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Pseudo-Hamiltonian Graphs 

Luitpold Babel * Gerhard J. Woeginger + 

Abstract 
A pseudo-/i-hamiltonian cycle in a graph is a closed walk that visits every 

vertex exactly h times. We present a variety of combinatorial and algorithmic 
results on pseudo-/i-hamiltonian cycles. 

First, we show that deciding whether a graph is pseudo-/i-hamiltonian is 
NP-complete for any given h > 1. Surprisingly, deciding whether there exists 
an h > 1 such that the graph is pseudo-ft-hamiltonian, can be done in poly-
nomial time. We also present sufficient conditions for pseudo-/i-hamiltonicity 
that axe based on stable sets and on toughness. Moreover, we investigate the 
computational complexity of finding pseudo-/i-hamiltonian cycles on special 
graph classes like bipartite graphs, split graphs, planar graphs, cocomparabil-
ity graphs; in doing this, we establish a precise separating line between easy 
and difficult cases of this problem. 

1 Introduction 
For an integer h > 1, we shall say that an undirected graph G = (V,E) is pseudo-
h-hamiltonian if there exists a circular sequence of /i • |V| vertices such that 

• every vertex of G appears precisely h times in the sequence, and 

• any two consecutive vertices in the sequence are adjacent in G. 

A sequence with these properties will be termed a pseudo-h-hamiltonian cycle. 
In this sense, pseudo- 1-hamiltonian corresponds to the standard notion hamilto-
nian, and a pseudo-1-hamiltonian cycle is just a hamiltonian cycle. The pseudo-
hamiltonicity number ph(G) of the graph G, is the smallest integer h > 1 for which 
G is pseudo-fo-hamiltonian; in case no such h exists, ph(G) = oo. A graph G with 
finite ph(G) is called pseudo-hamiltonian. Pseudo-/i-hamiltonicity is a non-trivial 
graph property. E.g. for every h > 2, the graph Gh that results from glueing to-
gether h triangles at one of their vertices, is pseudo-/i-hamiltonian but it is not 
pseudo-(/i - l)-hamiltonian. 
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Figure 1: Complexity results for some of the treated graph classes. NP-complete 
problems have a solid frame, polynomially solvable problems have a dashed frame. 

Results of this paper. The problem of deciding whether a given graph is hamil-
tonian is NP-complete. Hence, it is not surprising at all that for each fixed value 
of h > 1, the problem of deciding whether ph(G) < h holds for a given graph G is 
also NP-complete. However, if we just ask whether ph(G) < oo, i.e. whether there 
exists some value of h for which G is pseudo-/i-hamiltonian, then we can answer 
this question in polynomial time (and this is perhaps surprising). This polynomial 
time result is based on the close relationship of pseudo-hamiltonian graphs with 
regularizable graphs (cf. Section 2). 

We also provide a nice and simple characterization of pseudo-hamiltonian graphs 
that is based on the stable sets of vertices of the graph. We show that ev-
ery pseudo-hamiltonian graph G must be l/ph(G)-tough, and that every 1-tough 
graph is pseudo-hamiltonian. The square of a connected graph is always pseudo-
hamiltonian. For d-regular graphs with d > 3, we derive a tight result of the 
following form: There exists a threshold r(d) such that for h < r(d), it is NP-
complete to decide whether a ¿-regular graph is pseudo-/i-hamiltonian, whereas for 
every h > r(d), a (¿-regular graph automatically is pseudo-/i-hamiltonian. Hence, 
the computational complexity of deciding pseudo-/i-hamiltonicity of regular graphs 
jumps at r(d) from trivial immediately to NP-complete. 

Finally, we will investigate the computational complexity of computing ph(G) 
on many well-known special graph classes, like bipartite graphs, split graphs, par-
tial fc-trees, interval graphs, planar graphs etc. Figure 1 summarizes some of our 
results together with some of their implications for special graph classes. Directed 
arcs represent containment of the lower graph class in the upper graph class. For 
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classes with a solid frame, the computation of ph(G) is NP-complete, and for classes 
with a dashed frame, this problem is polynomial time solvable (for exact definitions 
of all these graph classes cf. Johnson [12]). Note that the results for trees, bipar-
tite graphs, split graphs and cocomparability graphs imply all the other results in 
Figure 1. 
Organization of the paper. Section 2 investigates the connections between 
pseudo-hamiltonicity and regularizable graphs, and it states several general com-
plexity results. Section 3 relates pseudo-hamiltonicity to stable sets, to connectivity 
and to toughness. Section 4 derives the complexity threshold for oi-regular graphs, 
and Section 5 deals with squares of graphs. Finally, Section 6 collects the complex-
ity results for the special graph classes. 
Notation and conventions. Throughout this paper, we only consider undirected 
graphs. All graphs have at least three vertices. For convenience we often write 
G — W instead of G(V — W), the graph that results from removing the vertices in 
W together with all incident edges from G. For a set W C V, we denote by N(W) 
the set of all vertices outside W which are adjacent to vertices from W. A stable 
set is a set of pairwise non-adjacent vertices. A stable set S is maximal if there is 
no stable set S' which properly contains S. The stability number a(G) is the size 
of a largest stable set in G. 

2 Complexity aspects of pseudo-hamiltonicity 
In this section, we give several characterizations of pseudo-hamiltonian graphs that 
are based on regularizable graphs. These characterizations imply that one can 
decide in polynomial time whether ph(G) < oo. On the other hand, we will show 
that for every fixed integer h > 1 it is NP-complete to decide whether ph(G) < h. 

A graph G = (V,E) is called regularizable (see Berge [2, 3]), if for each edge 
e E E there is a positive integer m(e) such that the multigraph which arises from 
G by replacing every edge e by m(e) parallel edges is a regular graph. A useful 
characterization of regularizable graphs can be found in Berge [2]. 

Proposition 2.1 (Berge [2]) 
A connected graph G = (V, E) is regularizable if and only if one of the following 
two statements holds 

(a) G is elementary bipartite 
(i.e. G is bipartite, connected and every edge ofG appears in a perfect match-
ing); 

(b) G is 2-bicritical 
(i.e. 1^(5)1 > |S| holds for every stable set S CV). • 

Regularizable graphs are related to pseudo-hamiltonian graphs as follows. 

Lemma 2.2 A graph G is pseudo-hamiltonian if and only if G has a connected 
spanning regularizable subgraph. 
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Proof. (Only if). Clearly, in a pseudo-/i-hamiltonian cycle (considered as a multi-
graph) each vertex has degree 2h. Hence, the skeleton of a pseudo-/i-hamiltonian 
cycle (that is, the simple graph arising from replacing parallel edges by simple 
edges) of a graph G constitutes a regularizable subgraph of G which, additionally, 
is connected and contains all the vertices of G. 

(If). Conversely, assume that a graph G has a connected spanning regularizable 
subgraph H. Let H* denote the associated regular multigraph, say of degree 2h 
(if the degree of the regular multigraph is odd, multiply every number m(e) by 
two). Clearly, H* has an Eulerian cycle. This Eulerian cycle corresponds to a 
pseudo-/i-hamiltonian cycle in G. • 

A graph has a perfect 2-matching if one can assign weights 0, 1 or 2 to its edges 
in such a way that for each vertex, the sum of the weights of the incident edges is 
equal to 2. The following characterization of regularizable graphs can be found in 
the book by Lovász and Plummer [13]. 

Proposition 2.3 (Lovász and Plummer [IS]) 
A graph G = (V, E) is regularizable if and only if for each edge e € E there exists 
a perfect 2-matching of G in which e has weight 1 or 2. • 

Proposition 2.3 has several important consequences. 

Corollary 2.4 (i) For any integer h with 1 < h < ph(G), graph G does not possess 
a pseudo-h-hamiltonian cycle, (ii) For any integer h > ph(G), graph G does possess 
a pseudo-h-hamiltonian cycle. 

Proof. Statement (i) trivially follows from the definition of ph(G). In order to 
prove (ii), we show that if a graph has a pseudo-/i-hamiltonian cycle then it also 
has a pseudo-(h + l)-hamiltonian cycle: Let C be a pseudo-/i-hamiltonian cycle in 
G. Then the skeleton of C is regularizable, and consequently possesses a perfect 
2-matching. If one adds this perfect 2-matching to the 2/i-regular multigraph that 
corresponds to C, one gets a (2h + 2)-regular multigraph that corresponds to a 
pseudo-(/i + l)-hamiltonian cycle. • 

Proposition 2.3 together with Lemma 2.2 also allows us to construct an algorithm 
to decide efficiently whether a graph is pseudo-hamiltonian (or, equivalently, to 
decide whether a graph has a connected spanning regularizable subgraph). The 
algorithm repeatedly runs through all the edges of the graph and deletes all those 
edges which do not allow a perfect 2-matching with the desired property. If the 
remaining graph is disconnected then G is not pseudo-hamiltonian. Otherwise, 
one obtains a connected spanning regularizable subgraph of G, i.e. G is pseudo-
hamiltonian. 
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Algorithm PSEUDO-HAMILTON(G) 
1. UNCHECKED:= E\ E*:= E\ 
2. W h i l e UNCHECKED ^ 0 do 

Pick an arbitrary edge e GUNCHECKED; 
Check whether the graph (V,E*) possesses a perfect 

2-matching in which edge e has weight 1 or 2; 
If there is no such perfect 2-matching 

then E*:= E* - {e } ; 
UNCHECKED:= UNCHECKED—{e}; 

3. If the graph (V, E*) is connected . • • 
then return 'yes' else return 'no'. 

Since perfect 2-matchings can be found in polynomial time (cf. Lovász and Plummer 
[13]), the whole algorithm can be implemented to run in polynomial time. 

Theorem 2.5 It can be decided in polynomial time, whether ph(G) < oo holds for-
a given graph G. • 

In strong contrast to Theorem 2.5, it is NP-complete to compute ph(G) exactly. 

Theorem 2.6 For every fixed value h > 1, the problem of deciding whether 
ph(G) < h holds for a given graph G is NP-complete. 

Proof. It is well known that deciding pseudo-l-hamiltonicity (i.e. standard hamil-
tonicity) of a graph is NP-complete. Let h > 2 be some fixed integer. Consider 
some undirected graph G' = (V',E'), and construct another graph G = (V,E) 
from it as follows: V contains the vertices in V' together with 3(/i ^ 1)|V^| new. 
vertices. For every vertex v £ V', there are 3/i — 3 new vertices that are called 
a®, 6®, and c®, where i = 1,... ,h - 1. The edge set E contains all edges in E' 
together with 4 (h — 1)|V| new edges. For every vertex v £ V', there are'4/i - 4 
new edges (u,a®), (a*, blv), (&*, c*), and (c*, a*), where i = 1 , . . . , h - 1. We claim 
that the constructed graph G possesses a pseudo-/i-hamiltonian cycle if and only if 
the original graph G' possesses a hamiltonian cycle. 

(Only if). Assume that G possesses a pseudo-/i-hamiltonian cycle C. Consider 
for arbitrary v £ V' and 1 < i < h — 1 the connected component consisting of al, 
blv, and clv. The cycle C can visit and leave this component only via the edge (v, al), 
and this edge must be used an even number of times. Hence, C uses at least 2h — 2 
edges incident to v just for visiting the (h— 1) attached components. There remain 
only two edges that can connect v to other vertices in V , and it is easy to see that 
these pairs of edges taken over all vertices in V' correspond to a hamiltonian cycle 
in G'. 

(If). Now assume that G' possesses a hamiltonian cycle. Construct a multigraph 
with vertex set V as follows: The multigraph contains all edges that are used by 
the hamiltonian cycle. Moreover, it contains for'every v £ V' and for every i, 
1 < i < h - 1, two copies of the edge (u,o*), h — 1 copies of the edge (a*,6*), 
h + 1 copies of the edge (&*, c*), and h— T copies of the edge (c®, alv). The resulting 
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multigraph is connected and 2/i-regular. Hence, it contains an Eulerian cycle that 
corresponds to a pseudo-/i-hamiltonian cycle in a natural way. • 

Question 2.7 What can be said about approximating ph(G)? Can one always find 
in polynomial time a, say, pseudo-2ph(G)-hamiltonian cycle? 

3 Stable sets, connectivity and toughness 
This section discusses the relationship of pseudo-hamiltonicity with the structure of 
stable subsets, with the connectivity of a graph, and with the toughness of a graph. 
First, consider the following two conditions (CI) and (C2) on a graph G = (V,E). 

(CI) 1^(5)1 > |S| holds for every maximal stable set S CV. 

(C2) \N(S)\ > |S| holds for every non-maximal stable set S C V. 

Lemma 3.1 If a graph G = (V, E) is pseudo-hamiltonian, then it fulfills the con-
ditions (CI) and (C2). 

Proof. Consider a pseudo-/i-hamiltonian cycle C and let 5 be a stable set in G. 
Every vertex from S appears h times in C. Since S is stable, each vertex from S 
must be followed by a vertex from N(S). Hence the set N(S) is visited at least 
h • |S| times. Since each vertex from N(S) also appears h times in C we obtain 

MS)| > |S|. ( i ) 

Now assume that |N(S)| = |S|. Then vertices from 5 and from N(S) must alternate 
in C, and it is not possible to visit any vertex from V - S - N(S). This implies 
that V = S U N(S), or equivalently, that S is a maximal stable set. • 

Corollary 3.2 If the graph G = (V,E) with \V\ > 3 vertices is pseudo-hamiltonian 
then the following holds: 

(a) G has no vertices of degree one. 

(b) a(G) < \\V\. • 

We can use the results on regularizable graphs (cf. Section 2) in order to show 
that, for a connected graph, the conditions (Cl) and (C2) are also sufficient for the 
existence of a pseudo-hamiltonian cycle. 

Lemma 3.3 If a connected graph G = (V,E) fulfills conditions (Cl) and (C2), 
then it is pseudo-hamiltonian. 

Proof. If |N(S)| > |S| holds for every stable set S C V then G is 2-bicritical and, 
by Proposition 2.1, also regularizable. Since G is connected, Lemma 2.2 implies 
that in this case G is pseudo-hamiltonian. 

Otherwise, there exists a stable set S with 1/^(5)1 = |S|. Then by condition 
(Cl) , S is maximal and V = SUN(S) holds. Let H denote the spanning subgraph 
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of G which arises from deleting all edges between vertices from N(S). We show 
that H is elementary bipartite. Then, again by Proposition 2.1, the subgraph 
H is regularizable and, since H is also connected, Lemma 2.2 implies that G is 
pseudo-hamiltonian. 

By construction, the graph H is bipartite. H is connected, since otherwise we 
can easily find a proper subset S' C S with |iV(S')| < \S'\ in contradiction to the 
assumption. Let (s, t) be an arbitrary edge in H with s G S. In H — {s, t} we have 
\N(S')\ > |5'| for each set 5 ' C S - { s } (note that S' is not maximal stable in G). 
It is well known that this condition implies the existence of a perfect matching in 
H — { s , i } (cf. e.g. Lovász and Plummer [13]). Hence there is a perfect matching 
in H containing the edge (s, i). • 
Every hamiltonian graph must be 2-connected. However, it is easy to see that this 
is not a necessary condition for a graph to be pseudo-/i-hamiltonian for some h > 2. 
On the other side one may ask whether there exists a number k such that every 
fc-connected graph is also pseudo-hamiltonian. The following example shows that 
this is not true in general. 

Example 3.4 Consider the complete bipartite graph Kk+1^, i.e. the graph con-
sisting of two stable sets S and S1 of cardinality k + Í and k, respectively, where 
any two vertices from S and S' are adjacent. By deleting fewer than k vertices, we 
leave at least one node in the stable set S and at least one node in the stable set 
S'. Hence, this graph is k-connected. However, since |A (̂5)| = k < k + 1 = |S|, we 
conclude from Lemma 3.1 that the graph is not pseudo-hamiltonian. 

Chvátal [7] defines the toughness t(G) of a graph G (where G is not a complete 
graph) by 

t{G) = . m i n ^ W ' , (2) 

where W is a cutset of G and c{G—W) denotes the number of connected components 
of the graph G — W. It is well known that a hamiltonian graph has toughness at 
least 1. As an extension of this result we obtain: 

Lemma 3.5 If G is pseudo-h-hamiltonian, thent(G) > ' 

Proof. Let W* be a cutset of G with t(G) = \W*\/c{G - W*). Each path between 
two vertices of different connected components of G — W* contains vertices from 
W*. Hence, in a pseudo-/i-hamiltonian cycle of G there appears at least c(G — W*) 
times a vertex from W*, i.e. each vertex from W* appears at least c(G — W*)j\W*\ 
times. This implies h > 1 /t(G) and the correctness of the claim. • 
It is known (cf. Chvátal [7]) that there are graphs with toughness 1 which are not 
hamiltonian. Similarly, the converse of Lemma 3.5 is not always true for h > 2. 
The complete bipartite graph K3 2 has toughness t(K3i2) = 2/3 > 1 /h. However, 
as argued in Example 3.4 above, this graph is not pseudo-/i-hamiltonian. 

Another sufficient condition for pseudo-hamiltonicity relies on the toughness of 
the graph. 
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Lemma 3.6 (i) Any graph G with t{G) > 1 is pseudo-hamiltonian. (ii) For every 
e > 0, there exists a graph G with t(G) > 1 — e that is not pseudo-hamiltonian. 

Proof. Consider a graph G with toughness at least 1. Clearly, G is connected. We 
will show that G fulfills the conditions (Cl) and (C2), and then Lemma 3.3 implies 
statement (i). 

Let 5 be a maximal stable set in G and assume that |iV(S)| < |S| holds. With 
W := N(S), we obtain c(G - W) > \W\ as the vertices of S form the connected 
components of G — W. Hence t(G) < 1, in contradiction to the assumption. 

Let 5 be a non-maximal stable set in G and assume that |N(5)| < |S|. Define 
again W := N(S). Then the vertices of S are again connected components of 
G — W, and since S is not maximal there is at least one further component. Hence 
c(G -W)> \W\ holds, which implies that t(G) < 1. 

In order to prove (ii), consider the complete bipartite graphs Kk+i,k from Ex-
ample 3.4: Kk+i,k has toughness k/(k + 1). As k tends to infinity, this expression 
tends to one. • 

4 Regular graphs 
In this section, we discuss the problem of deciding whether a given d-regular graph 
possesses a pseudo-/i-hamiltonian cycle. We will show that for every d, there is a 
precise threshold for h where the computational complexity of recognizing pseudo-
/i-hamiltonian d-regular graphs jumps from NP-complete to trivial. 

Lemma 4.1 (i) For odd d> 3, every connected d-regular graph G fulfills ph(G) < 
d. (ii) For even d > 4, every connected d-regular graph G fulfills ph(G) < d/2. 

Proof. For even d, graph G itself is Eulerian and the Eulerian cycle yields a 
pseudo-d/2-hamiltonian cycle. For odd d, the multigraph that contains two copies 
of every edge in G is Eulerian and thus yields a pseudo-d-hamiltonian cycle. • 

Lemma 4.2 (i) For odd d>3, it is NP-complete to decide whether ph(G) < d— 1 
holds for a d-regular graph G. (ii) For even d > 4, it is NP-complete to decide 
whether ph(G) < d/2 — 1 holds for a d-regular graph G. 

Proof. We only prove (i). The proof of (ii) can be done by analogous (somewhat 
tedious) arguments. 

For every odd d > 3, the proof of (i) is based on the following auxiliary graph 
H H d has 2d - 1 vertices that are divided into three parts X, Y and Z. Part 
X consists of a single vertex x, parts Y = {yi,..., yd-1} and Z = { ¿ i , . . . , z^ - i } 
both contain d — 1 vertices. There is an edge between x and every vertex in Y, 
and there is an edge between every vertex in Y and every vertex in Z. Moreover, 
the vertices in Z are connected to each other by a perfect matching in such a way 
that zi and are matched with each other. This completes the description of Hd. 
Note that in Hd, vertex x has degree d - 1 and all vertices in Y U Z have degree 
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d. Moreover, we will use the following connected multigraph M(Hd). M(Hd) has 
the same vertex set as Hd. Vertex x is connected by a single edge to 2/1 and 2/2, 
respectively, and by two edges to each vertex in Y — {2/1,2/2}- For 1 < j < 2, yj is 
connected by 2d — 3 edges to zj, and for 3 < j < d — 1, yj is connected by 2d — 4 
edges to Zj. Finally, there is one edge that connects z\ to ¿2 , and there are two 
copies of every other edge in the matching over Z. Note that in the resulting graph 
M(Hd), vertex x has degree 2d - 4 and all vertices in Y U Z have degree. 2d - 2. 

The NP-completeness proof for result (i) is done by a reduction from the NP-
complete hamiltonian cycle problem in cubic graphs (cf. Garey and Johnson [11]). 
Consider an instance G' = (V'~, E') of this problem, and construct a d-regular graph 
G = (V, E) from G' as follows: 

• For every v £ V', introduce a corresponding vertex v* in V. Moreover, 
introduce d — 3 pairwise disjoint copies of Hd- The a:-vertex of every such 
copy is connected to v*. 

• For every edge (u,v) € E', introduce two new vertices aUiV and a„jU together 
with the three edges (u*,au,v), (flu.u, &v,u) and (a„ iU,n*), i.e. the vertices aUtV 

and av,u essentially subdivide the original edge (u,v) into three sub-edges. 

• For every new vertex aU)tl, create d — 2 pairwise disjoint copies of Hd> and 
connect the x-vertex of every copy to aUiV. •.-...• 

It is easy to verify that the resulting graph G is d-regular (since in Hd, vertex x 
has degree d — 1 and all other vertices have degree d). We claim that G. possesses 
a pseudo-(d — l)-hamiltonian cycle if and only if G' possesses a hamiltonian cycle. 

(If). Assume that G' possesses a hamiltonian cycle. Construct from this hamil-
tonian cycle a (2d — 2)-regular multigraph M* as follows: For every copy of Hd in 
G, introduce the corresponding edges of M(Hd) in M*, together with two edges 
that connect the x-vertex to that vertex to which the copy has been attached. For 
every edge (u, v) that is used by the hamiltonian cycle, introduce the three edges 
(u*,au>v), (aU|v,a«,u) and (aViU,v*) in M*. For every edge (u,v) that is not used by 
the hamiltonian cycle, introduce two copies of ('u*, au>v) and two copies of (aV}U,v*) 
in M*. The resulting multigraph is (2d — 2)-regular, is connected (as it simulates 
the hamiltonian cycle in G'), and it is spanning. Hence, the corresponding Eulerian 
cycle in G yields a pseudo-(d — l)-hamiltonian cycle for G. 

(Only if): Now assume that G possesses a pseudo-(d — l)-hamiltonian cycle C.. 
Then the edges that are traversed by C form a (2d— 2)-regular connected multigraph 
Mc. For every copy of Hd in G, the cycle C traverses the edge'that connects the 
a;-vertex to the vertex to which the copy has been attached, at least twice and an 
even number of times. Hence, for every edge (u, w) € E' the vertex aVjU in Mc is 
connected by at least 2d — 4 edges to the a;-vertices of the attached copies of Hd, 
and there remain only two edges that can connect aVtU to the rest of the graph. 
With this it is easy to verify that there remain only two possibilities how the cycle 
C may traverse the three edges (u*,aUtV), (aU:V,aV:U) and (aViU,v*) that correspond 
to some edge (u,v) 6 E' in the original graph: Either all three edges are traversed 
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thus resulting multigraph is 4-regular and contains only edges from G2. Hence, G2 

is pseudo-2-hamiltonian. 
(Only if). Now assume that G2 possesses a pseudo-2-hamiltonian cycle C. The 

following statements on the structure of C are easy to verify. 

1. C traverses every edge (b*v,v) with v £ V[ and 1 < i < 4 exactly once. 
2. C traverses every edge (b%v,alv) with v £ V{ and 1 < i < 4 exactly three times. 
3. For every v € C either traverses exactly one or exactly zero of the edges 

(a i ,a i ) with 1 < i < j < 4. 
4. C traverses every edge {dlv,v) with v £ V2 and 1 < i < 2 exactly once. 
5. C traverses every edge (cfj,,c£) with v £ V2 and 1 < i < 2 exactly three times. 
6. C traverses every edge (c*,c2) with v £ V2 exactly once. 

Hence, every v £ V{ is only connected to vertices blv. Every v € V2 must be 
connected by two edges to some vertices alu. Hence, there are exactly 2|V2'| edges 
between V2' and the alu with u £ VI, and a simple counting argument shows that in 
statement (3) above, the "traverses exactly zero of the edges"-part can never hold. 
Hence, for every v £ V/ there exist exactly two edges in C that connect some a® to 
some vertex u £ V2. It is straightforward to see that the union of all these edges 
corresponds to a hamiltonian cycle in G'. • 

6 Special graph classes 
In this section, we show that deciding whether a graph is pseudo-/i-hamiltonian is 
NP-complete even for some very restricted classes of graphs that possess a strong 
combinatorial structure. Moreover, we present polynomial time algorithms for other 
classes of structured graphs. 

6.1 Trees and planar graphs 
By Corollary 3.2.(a), a pseudo-hamiltonian graph cannot have any vertices of degree 
one. Hence, ph(T) = oo for any tree T. 

If we start the construction in the proof of Theorem 2.6 with a planar graph G', 
then the constructed graph G is also planar. Since deciding hamiltonicity of planar 
graphs is NP-complete [11], we conclude that for every h > 1 it is NP-complete to 
decide whether a planar graph is pseudo-/i-hamiltonian. 

6.2 Partial k-trees 
The class of partial k-trees is a well-known generalization of ordinary trees (see e.g. 
the survey articles by Bodlaender [4, 5, 6] and by van Leeuwen [14]). It is known 
that series-parallel graphs and outerplanar graphs are partial 2-trees and that Halin 
graphs are partial 3-trees. Large classes of algorithmic problems can be solved in 
polynomial time on partial A;-trees if k is constant. Essentially, each graph problem 
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that is expressible in the Monadic Second Order Logic (MSOL) is solvable in linear 
time on partial A;-trees with constant k (cf. e.g. Arnborg, Lagergren, Seese [lj). 

Lemma 6.1 For every h > 1 and for every k > 1, it can be decided in linear time 
whether a given partial k-tree is pseudo-h-hamiltonian. 

Proof. We only show the statement for h = 2; the other cases can be settled 
analogously. For a given graph G = (V, E), the property of having a connected 
4-regular submultigraph can be expressed in MSOL as follows: 

1. There exist three pairwise disjoint subsets Ei, E2 and E3 of E 
2. Every vertex is either incident to (i) four edges from Ei, or to (ii) two edges 

from E\ and one edge from E2, or to (iii) one edge from E\ and one edge 
from E3, or to (iv) two edges from E2 

3. There does not exist a partition of the vertex set V into two non-empty sets 
Vi and V2, such that none of the edges in Ei U E2 U E3 connects V\ to V2. 

Intuitively speaking, the edges in E\ (E2 , E3) occur once (twice, thrice) in the 
submultigraph. The second condition then takes care of the 4-regularity, and the 
third condition ensures that the submultigraph is connected. • 

6.3 Bipartite graphs and split graphs 
Lemma 6.2 For every integer h>l, it is NP-complete to decide whether a bipar-
tite graph is pseudo-h-hamiltonian. 

Proof. It is NP-complete to decide whether a bipartite graph G' is hamiltonian (cf. 
Garey and Johnson [11]). Consider a bipartite graph G' = ( V , E') with bipartition 
V' = V{ U V2: and construct from G' another bipartite graph G as follows. For 
every vertex v G V', introduce two vertices iv and rv in V together with auxiliary 
vertices alv and blv, i = 1 , . . . , 2h - 2. In E, there are the edges (¿v, rv) together 
with the edges a*), (alv,blv), and (b lv,rv) for i = l , . . . , 2 / i - 2. Moreover, for 
every edge (u,v) G E' with u G V{ and v G V2, we introduce the two edges (£u , r v ) 
and (iv,ru). 

It can be verified that the resulting graph G is also bipartite. Moreover, one 
can show that G possesses a pseudo-/i-hamiltonian cycle if and only if G' possesses 
a hamiltonian cycle. • 
A split graph is a graph whose vertex set can be partitioned into two parts such 
that the subgraph induced by the first part is a clique and the subgraph induced 
by the second part is a stable set. 

Corollary 6.3 For every integer h> it is NP-complete to decide whether a split 
graph is pseudo-h-hamiltonian. 

Proof. In the NP-completeness proof for bipartite graphs in Lemma 6.2, both 
classes in the bipartition of the constructed graph G are of equal cardinality. Trans-
form G into a split graph G* by adding all edges between vertices in one part of 



566 Luitpold Babel, Gerhard J. Woeginger 

the bipartition. It is easy to see that a pseudo-/i-hamiltonian cycle in G* can never 
use these added edges, and hence G* is pseudo-/i-hamiltonian if and only if G' is 
hamiltonian. • 

6.4 Cocomparability graphs 
A comparability graph is a graph G = (V, E) whose edges are exactly the compara-
ble pairs in a partial order on V. The complementary graph is called a cocompa-
rability graph. The class of cocomparability graphs properly contains all cographs, 
permutation graphs and interval graphs. 

Lemma 6.4 For every integer h > 1, it can be decided in polynomial time whether 
a cocomparability graph is pseudo-h-hamiltonian. 

Proof. It is known that a hamiltonian cycle in a cocomparability graph can be 
found in polynomial time (cf. Deogun and Steiner [9]). Given a cocomparability 
graph G = (V,E), we construct another cocomparability graph G' = (V',E') as 
follows. V contains the vertices in V together with (h, — 1)¡Vj new vertices. For 
every vertex v £ V there are h— 1 new vertices that are called vl, where i = 2,..., h. 
For simplicity of notation, let vl := v. If (u, v) is an edge in E then all edges w-7) 
with i, j = 1 , . . . , h belong to E' (roughly spoken, G' arises from G by replacing 
each vertex by a stable set of h vertices). It is easy to see that G' is again a 
cocomparability graph. We show that G has a pseudo-/i-hamiltonian cycle if and 
only if G' has a hamiltonian cycle. 

(If). Assume that G' possesses a hamiltonian cycle. We obtain a pseudo-/i-
hamiltonian cycle in G if each vertex vl, i = 2,...,h, is replaced by the corre-
sponding vertex v. 

(Only if). Now assume that G possesses a pseudo-fa-hamiltonian cycle C. Each 
vertex of G appears h times in C. For each v £ V replace h — 1 copies of v in C 
by v2,... ,vh. This yields a S-factor of G', i.e. a subgraph of G' such that each 
vertex has degree 2. If the 2-factor is a cycle then we have a hamiltonian cycle in 
G' and we are done. Otherwise the 2-factor is a disjoint union of cycles. In this 
case the following principle allows to reduce the number of cycles: Let C\ and C2 

denote two disjoint cycles such that v% belongs to C\ and belongs to C2 (it is 
straightforward to see that such cycles must exist). Let further x be the predecessor 
of v1 in Ci and y the predecessor of vi in C2- Replace the edges (x,vl) and (y , v^) by 
(x ,y i ) and (y,vl). One obtains a new cycle that contains all vertices from C\ and 
C2 • Repeatedly merging cycles in this way finally provides the desired hamiltonian 
cycle in G'. • 

We leave it as an open problem to determine the complexity of computing the 
pseudo-hamiltonicity number of asteroidal triple-free graphs, AT-free graphs for 
short (cf. Corneil, Olariu, and Stewart [8]). Note that for an AT-free graph G, 
the graph G' that is constructed in the proof of Lemma 6.4 above is also AT-
free. However, the complexity of finding a hamiltonian cycle in AT-free graphs is 
currently unknown. 
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