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On commutative asynchronous nondeterministic 
automata * 

B. Imreh f M. Ito 1 A. Pukler § 

Abstract 
In this paper, we deal with nondeterministic automata, in particular, com-

mutative asynchronous ones. Our goal is to give their isomorphic represen-
tation under the serial product or equivalently, under the ao-product. It 
turns out that this class does not contain any finite isomorphically complete 
system with respect to the ao-product. On the other hand, we present an 
isomorphically complete system for this class which consists of one monotone 
nondeterministic automaton of three elements. 

1 Introduction 
The study of the compositions of nondeterministic (n.d. for short) automata was 
initiated in the work [3], where the isomorphically complete systems with respect 
to the general product were characterized. In [4] it is proved that the general 
and cube products of n.d. .automata are equivalent regarding the isomorphically 
complete systems. A further result on this line can be found in [7], where the 
isomorphically complete systems of n.d. automata with respect to the Q o - P r ° d u c t 

are characterized. 
In this work, a particular class of n.d. automata, the class of all commutative 

asynchronous n.d. automata, is studied. The isomorphic representation of the 
deterministic commutative asynchronous automata was studied in [8], where it 
turned out that every commutative asynchronous automaton can be embedded into 
a quasi-direct power of a suitable two-state commutative asynchronous automaton. 
We show here that this is not valid for the n.d. case, and what is more, it is not 
valid neither under the stronger ao-product. On the other hand, it is proved that 
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every commutative asynchronous n.d. automaton can be embedded into a suitable 
Qo-power of a monotone n.d. automaton having three states. 

The paper is organized as follows. First, in Section 2, we recall a few notions 
and notation and present some basic results necessary in the sequal. In Section 3, it 
is shown that there is no finite system of commutative asynchronous n.d. automata 
which is isomorphically complete for the class under consideration with respect to 
the Q o - P roduct . Then we look for a finite isomorphically complete system in a 
larger class, namely, in the class of monotone n.d. automata, and we prove that 
every commutative asynchronous n.d. automaton can be embedded into a suitable 
Qo-power of a monotone n.d. automaton of three states. 

2 Preliminaries 
An automaton can be defined as an algebra A = (A, X) in which every input sign 
x is realized as a unary operation xA : A -» A. Then the n.d. automata can be 
introduced as generalized automata in which the unary operations are replaced by 
binary relations. Therefore, by n.d. automaton we mean a system A = ( A , X ) , 
where A is a finite nonvoid set' of states, X is a finite nonempty set of input signs, 
and every x G X is realized as a binary relation x A ( C Ax A) on A. For any a € A 
and x £ X, let axA = {c : c G A and (a,c) G xA}, i.e., axA is the set of states 
into which A may enter from a by receiving the input sign x. For any CCA and 
i 6 I , we set CxA = U{axA : a G C} . For a word w G X*, CwA can be defined 
inductively as follows: 

(1) CeA = C, 

(2) CwA = (CvA)xA for w = vx, v G X* and x G X , 

where e denotes the empty word of X*. An n.d. automaton is called complete if 
axA ^ 0, for all a G A and Throughout this paper, by n.d. automaton we 
always mean a complete n.d. automaton. Let A = ( A , X ) be an n.d. automaton 
and B C A. Then one can define a subautomaton B = ( B , X ) of A by the 
realizations xB = xAC\(B x B), x £ X. We note that a subautomaton of a complete 
n.d. automaton is not necessarily complete. Let A = (A, X) and B = (B,X) be 
two n.d. automata and p, a mapping of A onto B. The mapping p is called a 
homomorphism of A onto B if axAp = ap,xB is valid, for all a G A and x G X. In 
this case, it is said that B is a homomorphic image of A . If the homorphism p is 
a one-to-one mapping, then it is called an isomorphism and in this case, it is said 
that A is isomorphic to B. Furthermore, if B is isomorphic to some subautomaton 
of A , then it is said that B can be embedded into A. 

Let A = (A, X) be an n.d. automaton and 0 an equivalence relation on A. For 
every a G A, let us denote by 0 (a ) the equivalence class containing a, or equiva-
lently, the set of the elements which are equivalent to a. Then we can construct 
a factor n.d. automaton A / 0 as follows. For any 0 (a ) G A/Q and x G X, let 
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0 (a )a ; A / 0 = {0 (6) : 0(6) £ A / 0 and 0 ( a ) z A n 0(6) £ 0}. It is worth not-
ing that A / 0 is not a homomorphic image of A in general. In what follows, we 
shall use particular equivalence relations. To define them, let A be an arbitrary 
nonempty set and a, 6 its two different elements. Then the equivalence, relation 
0 (a , 6) is defined as follows. For every u,v £ A, 

uQ(a,b)v if and only if {a,6} = {u,t>} or u — v. 

An n.d. automaton A = ( A , X ) is called commutative iia(xy)A = a(yx)A is 
valid, for every a £ A and x,y £ X. By the definition of the commutativity, one 
can easily prove the following fact. 

Lemma 1. If an n.d. automaton A is commutative and B is a homomorphic 
image of A, then B is commutative as well. 

An n.d. automaton A = ( A , X ) is called asynchronous if for every a £ A and 
x £ X, 6 £ axA implies bxA = {6}. In particular, if a £ axA, then axA = {a} . 
Since we recall this property in more times, we express it by the following remark. 

Remark 1. If A = ( A , X ) is an asynchronous n.d. automaton and a •£: axA for 
some a £ A and x £ X, then axA — {a}. 

¿From the definition of the asynchronous n.d. automata the following fact 
follows immediately. . 

Lemma 2. If an n.d. automaton A is asynchronous and B is a homomorphic 
image of A , then B is also asynchronous. 

We shall study the commutative asynchronous n.d. automata. Let us denote 
by K.nd the class of all commutative asynchronous automata. Then, by Lemmas 1 
and 2, we obtain the following observation. 

Corollary 1. If A £ fCnd and B is a homomorphic image of A, then B £,K.nd-

An important property of the n.d. automata in K.nd is presented by the next 
assertion. 

Lemma 3. If A = {A,X) £ ¡Cn<i, then its transition graph does not contain any 
directed cycle different from loop-

Proof. Let a £ aqA for some a £ A, q £ X+ and let q be a minimum-length 
word with this property. Now, let us suppose that \q\ > 1. Then q — xp for some 
x £ X and p £ X+. By the commutativity of A, a £ apAxA. Therefore, there 
exists a state 6 such that 6 £ apA and a £ bxA. Let us distinguish now the following 
two cases depending on 6. 

Case 1. a = b. Then a £ axA, and by Remark 1, axA = {a } contradicting the 
minimality of the word q. ! 
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Case 2. a ^ b. In this case, a G bxA. Since A is an asynchronous n.d. 
automaton, a G bxA implies axA = { a } which contradicts the minimality of q 
again. 

Consequently, the transition graph of A does not contain any directed cycle 
different from loop. 

Let A = ( A , X ) be an arbitrary n.d. automaton. Let us define the reachability 
relation as follows. For a couple of states a, b, it is said that b is reachable from 
a, denoted by a < b, if there exists a word w such that b G awA. Obviously, that 
this relation is reflexive and transitive. In particular, if A G ICnd, then by Lemma 
3, this relation is antisymmetric, and thus, it is a partial ordering on A. Hence, we 
have the following statement. 

C o r o l l a r y 2. For every A G ICnd, (A, <) is a partially ordered set. 

The more general composition, the general product of automata was introduced 
by V. M. Gluskov in [6]. This composition is extended to n.d. automata in [3]. 
Now, we recall this definition. 

Let us consider the n.d. automata A = (X,A), A j = (Xj, Aj), j = 1,... ,k, 
and let $ be a family of mappings below 

<Pj : 4 i x • • • x Ak x X ->• Xj, j = 1 , . . . , k. 

It is said that A is the general product of A j with respect to $ if the following 
conditions are satisfied: 

(1) A = U U A f ' 

(2) for any ( o i , . . . ,ak) G ]~[>=i Aj, and x G X, 

(ai,./., ak)xA = a 1 x f 1 x ••• x akxAk, 

where Xj — <pj ( a i , . . . , ak, x) for all j G { 1 , . . . , k]. 

For' the general product above we use the notation 
• ' * 

A = 1 ] A , 

The mappings ipj \ j = 1,..., k are called feedback functions. 

Let K, be a system of n.d. automata. K, is isornorphically complete with respect 
to the general product if for any n.d. automaton A , there exist automata Aj G /C, 
j = 1 ,...,k, such that A can be embedded into a general product of Aj, j = 
1 ,...,k. 

Different compositions of automata can be obtain as a special case of the general 
product by using particular feedback functions. One of them is the serial composi-
tion of automata, where the automata form a chain and the input, sign of a given 
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automaton of the chain depends on the input sign received by the composition and 
the current states of the previos automata in the chain. The formal definition can 
be given as follows. 

Let A j — ( A j , X j ) , j = 1 , . . . , k be arbitrary n.d. automata. Moreover, let X 
be a finite nonvoid set and $ is a family of mappings: 

ipj : Ax x • • • x Aj-1 j = 1 , . . . , k. 

An n.d. automaton A = ( A , X ) is called the serial product or ao-product of the 
n.d. automata considered, if A = ri jLi A? anc^ f° r e v e rY (oi, • • • i ak) £ 11^= i Aj 
and x £ X, 

( d , . . . , ak)xA = aiXAl x • • • x akxAk 

is valid, where Xj = <fj(ai,...,aj-i,x), j — 1,... ,k. If the component n.d. au-
tomata Aj are equal, say Aj = B, j = 1 , . . . , k, then it is said that the ao-product 
A is an ao-power of B. In particular, if the mappings ipj, j = 1 , . . . , k are indepen-
dent of the states, i.e., they have the forms ipj : X Xj, j = 1 , . . . , k, then A is 
called the quasi-direct product of the n.d. automata under consideration. 

It has to be mentioned here that as generalizations of the serial product of 
automata a family of products, the aj-product, i = 0 ,1 , . . . , was introduced in [1] 
for the deterministic case and some nice results concerning the aj-products can be 
found in the monography [2]. 

By the definition of the ao-product, one can easily prove the following statement. 

L e m m a 4. If for every t, t = l , . . . , n , the n.d. automata At can be embedded 
into an ao-product of n.d. automata Atj, j = 1 ,...,kt, then any ao-product of 
the n.d. automata At, t = 1 , . . . ,n can be embedded into an ao -product of the n.d. 
automata A tj, t = 1 , . . . , n; j = 1,... ,kt-

Finally, we define the notion of isomorphically complete systems of n.d. au-
tomata for the ao-product. For this purpose, let K, be an arbitrary class of n.d. 
automata. A system M. of n.d. automata is called isomorphically complete for JC 
with respect to the ao-product if any n.d. automaton in /C can be embedded into 
an ao-product of n.d. automata in M . 

3 Isomorphic representation 
In this section, the isomorphic representation of the automata in K.nd are studied. 
The next statement shows that contrary to the deterministic case, the class ICnd 
does not contain any finite isomorphically complete system for K,nd with respect to 
the general product. 

Propos i t ion 1. There is no finite system M C K.nd of n.d. automata which is 
isomorphically complete for K-nd with respect to the general product. 
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Proof. In our proof we shall use some particular automata. Namely, for all 
n > 3, let us define the n.d. automaton C n = ( { 1 , . . . , n } , {x2, • • • , x n - i } ) as 
follows. For every i G { 1 , . . . , n } and xk G {x2,... ,a ; n _i } , let 

ixcn _ ( {k,k+ 1, . . . , n } if i < fc, 
k \ {¿} otherwise. 

From the definition of C n it follows that Cn is an asynchronous n.d. automa-
ton. Now, we prove that C n is commutative. For this reason, let i G { 1 , . . . , n } 
and xj,xk G {x2, • • • , x „ _ i } be arbitrary elements with j ^ k. Without loss of 
generality, we may suppose that j < k. Then, for the case k < i, we have that 
ixfnx%" = {¿} = ixfnxfn. If j <i<k, then 

ixfnx]jrn = {i}a£" = {k,k + l,...,n} =ixfnxf 

Finally, if i < j, then 

ixf~xf~ = { j , j + l,...,n}xfn = {k,k+l,...,n} =ix^nxfn. 

These observations lead to the commutativity of C n . Consequently, C n G K.nd, for 
all integer n > 3. 

For proving the statement, contrary, let us suppose that M C K.nd is a finite 
isomorphically complete system for ICnd with respect to the general product. Then 
there exists an integer n such that |A| < n is valid for every n.d. automaton A = 
(A, X) G M. Since M. is an isomorphically complete system for K.nd with respect to 
the general product and C n G fCnd, there are n.d. automata At £ M, t = 1,... ,k 
such that C „ can be embedded into a general product n i = i ^-t({x2, • • • 
Let fi denote a suitable isomorphism of C n into the general product considered and 
let 

i\i = (aii,ai2,... ,aik), i = l,...,n. 

Denote by r an integer for which an_i> r ^ anr. Such an integer exists. We shall now 
prove that the states ai r , a2r, • • •, anr are pairwise different. First, let us consider 
the state an_ 2 < r . Since p is an isomorphism, an-2tripr(an-2ii,... ,an-2<k,xn-i)Arr\ 
{ a n _ i , r , a „ i r } = { a n _ i i r , a „ , r } . Thus, by a n _i , r ^ anT and Remark 1, we obtain 
that an_2,r ^ { a n - i , r , T h e r e f o r e , a„_2,r , On-i,r> <W are pairwise different. 
Now, if for some integer 2 < i < n — 2, the elements a n _ j i r , a n _ i + . . . ,anr are 
pairwise different, then in a similar way as above, we get that 

^n-i - l^Vrt^n-i - l . i ' l • • • J^n-i-lj /ll^n-i) r ^ — 1,7*) i+l,r> • • • ) 

This inclusion and Remark 1 yield that an-i-i,r & {an-i,r, • • •, a n r } , and therefore, 
the elements a„_t_ i , r , an-i,T, • • •, &nr are pairwise different. From these observa-
tions it follows immediately that the elements air,a2r>... ,anr are pairwise differ-
ent. This implies that n < |Ar| contradicting the definition of n. Consequently, 
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there is no finite system M C K.nd.so that M is isomorphically complete for K.nd 
with respect to the general product. • 

Since the ao-product is a particular case of the general product, we get the 
following observation. 

Corollary 3. There is no finite system, M. C K.nd of n.d. automata which is 
isomorphically complete for ICnd with respect to the Qo -product. • • :. -

Corollary 3 shows that there is a significant difference between the isomorphic 
representations of deterministic and n.d. automata. The class of all deterministic 
automata denoted by Cd does not contain any finite system which is isomorphically 
complete for Cd with respect to the ao-product (see [5]). On the other hand, the 
class of all n.d. automata denoted by Cnd contains finite isomorphically complete 
system iox Cnd with respect to the ao-product (cf. [7]). Therefore, this pair of 
classes is an example for the case when the deterministic class does not contain 
any finite isomorphically complete system while the n.d. class contains a finite 
isomorphically complete system with respect to the ao-product. The piair of the 
classes of the commutative asynchronous deterministic and n.d. automata denoted 
by K-d and K,nd, respectively, is an example for the opposite case. Indeed, in [8], it is 
proved that / Q contains finite isomorphically complete systems for / Q with respect 
to the quasi-direct product. Since the quasi-direct product is a particular case of 
the ao-product, this result yields that this class contains some finite isomorphically 
complete systems for ICd with respect to the ao-product. On the other hand, by 
Proposition 1, it is not valid for the class K,nd• Consequently, the pair of classes K-d 
and K.nd is an example for the case when the determinstic class conatins a finite 
isomorphically system while the n.d. class does not do it. 

Of course there are finite isomorphically complete systems for K,nd with respect 
to the ao-product, but they are not contained in K.nd• Proposition 2 shows that 
there are finite isomorphically complete systems for tC7Ui with respect to the ao-
product such that they contain monotone n.d. automata in that sense that the 
transition graphs of these automata do not contain any directed cycle different from 
a loop. Moreover, it turns out that there exists such an isomorphically complete 
system for Knd with respect to the ao-product which consists of a monotone n.d. 
automaton having three states. 

The n.d. automaton what we need is denoted by B = ( {0 ,1 ,2 } , {x, y, u,v}) and 
it is defined as follows: 

0a:B = { 0 , 1 , 2 } , ixB = {¿}, i = 1 ,2 , 

0yB = { 0 ,1 } , iyB = {¿}, i = 1,2, ' 

0uB = {0 ,2 } , iuB = {¿}, i = 1,2, 
ivB = { 2 } , i = 0 ,1,2. 

It is easy to check that B is monotone, i.e., its transition graph does not contain 
any directed cycle different from loop. 
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Proposition 2. Any system M, containig such an n.d. automaton A that B 
can be embedded into an ao-product of A with a single factor, is isomorphically 
complete for K,nd with respect to the ao-product. 

Proof. By Lemma 4, it is sufficient to prove that any n.d. automaton from ICnd 
can be embedded into a suitable ao-power of B. 

We shall prove this statement by induction on the number of states of the 
n.d. automata. It is worth noting that for every positive integer n, IC„d contains 
automata having n states. 

One can easily check that if A G K.nd and \A\ < 2, then A can be embedded 
into an ao-product of B with a single factor. Now, let n > 2 be an arbitrary integer 
and let us suppose that the statement is valid for every A G Knd with |A| < n. 
Let us consider an arbitrary n.d. automaton A = ( A , X ) G /CN(¡ with |A| = n + 1. 
Corollary 2 provides that the reachability relation is a partial ordering on the set 
A. Since A is finite, (A, < ) contains maximal elements. We distinguish two cases 
depending on the number of the maximal elements. 

Case 1. The number of the maximal elements in (A, < ) is not less than 2. Then 
there are at least 2 maximal elements, which are denoted by c, d. Now, let us define 
the ao-product D = A / 0 ( c , d) x B ( X , 3>) as follows. 

For every z £ X and a G A \ {c, d}, let 

<fi(z) = z 

( y if azA fl {c, d} = { c } , 
(p2({a},z) = < u if azA fl {c, d} = {d} , 

[ x otherwise, 

v>2 ( { { c , 4 } , z ) = x. 

Let us define the mapping p,: A A / 0 ( c , d) x {0 ,1 ,2 } as follows: 

c/i = ({c, d}, 1), 
d/i = ( { 0 , 4 , 2 ) , 
a/i = ( {a} , 0), for all a € A \ {c, d}. 

and let 5 = { ( { a } , 0) : a G A \ {c, 4 } U { ( { c , 4 , 1 ) , ({c, 4 , 2 ) } . 
We prove that /z is an isomorphism of A into the ao-product D, more precisely, 

A is isomorphic to the subautomaton of D which is determined by the subset S. 
First, let a 6 A\{c , d} and z G X be arbitrary state and input sign, respectively. 

If azA D {c, 4 = 0> then azAn — ap.z° fl S = a¡xzs is obviously valid. If azA fl 
{c, 4 th e n let us investigate separately the three cases corresponding to the 
elements of the intersection. For the sake of simplicity, let us denote by Q the set 
{c, 4 and for every R C A \ Q, let R' = { ( { r } , 0 ) : r G R}. 

(1) azA = RU {c } , where R C A\Q. Then azA\i = i ? ' U { ( Q , l ) } . On the other 
hand, 

( {a } , 0 )z D = {a }z A / e ( c ' d > x {0,1} = (R' U {Q}.) x {0 ,1 } . 
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But ( ( i ? ' U { Q } ) x {0 ,1 } ) D S = R! U { (Q, 1)}, and hence, azAfi = afizs is valid for 
the case under consideration. 

(2) azA = i i U { d } , where R C A\Q. Then azAfj, = i ? 'U{ (Q ,2 ) } . Furthermore, 

( { a } , 0 ) z D = { a J z V ® ^ x {0 ,2} = (R' U {<?}) x {0 ,2 } . 

Now, ( ( i ? ' u { Q } ) x { 0 , 2 } ) n 5 = i ? 'U{ (Q ,2 ) } , and therefore, azAn = afizs is valid 
for this case as well. 

(3) azA = R U Q, with R C A \ Q. In this case, azA/j, = R' U { (Q, 1), (Q, 2)}. 
Furthermore, 

( {a } , 0 > D = { a } z A / e ^ x {0 ,1 ,2} = (R' U {Q}) x {0 ,1 ,2 } . 

Now, ((R' U { Q } ) x {0 ,1 ,2 } ) n S = R' U {(Q, 1), (Q, 2)}, and hence, azAp, = afizs 

is valid for the case considered. 

Finally, it is easy to see that czAp, = cpzs and dzAfi = dfizs. By the cases 
considered above, we get that n is an isomorphism of A into the Qo-product D. 
On the other hand, it is easy to check that A/Q(c,d) is a homomorphic image of 
A , and thus, Corollary 1, Lemma 4 and the induction hypothesis result in that A 
can be embedded into an a o-power of B. 

Case 2. (A , < ) has only one maximal element which is denoted by c. Then the 
partially ordered set (A \ { c } , < ) contains at least one maximal element. Let us 
denote it by b. For the sake of simplicity, let Q denote the set {b, c}. Now, let us 
define the ao-product A/0( fo ,c ) x B ( X , $ ) as follows. 

For every z E. X and a € A \ Q, let 
ip1(z) = z, 

(u if azA C\Q — {c}, 
M{a},z) = I y if azA f l Q = {&}, 

[ x otherwise, 

<P*iQ.z) = {v *tJ*A = W. I. v otherwise. 

Define the mapping of A into A/Q(b,c) x {0 ,1 ,2} as follows: 

c / i = ( Q , 2), 

bn = (Q,l), 
an = ( {a } , 0), for all a £ A \ Q, 

and let S = { ( { a } , 0 ) : a e A \ Q) U { (Q, 1), (Q, 2)}. 
Then it can be seen that /z is an isomorphism of A into the ao-product consid-

ered, namely, A is isomorphic to the subautomaton determined by the set S. On 
the other hand, A / 0 ( 6 , c) is a homomorphic image of A . Then Corollary 1, Lemma 
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4 and the induction hypothesis yield that A can be embedded into an a0-power of 
B which ends the proof of Proposition 2. 

It is interesting to note that we need the monotone n.d. automaton of three 
states not only for the convenience. This assertion is vitnissed by a commutative 
asynchronous n.d. automaton which can not be embedded into any general product 
of two-state monotone n.d. automata. 

Let us consider the n.d. automaton A = ( {0 ,1 ,2 ,3 } , {x,y,z}) which is defined 
in the following way: 

0 z A = {1 ,3 } , ixA = {¿}, i = 1,2,3, 
0 y A = {2 ,3 } , 1 yA = {2 } , iyA = { » } , » = 2,3, 
izA = {3 } , i = 0,1,2,3. 

It is easy to check that A G /C„d. Now, we prove that A can not be embedded 
into any general product of two-state monotone n.d. automata. Contrary, let us 
suppose that A can be embedded into a general product D = FljLi A.j({x, y, z}, $) 
of two-state monotone n.d. automata. Without loss of generality, we may assume 
that the states of the n.d. automaton Aj are 0 and 1, moreover, there is no edge 
from 1 into 0 in the corresponding transition graph, for all j, j = 1 , . . . , k. Let ¡i 
denote a suitable isomorphism and let ifi = (en,...,eik), 2 = 0,1,2,3. Obviously, 
the vectors (en,..., eik), i = 0,1,2,3 are binary vectors. The isomorphism and 
the monotone property of the components imply that Q/J, < l/i < 2/x < 3/i. Let us 
investigate the equality 0xA(i = 0/J,XD n { (e^i , . . . , e^) : 0 < i < 3}. The left side is 
obviously { ( e n , . . . , eut), ( e 3 i , . . . , e^k)}• By the definition of the general product, 
the right side is equal to the following set: 

W = ( { e n , e 3 i } x { e i 2 , e 3 2 } x •• • x {e u , e 3 f c } ) n {(en,.. .,eik) : 0 < i < 3}. 

Since ei j < e2j < e3 j , j = 1 , . . . , k and e -̂ G {0 ,1 } , for all i = 1,2,3; j = 1 , . . . , k, 
(e2i, • • •,e2k) £ W which is a contradiction. 

By the observation above, we obtain the following statement. 

Corollary 4. There is no isomorphically complete system for K.nd with respect to 
the general product which consists of two-state monotone n.d. automata. 

Summarizing, the results presented here illustrate that although ICnd is a small 
and very particular class, the characterization of the isomorphically complete sys-
tems for K.nd w ^ h respect to the ao-product can be very difficult. Proposition 1 
shows that some isomorphically complete systems for JCnd must be Infinite, while 
Proposition 2 implies that there are some finite isomorphically complete systems 
for K n d . 

Acknowledgement. The authors thank Professor Ferenc Gecseg for his valuable 
observations on this paper. 



On commutative asynchronous nondeterministic automata 617 

References 
[1] Gecseg, F., Composition of automata, Proceedings of the 2nd Colloquium 

on Automata, Languages and Programming, Saarbrücken, LNCS 14 (1974), 
351-363. 

[2] Gecseg, F., Products of Automata, Springer-Verlag, Berlin - Heidelberg-New 
York - Tokyo (1986). 

[3] Gecseg, F., B. Imreh, On completeness of nondeterministicautomata, Acta 
Math. Hungar. 68 (1995), 151-159. 

[4] Gecseg F., B. Imreh, On the cube-product of nondeterministic automata, 
Acta Sei. Math. (Szeged) 60 (1995), 321-327. 

[5] Imreh, B., On aj-products of automata, Acta Cybernetica 3 (1978), 301-307. 

[6] Glushkov, V. M., Abstract theory of automata, Uspekhi Mat. Nauk, 16:5 
101 (1961), 3-62 (in Russian). 

[7] Imreh, B., M., Ito, On a,-products of nondeterministic automata, Algebra 
Colloquium, 4 (1997), 195-202. 

[8] Imreh, B., M. Ito, A. Pukler, On commutative asynchronous automata, 
Proceedings of The Third International Colloquium on Words, Languages, 
and Combinatorics, Kyoto, 2000, to appear. 

Received September, 2000 


