
Acta Cybernetica 14 (1999) 341-356.

A parallelized sequential random search global
optimization algorithm

P.M. Ortigosa, J. Balogh, I. Garcia *

Abstract
This work deals with a stochastic global optimization algorithm, called

CRS (Controlled Random Search), which originally was devised as a sequen-
tial algorithm. Our work is intended to analyze the degree of parallelism that
can be introduced into CRS and to propose a new refined parallel CRS algo-
rithm (R P C R S) . As a first stage, evaluations of R P C R S were carried out by
simulating parallel implementations. The degree of parallelism of R P C R S is
controlled by a user given parameter whose value must be tuned to the size
of the parallel computer system. It will be shown that the greater the degree
of parallelism is the better the performance of the sequential and parallel
executions are.

Keywords: Parallel algorithm, Distributed Processing, Random Search,
Global Optimization.

1 Introduction
The generic global optimization problem can be described as:

m i n / (s) , s € S C Rn (1)

where the objective function, / (s) , is a real valued continuous nonlinear function
on S and the search domain, S, is a compact body. Under these conditions it is
known that the optimal solution value:

/ * = min f(s),s G S (2)
exists and is attained; i.e. the set:

S* = {sES-. f(s) = } ¿ 0 (3)
Two general models of Global Optimization methods exist: Deterministic meth-

ods which require a certain mathematical structure and Stochastic methods which
*This work was supported by the Tempus Program, by the Consejeria de Educación de la

Junta de Andalucía (0 7 / F S C / M D M) and by the Ministry of Education of Spain (C I C Y T T I C 9 6 -
1125-C03-03).

403

404 P.M. Ortigosa, J. Balogh, I. García

are based on the random generation of feasible trial points and nonlinear local op-
timization procedures. A profound discussion on the classification of methods can
be found in Torn and Zilinskas [15] and for a complete and rigorous mathemati-
cal description of global optimization methods, both deterministic and stochastic
approaches, the reader may consult the Handbook of Global Optimization [6].

On the other hand, there exists a question which frequently arises when a prac-
tical Global Optimization problem has to be solved: which kind of method, or which
particular algorithm, may be more appropriate to solve a particular problem?. The
answer could only be obtained from a deep analysis of the problem at hand. A wide
discussion on this subject can be found in [5], where relations between the problem,
its modeling and properties, and global optimization methods are studied. Roughly
speaking, it could be said that deterministic methods may be more efficient than
the stochastic ones, when an analytical expression of / , its derivatives, bounds and
useful properties are available. However, when / is a black-box function determin-
istic methods cannot be applied. In contrast, stochastic methods do not require
any specific structure of / , only a computational procedure to obtain the value of
the function at any location s G S [5] is needed. So, most optimization problems
can be solved by stochastic global optimization techniques.

For computationally expensive functions, stochastic global optimization meth-
ods have shown to be very useful because of, compared to deterministic methods,
fewer function evaluations are needed to obtain the solution of (1). In addition,
stochastic methods can be applied to problems where the objective function is not
continuous nor differentiable and only a tool for evaluating the function at any
location is required.

For most of the functions, global optimization is a NP hard problem. For
this reason, the global optimization problem is a suitable candidate for the use of
supercomputers, mainly for those functions whose evaluation is computationally
expensive.

This paper will only deal with a stochastic global optimization algorithm called
CRS and a new parallel version of CRS. CRS (Controlled Random Search) algo-
rithm was introduced by Price [9, 10, 11]. It is based on clustering techniques and
has proved to be very reliable and computationally inexpensive. In [2] a paral-
lel version of CRS (PCRS) was applied to efficiently solve a global optimization
problem coming from the image processing field, whose objective function were
computationally very expensive.

The aim of this work is to describe and evaluate a new refined version of PCRS,
called RPCRS. It was originally devised to be executed on parallel multicomputer
system, but it will be also shown that RPCRS outperforms CRS even when it is
run on a single processor system. Our study only covers analysis of the speed up
of RPCRS as compared to the original sequential CRS algorithm. Our analysis is
only based on empirical results obtained from experimental executions. Although
a wide set of standard test functions was used to validate our results, this work
does not provide any theoretical support to demonstrate that the same results can
be obtained using other functions.

Two different kinds of experiments were carried out for analyzing the speed up

A parallelized sequential random search global optimization algorithm 405

of RPCRS: those oriented to highlight advantages of its parallel nature and those
intended to show its capability for being executed on a parallel computer system.

This paper has been organized as follows: Section 2 describes the CRS algorithm
and its parallel version RPCRS. Section 3 is devoted to show experimental results
intended to evaluate the speed up of RPCRS compared to CRS, as a function of a
control parameter which determines the degree of parallelism. Finally, in Section 4,
numerical results of parallel executions of RPCRS, on a CRAY T3D using up to
16 processor elements, will be shown.

2 RPCRS, a parallel version of the CRS algorithm

The goal of this section is to describe the RPCRS algorithm; a refined version of
PCRS (Parallel Controlled Random Search) algorithm proposed in [2]. RPCRS is
a parallel algorithm based on the Controlled Random Search (CRS) algorithm of
Price [9, 10, 11]. Some parallel approaches of the original CRS algorithm have been
proposed and evaluated using several models of parallel computers and strategies
[1, 3, 4, 7, 12, 14, 16]. Our proposal only makes small modifications to the original
sequential version of CRS. These modifications are aimed at increasing the degree
of parallelism of CRS by creating a pile of work to feed the set of processors of a
parallel computer. RPCRS will allow to evaluate the objective function at several
trial points, simultaneously. Nevertheless, the general strategy used in CRS remains
in our parallel version. For the sake of clarity, description of CRS will precede to
RPCRS algorithm.

The Controlled Random Search algorithm, proposed by Price, is a simple and
direct procedure for global optimization, applicable both to unconstrained' and
constrained optimization problems [9, 10, 11]. In this Work, it is assumed that the
global optimization problem to be solved is that described by (1), where S is a
hyper-rectangle. Due to its simplicity, CRS has been used to solve many practical
problems but it has not been very popular among researchers on the theory of
Global Optimization because no analytical property can be derived.

CRS starts by evaluating the objective function at N trial points randomly
chosen over 5, (initialize step of Algorithm 2.1). Coordinates and the correspond-
ing value of the objective function, for the set of N trial points, are stored in an
array R = R°,... ,RN. The worst and besttrial points in R (Rw, RB) are then
computed at the update step. New trial points (P) are selected and evaluated, at
the generate step. The algorithm iteratively executes the update and generate
steps until stopping criteria are reached.

At the generate step two different trial points are computed; primary and
secondary trial points. Both kinds of trial points are defined in terms of the con-
figuration of a subset of n + 1 (J?-70,...,) trial points. , (i = 0 , . . . , n) are
randomly selected from the current set of N points stored at R (CRS is considered
the first algorithm which uses a population of points). Primary points are gener-
ated in a Nelder-Mead fashion [8] by mirroring a point) over the centroid, G,
of the remaining subset of points (/Z-7 0 , . . . ,RJ n- i) . In contrast, location of a sec-

406 P.M. Ortigosa, J. Balogh, I. García

(0 < i < N)

x)

Algorithm 2.1
Begin CRS(/ , S, N, NF,

initialize:
Iter = 0; Dmax = e + 0.1; ns = 0
Select at random a set, R, of N trial points R1

Compute f(Ri)\ (0<i<N)
while (D m a x > e OR f(Rw) - f(RB) < 5 OR Iter < NF„

update: Determine the trial points W and B such that
f(Rw) > f(R) > f(RB)- (0 < » < N)

Iter = Iter + 1
Begin generate:

Select randomly n + 1 points,), from the set R

P = 2 X G - Rjn._
if P 6 S AND f(P) < f(Rw

Rw = P; ns = ns + 1
else if RS = ns/Iter < 0.5

P = (G + Ri-)/2
Iter — Iter + 1
if f(P) <_}{RW)

RW = P; nS=HS+ 1
End generate

End while
Return {RB and f(RB)};

End C R S

Primary points

Rate of Success Test
Secondary points

f(RB) < f{Rl)\ (o <i<N)

ondary point is the middle point between Rin and the centroid G. While primary
points are intended to keep the search space as wide as possible (global search),
secondary points are conducive to convergence (local search). Secondary points
are only computed if the current primary trial point fails and the rate of success
(RS) in finding smaller values of Rw is bellow 50%. This general procedure may
be modified in a variety of ways, our version of CRS is detailed at Algorithm 2.1,
where stopping criteria are based on (i) the value of the maximum distance between
any two points in the set R (Dmax = max{d(R\ i?J); V 0 < i, j < N-, i j} < e),
(ii) the range of / (#) > i-e. f(Rw) - f(RB) < 6] where f(Rw) = m a x { f (R i) } ;
f(RB) = min{/(i?1)} ; and (iii) the number of function evaluations NFmax. Condi-
tion (i) ensures that all the trial points are located in a small cluster, condition (ii)
allows the algorithm to stop even when the trial points are a long distance apart
but the values of the function for all the trial points are almost equal one to each
other; this condition is useful for functions with several global optima. Finally,
condition (iii) will permit to leave the process in the case that algorithm does not

A parallelized sequential random search global optimization algorithm 407

converge.
It can be seen that CRS is a highly sequential algorithm, because every new

trial point, P, is generated from a subset of the current set R of TV trial points.
This current set of points consists of the best points found along the iterative proce-
dure. However, provided that R°,... ,RN~X can be simultaneously generated and
f(R°), • • •, / (-R^ - 1) concurrently computed, the algorithm exhibits some degree of
parallelism at the initialize stage.

In order to increase the degree of parallelism of CRS, the following strategy
has been introduced: After the initialize stage, using the same initial set (R) of
N trial points, a set of b primary points are generated and saved into a FIFO
buffer, A = A0,... ,Ab-1. After computing f{A°), Rw will be replaced by A0 iff
f(A°) < f(Rw). A0 is removed from the buffer and a new point is obtained by the
generate procedure and saved at the end of the buffer FIFO. The only difference
with Algorithm 2.1 is that a set of b trial points is always ready to be evaluated,
so the degree of parallelism is increased.

The best strategy for implementing this kind of parallel algorithms is a cen-
tralized model, where a master-worker communication scheme is applied. In our
model, the master processor executes the optimization algorithm and provides a
set of trial points to the worker processors, worker processors only evaluate the ob-
jective function at the trial points supplied by the master processor and after every
evaluation of the function they send the result back to the master processor [4].
Garcia et al [2, 4] have implemented a similar strategy using a fully asynchronous
model where the master processor does not start to generate primary or secondary
trial points until the initial sample set of trial points has been evaluated. At any
time worker processors keep information of a single trial point. Although this ap-
proach is fully asynchronous, several worker processors frequently may remain in a
idle state waiting for the master processor to provide a new trial point.

This drawback could be solved if worker processors always keep in a buffer a set
of trial points to be evaluated. So, when a worker processor finishes an evaluation,
it sends the result back to the master and goes on evaluating a new trial point
stored in its local buffer. Our parallel implementation of CRS (RPCRS) consists of
two different processes: Master_RPCRS (Algorithm 2.2) and Worker_RPCRS
(Algorithm 2.3).

The Master_RPCRS process consists of three different stages: (i) the ini-
tialize stage where the set R of N trial points are randomly chosen over 5, (ii)
a stage where b = NP x npoints primary trial points are computed and (iii) the
convergence loop where primary or secondary trial points are generated following
a strategy similar to Algorithm 2.1.

After initialize step, master processor cyclically distributes all the N trial
points among worker processors. If the number of worker processors (NP) were
greater than N, master processor would generate NP trial points and after receiving
their function values from worker processors, it would only save the best N trial
points at R. Then, master processor calculates b primary trial points and sends
npoints to each worker processor. Points P are computed using b different G and
W".

408 P.M. Ortigosa, J. Balogh, I. García

Algorithm 2.2
Begin Master_RPCRS(/, S, N,NP, npoints, NFmax,e)

initialize:
Iter = 0; Dmax = e + 0.1; n.s = 0
Select at random a set, R, of N trial points /?,*; (0 < i < N)

SEND N/NP trial points from R to each worker processor
RECEIVE N function values from the NP processors
do j = 1 : NP

do k = 1 : npoints # b = NP x npoints
Iter = Iter + 1
Gk = E ^ V ™
Pk = 2 x Gk - Rj" . # Primary points

SEND Pk to processor j; (k = 1 , . . . , npoints).
while (Dmax > e OR f(Rw) - f(RB) < S OR Iter < NFmax)

update: Determine the trial points W and B such that
f(Rw) > fiW) > f(RB) (0 <i<N)

Iter — Iter + 1
Pnew = gen_trial()
RECEIVE / (P) from processor idp # (1 < idp < NP)
SEND Pnew to processor idp
if f(P) <№w)

Rw = P; ns = ns + 1
End while
Return {RB and f(RB)}; # f(RB) < f (R (0 < i < N)

End MasterJRPCRS

In the convergence loop the greatest value of the function (f(Rw)) in the
set R°,..., RN_1 is determined. Also a new P (named Pnew) is computed in
gen_trial() procedure. In this procedure the algorithm will generate a primary or
a secondary trial point following the same strategy of CRS. Then, master proces-
sor waits for the arrival of a new value of the objective function from any worker
processor and immediately sends a new trial point Pnew to this worker processor.
After that, master processor checks if the received trial point is accepted or not
and decides if the next trial point should be a primary or a secondary trial point.

Worker_RPCRS process consists of an initial stage where worker processor
receives N/NP trial points from master processor, evaluates them and returns the
values of the function back to master processor. Then, worker processor receives
npoints to be evaluated. They are stored in a FIFO buffer, A. When a worker
processor has evaluated a trial point it sends the value of the function back to the
master processor and checks for the arrival of a new trial point. If a new point

A parallelized sequential random search global optimization algorithm 409

Algorithm 2.3
Begin Worker _RPCRS(/, S, N, NP., npoints)

RECEIVE N/NP trial points and store in a FIFO A
Compute /(A1 < i < N/NP
SEND N/NP values of the function (J (A%)) to the master processor
RECEIVE npoints from the master and store them into Aflrst,..., Alast

while (Master_RPCRS is working)
while there are stored points to evaluate (A ^ 0)

Evaluate f{A^irst)
SEND f(AilTSt) to master processor
if a new point has arrived from master

RECEIVE Alast

end while
wait for a new point from master processor
RECEIVE Alast

End while
End Worker JELPCRS

has arrived, worker processor reads the point and pushes it into the FIFO buffer.
Otherwise, worker processor goes on evaluating the next point of its buffer. If the
FIFO buffer A = 0 and master processor is still working, worker processor has to
wait for a new trial point from the master processor.

Using this strategy, idle time of worker processors is reduced (even eliminated),
and in addition communication overhead is decreased because communications and
computations are overlapped.

3 Evaluation of RPCRS on a uniprocessor envi-
ronment

In order to hide the set of problems associated to parallel implementations, such
as communication overhead or bottlenecks due to intensive communications, a ma-
chine independent evaluation of RPCRS has been realized; i.e. in this section
executions of RPCRS were carried out on a uniprocessor system and performance
was measured versus the number of function evaluations computed during the ex-
ecution of RPCRS. The goal of this analysis consists of determining the behavior
of RPCRS with respect to CRS as a function of the buffer size (b).

A set of twenty two test functions has been used to check convergence and
parallel performance of RPCRS. Due to the strong stochastic component of this
algorithm, the number of function evaluations carried out by RPCRS depends on
the particular execution. For this reason, the algorithm has been executed 100 times

410 P.M. Ortigosa, J. Balogh, I. García

for every value of the setting parameters, obtaining a significantly statistic sample.
From this data set, average value of the number of function evaluations and the
corresponding confidence intervals (95%) were computed (see [13]). Setting lower
and upper limits to a statistic implies that the probability of an interval covering
the mean is 0.95 or, expressed in another way, that on the average 95 out of 100
confidence intervals similarly obtained would cover the mean.

Table 1: Results of RPCRS for Goldstein/Price and ShekellO test functions.'1' and
mean 98% and 97% of success were obtained respectively.

Goldstein/Price Test Function
Cluster Size = 25 x ?i Cluster Size = 50 x n Cluster Size = 100 x v.

b NoFE Conf.Int. NoFE Conf.Int. NoFE Conf.Int.
1 <1>1622 [1604,1640] 3254 [3230,3278] 6505 [6467,6544]
2 1650 [1632,1667] 3261 [3238,3284] 6511 [6479,6543]
3 1633 [1609,1657] 3261 [3238,3284] 6502 [6473,6532]
4 1649 [1630,1669] 3256 [3229,3283] 6501 [6464,6539]
8 1631 [1612,1649] 3235 [3207,3264] 6520 [6483,6558]

16 1599 [1575,1623] 3212 [3186,3237] 6431 [6394,6468]
32 1606 [1574,1637] 3146 [3112,3180] 6340 [6301,6378]
64 1706 [1674,1739] 3149 [3112,3186] 6229 [6195,6264]

ShekellO Test Function
1 5310 [5262,5357] 10614 [10562,10666] 21454 [21367,21540]
2 (2>5315 [5260,5370] 10645 [10592,10698] 21543 [21475,21611]
3 5326 [5283,5369] 10620 [10562,10678] 21523 [21433,21613]
4 5335 [5295,5375] 10576 [10506,10646] 21498 [21425,21571]
8 5279 [5229,5329] 10575 [10509,10642] 21472 [21390,21553]

16 5161 [5117,5206] 10477 [10409,10545] 21452 [21371,21532]
32 5049 [4945,5152] 10237 [10171,10303] 21066 [20987,21145]
64 5059 [4905,5213] 9784 [9728,9839] 20660 [20577,2074.3]

In order to facilitate analysis of the behavior of RPCRS, in a first set of ex-
perimental tests, only six test functions were used: Goldstein/Price, Hartman3,
Hartman6, Shekel5, Shekel7 and ShekellO [15].

Two of the RPCRS's input parameters which play an important role in the
performance evaluation are: the number of trial points N defining the cluster of
trial points and the size b of the buffer. During the first set of tests, performance
evaluation has been made as a function of both Ar and b. N has been established
as a function of the dimension of the problem ri, so values for N in our performance
evaluation were N = 25 x n, 50 x n, 75 x n and 100 x n. Values for the buffer
size b were 1, 2, 3, 4, 8, 16, 32, 64. It must be pointed out that for b = 1,
RPCRS algorithm matches to the original sequential version of CRS algorithm. So,

A parallelized sequential random search global optimization algorithm 411

performance evaluation will be realized by comparing R,PCR.S(/;) to R,PCRS(6 = 1).
For all the executions of RPCRS, the parameters used in the stopping criteria were:
e = 10-\ 5 = lCT5 and NFmox = 10°.

In Table 1 numerical results obtained from the evaluation of two test functions,
using several values of b and N, are given. In this table average values of the
number of function evaluations (NoFE) and the corresponding confidence intervals
(Conf.Int.) for a sample of hundred executions of RPCRS, are shown.

From Table 1, it must be noticed that for the smallest value of the cluster size
(25 x n) the percentage of success of RPCRS were not always 100% (see notes (1)
and (2)). Therefore, bigger values of the cluster size N must be chosen to ensure the
convergence of the algorithm. It can be seen in Table 1 that the number of function
evaluations tends to decrease when the cluster size N grows, though this tendency
can not be observed for Goldstein/Price Function with the smallest cluster size
value (25 x n)

Percentage Increase In the Number of Function Evaluations
Cluster Size = 25n

Percentage Increase in the Number of Function Evaluations
Cluster Size & 50n

G—OGOLD
R — n HARTS
O—OSHEK5
A—AHART6
o OSHEK7
V—7SHEK10

G—OGOLD
H—nHART3
O—OSHEKS
¿s—ÛHART6
<J r]SHEK7

- V—VSHEK10

Percentage Increase in the Number of Function Evaluations
Cluster Size = 75n

Percentage Increase in the Number of Function Evaluations
Cluster Size = 100n

G—qgolo
n— FÏHART3

• O—OSHEK5
A—ÛHART6

—3SHEK7
- V—VSHEKtO

Butter Size (b)

Figure 1: Percentage of increase in the number of function evaluations (N'oFE) for
several values of the cluster size (TV): % Increase = NEval i$E^IS{™ l ib=1) x 100.

412 P.M. Ortigosa, J. Balogh, I. García

Figure 1 shows results of RPCRS over the set of six test functions for the four-
values of cluster size. Due to the average values of the number of function eval-
uations range between 1000 and 40000, we decided not to draw the number of
function evaluation versus the buffer size b. Instead of this, in Figure 1, the per-
centage of increase (%Increase) in the number of function evaluations with respect
to the original case (b = 1), 1} x 100), has been drawn.

So Figure 1 shows the percentage of increase (or decrease) for several different
values of the cluster size. For Shekel 5 test function, a positive %Increase were
always obtained, though this increment in the number of function evaluations di-
minishes as the cluster size increases. For the remaining test functions, it can be
seen that %Increase varies just a little bit because the average values of the number
of function evaluations remains almost constant, with respect to b, when the buffer
size is small (1 < b < 8). For bigger buffer sizes the %Increase tends to be more
negative (e.g. Hartman6). Only for Goldstein/Price test function with a cluster
size jV = 25 x n, the %Increase is positive for a buffer size b = 64. This is due to the
number of points stored in the buffer is relatively large compared with the cluster
size. Goldstein/Price test function is two-dimensional and therefore the cluster size
in this case is smaller, 25 x n = 50, than the buffer size (b = 64); i.e. ^ < 1.

Results from this set of experiments seems to show that: (i) using a cluster size
large enough, convergence to the global optimum is ensured and (ii) for a value of
the buffer size smaller than the cluster size but greater than 8 the computational
cost of RPCRS diminishes or remains similar to the original CRS (RPCRS(6 = 1)).

In a second set of experiments, performance evaluation of RPCRS was made
for a wider set of test functions (see appendix for a detail description of these test
functions). In this case the cluster size was always iV — 100 x 71, ensuring that
for all the test functions N > b. This new set of test functions includes all the
functions previously used and seventeen additional functions. These functions have
been chosen in such a way that they are defined over several different domains of
definition, S C Rn, where S ranges from [—1,1] to [—600,600] and n from 1 to 10;
the number of global optima varies from 1 to > 10 and at least one of the functions
has more than 1000 local optima. For all the functions, 100% of success in finding
the optimal solution was obtained by RPCRS.

In Figure 2, performance evaluation of RPCRS, for the set of 22 test functions,
is shown. In this graph, X-axe represents the index of the test function. The
functions have been sorted by the increasing number of function evaluations needed
to reach the global solution when 6 = 1 (NEval(b = 1). For each function, results
for all the values of the buffer size (b) are displayed in a vertical straight line.
Roughly speaking it can be said that when the number of function evaluations is
big enough the performance of RPCRS is best than that of CRS; i.e. NEval(b) <
NEval(b = 1) for most of the values of b. For test functions with a computational
burden not too strong, the performance of the algorithm depending of the value
of the buffer size, has more fluctuations. Anyway it can be seen that only for 5
functions over the set of 22 test functions, RPCRS performs worst than CRS: i.e
NEval(b) > NEval(b = 1).

A parallelized sequential random search global optimization algorithm 413

Cluster size = 100n

CD co
CO
CD
i _ o c

15.0

-15.0

-5.0

10 15
Index Function

Figure 2: Percentage of increase in the number of function evaluations for several
values of the buffer size (b) and TV = 100 x n. % Increase = NEvali^Ji)l(b=1) x

100.

In general, it can be said that the parallelism introduced at CRS for build-
ing RPCRS does not strongly disturb its performance characteristic and for hard
functions, requiring a lot of computational resources, RPCRS outperforms CRS.
Nevertheless, no theoretical proof of these results has been still studied. In the
next section, results of the performance evaluation of RPCRS on a parallel system
(Cray T3D) using up to 16 processors are presented.

4 Performance evaluations on a parallel system
In order to analyze the behavior and the performance of the parallel program, we
have chosen a cluster size of 100 x n. In our experiments buffer sizes b = 16 and
b — 64 were used. Though our asynchronous parallel program was designed with the
capability of overlapping computations and communications, the algorithm needs

414 P.M. Ortigosa, J. Balogh, I. García

Speed up
Cluster Size = lOOn. Buffer Size = 16

Speed up
Cluster Size = 100n. Buffer Size = 64

No. ol Slave Processors No. of Slave Processors

Figure 3: Speedup of the parallel executions of RPCRS with respect to the sequen-
tial case. Speed-up =t{RPCRS(b = 1 ,p = 1))/t(RPCRS(b,p)). Delay = 0.03
sec.

the computational cost of the test functions to be greater than the communication
time required to exchange data among master and worker processors. If computa,-
tional cost of the objective function is small enough, bottlenecks would appear at
master processor. But for these unexpensive functions it would not be necessary
the use of a parallel system. So, in our evaluations of the parallel performance of
RPCRS, it was simulated that test functions have the same computational cost
by introducing an additional time delay into the function evaluation. Particularly,
effects of delays: 0.003 sec. and 0.03 sec. have been analyzed for a set of six test
functions.

Figure 3 shows the values of the speedup obtained when the execution time
for the parallel executions is compared to the execution time obtained by the
original sequential algorithm (CRS = RPCRS(b = 1 ,p = 1)); i.e. Speed-up
=t(RPCRS(b = 1 ,p = 1)/t(RPCRS(b,p)), where p is the number of worker pro-
cessors. From results at Figure 3, it might seem that we have implemented a
marvelous parallel program because of a speedup over linear is most of times ob-
tained. Nevertheless, these super speedups are due to the property that the number
of function evaluations carried out by RPCRS algorithm is lesser for buffer sizes
b = 16 or b = 64 than for a buffer size 6 = 1 (see Figure 1).

Figure 4 shows values of the speedup obtained when execution time for the
parallel program is compared to execution time obtained in the sequential case,
but in this case using the same value of the buffer size for both sequential and
parallel executions; i.e. Speed-up = t(RPCRS(b,p = l)/t(RPCRS(b,p)). It can
be seen that in this case an almost linear speedup has been obtained for all the
functions, but no super speedups. These speedups are closer to the linear speedup

A parallelized sequential random search global optimization algorithm 415

Speed up
Cluster size = 100n. Buffer Size = 16. Delay = 0.003 sec.

Speed up
Cluster size = 100n. Buffer Size = 16. Delay = 0.03 sec.

No. of Slave Processors

Speed up
Cluster size = 100n. Buffer Size = 64. Delay = 0.003 sec.

No. of Slave Processors <

Speed up
Cluster size = lOOn. Buffer Size = 64. Delay = 0.03 sec.

No. of Slave Processors No. of Slave Processors

Figure 4: Speedup of the parallel version with respect to the sequential case. Speed-
up = t(RPCRS(b,p = l))/t(RPCRS(b,p)).

for a delay of 0.03 sec. than for a delay of 0.003 sec.

5 Conclusions and future work
In this work a parallel implementation of CRS, called RPCRS, has been described
and evaluated. It has been shown that RPCRS is computationally cheaper than
CRS and in addition it is easy to implement on a real parallel or distributed com-
puting system an asynchronous model.

Although a wide set of standard test functions were used to validate that RPCRS
outperforms to CRS, no theoretical support exists behind this work to demonstrate
that our results will be the same for any function. Our future work will be aimed

416 P.M. Ortigosa, J. Balogh, I. García

at obtaining a better understood of this results and a mathematical proof (if any).

Appendix: Description of the test functions

F : Index of the Function.
D : Search domain.
f(x*) : Global minimum value of the function.
M : Number of global plus local minima of the function.

Table 2: Description of the test functions.

F Function f(x) D f(x') M
1 Three hump camel back [- 5 , 5] * 0.0 3
2 (xi - 5)2 - (z 2 - 10)2 if xi < 10

(:x\ - 15)2 - (x2 - 10)2 otherwise
[0, 20]2 0.0 2

3 Six hump camel back [- 2 . 5 , 2.5]2 -1.0316 6
4 Booth [- 5 , 5] * 0.0 1
5 Levy 13 [- 1 0 , 1 0] 2 0.0 > 1
6 Goldstein / Price l - 2 , 2] 2 3.0 3

7 Shperical 2 = X1 [- M l 2 0.0 1

8 Hartman 3 [o,i]J -3.862782 > 3
9 Beale [- 5 , 5] 2 0.0 > 4
10 Levy 3 [- 1 0 , 1 0] 2 -176.54 > 9
11 Griewank [-600 ,600] 2 0.0 > 10

12 Shperical 3 = yj^t xl [- M] 3 0.0 1

13 Shekel 5 [- 1 0 , 1 0] 4 -10.15320 > 4
14 Shekel 7 [- 1 0 , 1 0] " -10.40294 > 4
15 Shekel 10 [- 1 0 , 1 0] " -10.53641 > 4

16 Shperical 4 = y^ll X1 [- M] 4 0.0 1
17 Hartman 6 [0 , l] e -3.322828 > 6
18 Shperical 5 = y X ^ [- M] 5 0.0 1

19 Shperical 6 = sJ^T^ x j [-1.1]6 0.0 1

20 Shperical 7 = y Y ^ i X1 [-1 .1] 7 0.0 1

21 Shperical 8 = y Y l ^ x? l - l , l] 8 0.0 1

22 Shperical 9 = y X w x'i [- 1 . 1] 9 0.0 1

A parallelized sequential random search global optimization algorithm 417

References
[1] Duckbury, P.G., Parallel Array Processing. Chichester: Ellis Horward, 1986.

[2] Garcia, I., Ortigosa, P.M., Casado, L.G., Herman, G.T. and Matej, S., "A
parallel implementation of the controlled random search algorithm to optimize
an algorithm for reconstruction from projections," in Illrd Workshop on Global
Optimization, (Szeged, Hungary), pp. 28-32, December 1995.

[3] Garcia, I. and Herman, G.T., "Global optimization by parallel constrained
biased random search," in State of Art in Global Optimization: Computational
Methods and Applications (C.A. Floudas and P.M. Pardalos, ed.), Kluwer Inc,
pp.433-455, 1996.

[4] Garcia, I., Ortigosa, P.M., Casado, L.G., Herman, G.T. and Matej, S., "Multi-
dimensional Optimization in Image Reconstruction from Projections," in De-
velopments in Global Optimization, (L.M. Bomze, T. Csendes, R. Horst and
P.M. Pardalos eds,), Kluwer Inc, pp. 289-300, 1997.

[5] Hendrix, E.M.T., Global Optimization at Work, PhD. Dissertation, Wagenin-
gen Agricultural University, 1998.

[6] Horst, R. and Pardalos, P.M. eds., Handbook of Global Optimization, Dor-
drecht: Kluwer, 1995.

[7] McKeown, J.J., "Aspects of parallel computations in numerical optimization,"
in Numerical Techniques for Stochastic Systems (F. Arcetti and M. Cugiani,
eds.), pp. 297-327, 1980.

[8] Nelder, J.A. and Mead, R., "A simplex method for function minimization," in
The Computer Journal, pp. 308-313, 1965.

[9] Price, W.L., "A controlled random search procedure for global optimization,"
in Towards Global Optimization 2 (L.C.W Dixon and G.P. Szego, eds.), pp. 71-
84, Amsterdam: North Holland, 1978.

[10] Price, W.L., "A controlled random search procedure for global optimization,"
in The Computer Journal, no. 20, pp. 367-370, 1979.

[11] Price, W.L., "Global optimization algorithms by controlled random search,"
Journal of Optimization Theory and Applications, no. 40, pp. 333-348, 1983.

[12] Price, W.L., "Global optimization algorithms for a CAD workstation," Journal
of Optimization Theory and Applications, no. 55, pp. 133-146, 1987.

[13] Sokal, R.R. and Rohlf, F.J., Biometry. New York: W. H. Freeman and com-
pany, 1981.

[14] Sutti, C., "Local and global optimization by parallel algorithms for MIMD
systems," Annals of Operating Research, no. 1, pp. 151-164, 1984.

418 P.M. Ortigosa, J. Balogh, I. García

[15] Torn, A. and Zilinskas, A., Global Optimization. Lecture Notes in Computer
Science 350. Springer-Verlag, Berlin, 1989.

[16] Woodhams, F.W.D. and Price, W.L., "Optimizing accelerator for CAD work-
station," IEE Proceedings Part E, vol. 135, no. 4, pp. 214-221, 1988.

