial version from
ht tp : / / i sm.bou lder . ibm.com/es / os lv2 / s tar tme .htm

4 T h e package lp-solve can be downloaded from f tp : / / f tp . i cs .e le . tue .n l /pub / lp -so lve /

http://ism.boulder.ibm.com/es/oslv2/startme.htm

374 Gábor Magyar, Mika Johnsson. Olli Nevalainen

Problem Pts OSL-IP1 OSL-IP2a OSL-IP2b P-LB1 P3 LP-IP1
f21 21 10 7 4 8 1 34
f27 27 19 8 12 59 12 386
f33 33 10 4 4 98 1 181
f39 39 8114 620 814 122689 31903 N / A
39a 39 76 16 43 67 16 98
39b 39 7642 644 206 74035 4946 N / A
39c 39 71 13 15 2541 9 21452
39d 39 32 14 27 1000 24 2369
39e 39 1220 402 160 59605 741 20435
42a 42 3670 584 406 31272 2348 231900
42b 42 5787 452 543 N / A 9847 N / A
45a 45 88 16 25 N / A 11 N / A
45b 45 423 107 62 N / A 5573 N / A
48a 48 9 9 7 145 1 200
48b 48 39 8 8 N / A 3 N / A
51a 51 130 23 31 186560 105 N / A
51b 51 841 302 88 N / A 554 N / A

eil51 51 777 613 133 N / A 284 N / A
f99 99 2889 718 1312 N / A 4055 N / A

rat99 99 N / A 3545 2100 N / A 3444 N / A

Table 4: A comparison of some methods for finding the exact solution of the 3MP

the problem size but stays at a constant level. However, for some hard problems
this difference can increase, see problems f'39, 39b, 42b, 45b.

Experiments with problem instances with different cost matrix show a rather dif-
ferent trend [11]. It turned out that matrices with the triangle inequality property
are hard for our procedure, while on totally random cost matrices our procedure is
superior to the other approaches.

Comparing the efficiency of the MIP solvers with respect to the applied integer
program, as stated above, it is important which formulation is used as an input. The
results of OSLMIP show that the modified p-median formulation is much better.
Moreover, IP2b seems to be slightly better than IP2a.

7 Conclusions
We have considered the exact solution of an NP-complete graph problem, the three-
matching problem. We introduced a problem-specific lower bound and a Lagrangian
lower bound based on an integer formulation to the problem. Based on the con-
nection to the p-median problem [2], two further Lagrangian relaxations were given
to the problem. We gave a solution of the 3MP by modifying an algorithm for the
p-median problem.

Our empirical results showed that the lower bounds were quite different, and
special care must be taken when selecting the constraints to be relaxed to the

On the Exact Solution of the Euclidean Three-Matching Problem 375

objective function. It was also shown that two seeming!}' different approaches
gave the same lower bounds (LR1 and LR2). The application of the penalty tests
speeds up the calculation of the lower bound considerably because it eliminates a
large portion of the free variables.

We constructed several complete B&B procedures by introducing different
branching rules. Our modification of the branching rule of [2] gave the best perfor-
mance. Furthermore, we incorporated additional variable tests in order to enable
to fix more free variables. The efficiency of the branching rules were examined and
the application of the penalties and the additional variable tests were justified by
empirical tests.

We compared our B&B procedure with our previous algorithm, which uses a
quickly computable but worse lower bound, and the results clearly showed that
the increase in the quality of the bound was essential and the procedure with the
better bound outperformed the previous approach. Furthermore, we compared our
procedure with two general optimization packages, and the results were diverse.
The highly optimized machine code of a commercial MIP solver had better running
times than our procedure, but the ratios of the two running times seemed to remain
constant. The other solver, which was written in C, had a worse performance than
our procedure.

It was also shown that it was very important which integer program was used
in the MIP solvers. There is a significant difference between the formulations IP1
and IP2, but even the small difference between the formulations of IP2a and IP2b
can yield great differences in the performance of the solvers applied to the two
programs.

References
[1] E. Balas and M.J. Saltzman: An algorithm for the three-index assignment

problem, Operations Research 29 (1991), 150-161.

[2] N. Christofides and J.E. Beasley: A tree search algorithm for the p-median
problem, European Journal of Operational Research 10 (1982), p. 196-204.

[3] Y. Crama, A.W.J. Kolen, A.G. Oerlemans and F.C.R. Spieksma: Production
Planning in Automated Manufacturing, Springer-Verlag, 1994.

[4] M.L. Fisher: The Lagrangian relaxation method for solving integer program-
ming problems, Man. Sci. 27 (1981), 1-18.

[5] M. Johnsson, T. Leipala: Determining the manual setting order of components
on PC-boards, Journal of Manufacturing Systems, Vol. 15 No. 3 (1996), 155-
163.

[6] M. Johnsson, G. Magyar, 0 . Nevalainen: On the Euclidean 3-Matching Prob-
lem, Nordic Journal of Computing 5(1998), p. 143-171.

376 Gábor Magyar, Mika Johnsson. Olli Nevalainen

[7] P. J. M. van Laarhoven and W. H. m. Zijm: Production Preparation and
Numerical Control in PCB Assembly. The International Journal of Flexible
Manufacturing Systems, 5 (1993), p. 187-207.

[8] E.L. Lawler and D.E. Wood, "Branch-and-Bound Methods: A Survey", Oper-
ations Research 14 (1966), 699-719.

[9] G. Magyar, M.Johnsson, 0 . Nevalainen: Genetic algorithm approach for the
three-matching problem, Proceedings of the Third Nordic Workshop on Ge-
netic Algorithms and their Applications (3NWGA), p. 109-122, Aug. 1997.
(ftp://ftp.uwasa.fi/cs/3NWGA/Magyar.ps.Z)

[10] G. Magyar, M.Johnsson, 0 . Nevalainen: An adaptive hybrid GA for the 3-
matching problem, Turku Centre for Computer Science (TUCS) Technical

. Report 166, March, 1998.

[11] G. Magyar, M.Johnsson, O. Nevalainen: On the exact solution of the three-
matching problem, Turku Centre for Computer Science (TUCS) Technical Re-
port 199, October, 1998.

[12] K. Palletvuori, P. Luostarinen, K. Muurinen and O. Nevalainen: "On the
scheduling of a multipurpose laboratory analysis instrument", In 9th Euromi-
cro Workshop on Realtime Systems 97, 1997.

[13] C.H. Papadimitrou and K. Steiglitz: Combinatorial Optimization, Algorithms
and Complexity. Prentice-Hall, New Jersey, 1982.

[14] Modern Heuristic Techniques for Combinatorial Problems, edited by C.R.
Reeves. McGraw-Hill, 1995.

[15] G. Reinelt: TSPLIB - A Traveling Salesman Problem Library, ORSA Journal
on Computing 3 (1991), 376-384.

ftp://ftp.uwasa.fi/cs/3NWGA/Magyar.ps.Z

