A Note on Decidability of Reachability for Conditional Petri Nets

Ferucio Laurențiu ȚIPLEA * Cristina BĂDĂRĂU *

Abstract

The aim of this note is to prove that the reachability problem for Petri nets controlled by finite automata, in the sense of [5], is decidable.

1 Introduction and preliminaries

In [5] a new restriction on the transition rule of Petri nets has been introduced by associating to each transition t a language L_t from a family \mathcal{L} of languages. Petri nets obtained in this way have been called \mathcal{L} -conditional Petri Nets (\mathcal{L} -cPN, for short). In an \mathcal{L} -cPN γ , a sequence w of transitions is a transition sequence of γ if it is a transition sequence in the classical sense and additionally $w_1 \in L_t$ for any decomposition $w = w_1 t w_2$. In other words, the transition t is conditioned by the transition sequence previously applied.

It has been proved in [6] that the reachability problem for \mathcal{L} -cPN in the case that \mathcal{L} contains the Dyck language and is closed under inverse homomorphisms and letter-disjoint shuffle product, is undecidable. The families of context-free, context-sensitive, recursive, recursively enumerable languages, and all the families of L-type Petri net languages satisfy the conditions above, but this is not the case of the family of regular languages; the reachability problem for \mathcal{L}_3 -cPN, where \mathcal{L}_3 is the family of regular languages, remained open. In this paper we give a positive answer to this problem.

The set of non-negative integers is denoted by N. For an alphabet V (that is, a nonempty finite set), V^* denotes the free monoid generated by V under the operation of concatenation and λ denotes the unity of V^* . The elements of V^* are called *words* over V. A *language* over V is any subset of V^* . Given a word $w \in V^*$, |w| denotes the length of w.

A finite deterministic automaton is a 5-tuple $A = (Q, V, \delta, q_0, Q_f)$, where Q is the set of states, V is the set of input symbols, $q_0 \in Q$ is the initial state, $Q_f \subseteq Q$ is the set of final states and δ is a function from $Q \times V$ into Q. The language accepted by A is defined by $L(A) = \{w \in V^* | \delta(q_0, w) \in Q_f\}$ (the extension of δ to

^{*}Faculty of Computer Science, "Al. I. Cuza" University of Iaşi, 6600 Iaşi, Romania, e-mail: fltiplea@infoiasi.ro

 $V^* \times Q$ is defined as usual). The family of languages accepted by finite deterministic automata, called *regular languages*, is denoted by \mathcal{L}_3 .

A (finite) Petri net (with infinite capacities), abbreviated PN, is a 4-tuple $\Sigma = (S, T, F, W)$, where S and T are two finite non-empty sets (of places and transitions, respectively), $S \cap T = \emptyset$, $F \subseteq (S \times T) \cup (T \times S)$ is the flow relation and $W : (S \times T) \cup (T \times S) \rightarrow N$ is the weight function of Σ verifying W(x, y) = 0 iff $(x, y) \notin F$. A marking of a PN Σ is a function $M : S \rightarrow N$. A marked PN, abbreviated mPN, is a pair $\gamma = (\Sigma, M_0)$, where Σ is a PN and M_0 , the initial marking of γ , is a marking of Σ .

The behaviour of the net γ is given by the so-called *transition rule*, which consists of:

- (a) the enabling rule: a transition t is enabled at a marking M (in γ), abbreviated $M[t)_{\gamma}$, iff $W(s,t) \leq M(s)$, for any place s;
- (b) the computing rule: if $M[t\rangle_{\gamma}$ then t may occur yielding a new marking M', abbreviated $M[t\rangle_{\gamma}M'$, defined by M'(s) = M(s) W(s,t) + W(t,s), for any place s.

The transition rule is extended usually to sequences of transitions by $M[\lambda]_{\gamma}M$, and $M[wt]_{\gamma}M'$ whenever there is a marking M'' such that $M[w]_{\gamma}M''$ and $M''[t]_{\gamma}M'$, where M and M' are markings of $\gamma, w \in T^*$ and $t \in T$.

Let $\gamma = (\Sigma, M_0)$ be a marked Petri net. A word $w \in T^*$ is called a *transition* sequence of γ if there exists a marking M of γ such that $M_0[w]_{\gamma}M$. Moreover, the marking M is called *reachable* in γ .

Let \mathcal{L} be an arbitrary family of languages. An \mathcal{L} -conditional Petri net, abbreviated \mathcal{L} -cPN, is a pair $\gamma = (\Sigma, \varphi)$ where Σ is a PN and φ , the \mathcal{L} -conditioning function of γ , is a function from T into $\mathcal{P}(T^*) \cap \mathcal{L}$. Marked conditional Petri nets are defined as marked Petri nets by changing " Σ " into " Σ, φ ".

The *c*-transition rule of a conditional net γ consists of:

- (c) the *c*-enabling rule: let M be a marking of γ and $u \in T^*$; the transition t is enabled at (M, u) (in γ), abbreviated $(M, u)[t\rangle_{\gamma,c}$, iff $W(s, t) \leq M(s)$ for any place s, and $u \in \varphi(t)$;
- (d) the *c*-computing rule: if $(M, u)[t\rangle_{\gamma,c}$, then t may occur yielding a pair (M', v), abbreviated $(M, u)[t\rangle_{\gamma,c}(M', v)$, where $M[t\rangle_{\Sigma}M'$ and v = ut.

As for Petri nets, it can be extended to sequences of transitions.

Let $\gamma = (\Sigma, \varphi, M_0)$ be a marked conditional Petri net. A word $w \in T^*$ is called a *transition c-sequence* of γ if there exists a marking M of γ such that $(M_0, \lambda)[w_{\gamma,c}(M, w)$. Moreover, the marking M is called *c-reachable* in γ .

2 The main result

The reachability problem for Petri nets asks whether, given a net γ and a marking M of γ , M is reachable in γ . The submarking reachability problem for Petri nets

asks whether, given a net γ , a subset S' of places and a marking M of γ , there exists M' reachable in γ such that $M|_{S'} = M'|_{S'}$. It is well-known that these two problems are equivalent ¹ ([4]) and decidable ([3]).

The reachability problem for conditional Petri nets can be defined in a similar way: given an \mathcal{L} -conditional net γ and a marking M of γ , is M c-reachable in γ ? As we have already mentioned in the first section, for \mathcal{L} being the family of context-free languages (context-sensitive, etc.) the reachability problem is undecidable, and the question is whether this problem is decidable for the case $\mathcal{L} = \mathcal{L}_3$. In what follows we shall give a positive answer to this problem by reducing it to the submarking reachability problem for Petri nets.

Let $\gamma = (\Sigma, \varphi, M_0)$ be an $\mathcal{L}_3 - cPN$. We may assume, without loss of generality, that at least a transition of γ is c-enabled at M_0 (otherwise, a marking M is c-reachable in γ iff $M = M_0$). Consider $T = \{t_1, \ldots, t_n\}, n \geq 1$, and let $A_i = (Q_i, T, \delta_i, q_0^i, Q_f^i)$ be a finite deterministic automaton accepting the regular language $\varphi(t_i)$, for all $i, 1 \leq i \leq n$. We may assume that

- $Q_i \cap Q_j = \emptyset$, for all $i \neq j$, and

$$- (S \cup T) \cap \bigcup_{i=1}^{n} Q_i = \emptyset,$$

and let $S_i = \{s_q | q \in Q_i\}$, for all *i*.

We transform now the net Σ into a new net Σ' by adding to the set S all the sets S_i and replacing each transition t_i by some "labelled copies" as follows:

- for each sequence of states $q_1, q'_1 \in Q_1, \ldots, q_n, q'_n \in Q_n$ such that $q_i \in Q_f^i$ and $\delta_1(q_1, t_i) = q'_1, \ldots, \delta_n(q_n, t_i) = q'_n$, consider a transition $t^i_{q_1, q'_1, \ldots, q_n, q'_n}$ which will be connected to places as follows:
 - $t_{q_1,q'_1,\dots,q_n,q'_n}^i \text{ is connected to places in } S \text{ as } t_i \text{ is;}$ - for any $1 \le j \le n$,

$$W(s_{q_j}, t^i_{q_1, q'_1, \dots, q_n, q'_n}) = W(t^i_{q_1, q'_1, \dots, q_n, q'_n}, s_{q'_j}) = 1.$$

Let M'_0 be the marking given by

-
$$M'_0(s) = M_0(s)$$
, for all $s \in S$;

-
$$M'_0(s_{q_0^i}) = 1$$
, for all $1 \le i \le n$;

-
$$M'_0(s_q) = 0$$
, for all states $q \in \bigcup_{i=1}^n S_i - \{q_0^i | 1 \le i \le n\}$,

and let $\gamma' = (\Sigma', M'_0)$ be the *mPN* such obtained (we have to remark that the set T' is non-empty because of the hypothesis). Consider next the homomorphism $h: (T')^* \to T^*$ given by

$$h(t_{q_1,q'_1,\dots,q_n,q'_n}^i) = t_i,$$

¹A decision problem is a function $A: \mathcal{I} \to \{0, 1\}$, where \mathcal{I} is a countable set whose elements are called *instances* of A. A decision problem A is *reducible* to a decision problem B if any instance *i* of A can be transformed into an instance *j* of B such that A(i) = 1 iff B(j) = 1. The problems A and B are *equivalent* if each of them can be reduce to the other one.

for any transition $t_{q_1,q'_1,\ldots,q_n,q'_n}^i$ defined as above (the net Σ' together with the homomorphism h is pictorially represented in Figure 2.1: the places are represented by circles, transitions by boxes, the flow relation by arcs, and the numbers W(f)will label the arcs f whenever W(f) > 1. The values of h are inserted into the boxes representing transitions).

It is clear that for any $w \in T^*$ and marking M of γ , $(M_0, \lambda)[w]_{\gamma}(M, w)$ iff there is $w' \in (T')^*$ and a marking M' of γ' such that h(w') = w, $M'_0[w']_{\gamma'}M'$, and $M = M'|_S$. This shows us that a marking M is reachable in γ iff there is a marking M' reachable in γ' such that $M'|_S = M$. That is, the reachability problem for \mathcal{L}_3 -cPN can be reduced to the submarking reachability problem for Petri nets, and because this problem in decidable for Petri nets we obtain the next result.

Theorem 2.1 The reachable problem for \mathcal{L}_3 -cPN is decidable.

We close this note by the remark that the reachability problem for Petri nets controlled by finite automata, in the sense of Burkhard ([1], [2]), is undecidable. Our approach to control Petri nets by finite automata ([5]) seams to be more adequate because the reachability problem is decidable and, on the other hand, the power of Petri nets is subtle increased (see [6]).

References

- H.D. Burkhard. Ordered Firing in Petri Nets, Journal of Information Processing and Cybernetics EIK 17, 1981, 71 – 86.
- [2] H.D. Burkhard. What Gives Petri Nets More Computational Power, Preprint 45, Sektion Mathematik, Humboldt-Universität zu Berlin, 1982.
- [3] E.W. Mayr. An Algorithm for the General Petri Net Reachability Problem, Proceedings of the 13rd Annual ACM STOC, 1981, 238-246.
- [4] J.L. Peterson. Petri Net Theory and the Modeling of Systems, Prentice-Hall, 1981.
- [5] F.L. Ţiplea, T. Jucan, C. Masalagiu. Conditional Petri net languages, Journal of Information Processing and Cybernetics EIK 27, 1991, 55 - 66.
- [6] F.L. Ţiplea. On Conditional Grammars and Conditional Petri Nets, in Mathematical Aspects of Natural and Formal Languages (Gh. Păun, ed.), World Scientific Series in Computer Science vol. 43, Singapore, 1994, 431-456.

Received May, 1999