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On some algebraic properties of automata* 

András Adám T 

Abstract 
Let A be a class of Moore automata. It is shown that R(H(S(A))) is 

closed for the three operators S, H, R where S, H, R denote that the set of 
subautomata, of factor automata, of the automata obtained by input reduc-
tion (respectively) are formed. 

Introduction 
In the general theory of algebraic structures, the theorem of Tarski is one of the 
well-known results.1 It concerns to how the narrowest class V{A) can be produced 
from a class A of structures (all being of the same type) such that is closed 
for the operators of forming direct products, subalgebras and factor algebras. 

The present paper contains a variation on the theme of Tarski. We deal with 
automata (having output function) in the sense of Moore.2 Our considerations 
concern to the operators of forming subautomata and factor automata, and to the 
operator of input reduction. (We study a weaker and a total version of the second 
and third of these operators.) 

Let an arbitrary class A of finite Moore automata be considered. Let us denote 
by K(A) the narrowest class which includes A and is closed for the three operators 
S,H,R mentioned above. Our main result expresses that R(S(H(A))) exhausts 
the class K(A). An auxiliary statement (Lemma 2) is now valid in a stronger form, 
than in the field of universal algebra (namely, equality can be asserted instead of 
set inclusion). 
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1See [4] and Section 9 of Chapter 2 in [3]. 
2These automata cannot be regarded, in strict sense, to be algebraic structures. Although the 

transition function of an automaton may be viewed as a family consisting of unary operations, 
the output function is not an algebraic operation. In the field of automaton theory, direct products 
and substructures (we deal with the second of them only) have the same properties as familiar 
in algebra; the congruences and factor automata behave, however, somewhat curiously for an 
algebraist (cf. Sections 6 - 7 and Appendix 3 in [1]). The dissimilarity is continued when input 
reduction is considered; this operator does not preserve the type, in contrast to the usual algebraic 
operators which are type-preserving. 
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1 Basic terminology 
By an automaton we mean a Moore-type automaton, written in form A = 
(A, X, Y, S, A). (Here A, X, Y are nonempty finite sets.) The letter A is used for de-
noting a nonempty set consisting of automata. Isomorphic automata are regarded 
to be equal. 

Some basic notions and facts of automaton theory are supposed to be known 
(see also Chapter 1 in [1]); including that there is a maximal congruence among the 
congruences of an automaton A , and a = b (mod 7rmax) precisely when the states 
a and b are indistinguishable (formally: when X(S(a,p)) = A(<5(6, P) ) for each input 
word p). We say that A is simple if 7rmax equals the trivial congruence of A . Let n 
run through the congruences of A , among the factor automata A/N solely A/-7rmax 

is simple. 
Let x\, X2 be input symbols, we say that Xi and x2 act equally (in A ) if ¿(a, £1) = 

S(a, X2) for each a(E A). There is obviously a partition am&x of the set X of input 
symbols such that the symbols being in a common partition class and only these act 
equally. A is called an input-reduced, automaton if AINIX is the most refined partition 
of X (i.e., the partition whose index equals |X|). We can omit the superscript and 
write <7max if there is no danger of confusion. 

Let a partition a(< crinal) of X be chosen. We can form the automaton A\a in 
a natural manner, namely, by identifying the input symbols which are in a common 
class mod a. 

2 The five operators 
Consider an arbitrary class A of automata. Five operators will be introduced; by 
applying any of them, we obtain another automaton class from A. 

Let D £ S(-4) hold when there is an A ( 6 A) such that D is a subautomaton of 
A . 

Let C G H(A) hold when there are an A(G -4) and a congruence IT of A such 
that C = A/tt. 

Let C i € HA(A) hold when Ci is simple and € H(A). 
Let B € hold when there are an A ( e A) and a partition A of the set X 

of input symbols or A such that (a < ffm'ax and) B = A\<r. 
Let B i E RA(A) hold when Bx is input-reduced and B x £ R(A). 
In the final part of this section some evident consequences of the definitions 

above are listed. 
Denote by Q any of S,H,HA,R,RA. The equality Q{Q{A)) = Q(A) holds 

(i.e., the operators are idempotent), and 

<3M) = U A e ^ Q ( A ) . 

In case m = 1 we write Q(A) instead of Q ( { A } ) . 
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It is clear that the equalities 

HA(H(A)) = H(HA{A)) = HA{A) (2.1) 

and 
RA(R(A)) = R(RA(A)) = RA(A), (2.2) 

furthermore, the inclusions 

S[A) D A, H(A) D A, R(A) D .4 

are valid. The membership relations D 6 5(A) and C € H{A) imply 

(2.3) 

(2.4) 

respectively. 

3 The main result 
Now we can expose the Tarski-type statements for automata. 

Theorem 1 Let a class A of automata be considered. Denote by JC the narrowest 
class such that ICD A and 1C is closed for the operators S, H, R. 

(I) K, equals R{H(S(A))). 

(II) The class of the simple automata belonging to K, equals R(HA(S(A))). 

(III) The class of the input-reduced automata belonging to K. equals RA(H(S(A))). 

(IV) The class of the input-reduced simple automata belonging to K. equals 

4 Proof of the main result 
The following facts can be seen easily: 

Lemma 1 The operator R does not alter the distinguishability of states of an au-
tomaton. Hence the subsequent three conditions are equivalent for an automaton 

RA(HA(S(A))). • 

A: 

(i) A is simple. 

(ii) R(A) contains at least one simple automaton. 

(iii) All the automata belonging to R(A) are simple. 

• 
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L e m m a 2 S(H(A)) = H(S(A)). 

P r o o f . Assume A 6 A and D £ S(H(A)). Then there exist an automaton C Q D ) 
and a homomorphism x such that x maps A onto C . The states a of A for which 
x (a ) belongs to the state set of D constitute a subautomaton D ' of A . It is obvious 
that D is the image of D ' under the appropriate restriction of x-

Conversely, suppose A € A and C 6 H(S(A)). There exist a subautomaton D 
of A and a congruence 7Ti of D such that D/ir i and C are isomorphic. Introduce 
a partition 7r2 of the state set of A such that 

(a) the restriction of 1x2 to the state set of D coincides with 7Ti, and 

(/3) any state of A which is not contained in D forms a one-element class mod 7t2 • 

It is evident that 7r2 is a congruence of A and T)/-Ki is a subautomaton of A/-7r2. 
• 

L e m m a 3 S(R(A)) C R(S(A)). 

P r o o f . Suppose A € A and D 6 S(R(A)). Then there exist a B Q D ) and a 
partition A of X such that B = A\<r. We have clearly D = Di\<r where D i is a 
subautomaton of A such that the state sets of D i and D coincide. 

L e m m a 4 H(R(H(A))) = R(H{A)). 

P r o o f . The inclusion D holds by (2.3). It suffices to show the relation C when 
.4 = { A } . 

Assume C i € H(R(H(A))). This supposition means the existence of two au-
tomata C 2 , B , a partition a of X , two homomorphisms Xi>X2 such that 

B e R(H{A)), C 2 e H{A), B = C2\(7, 

moreover, x i maps B onto C i and X2 maps A onto C 2 . The state sets of C 2 and 
B are equal. 

Denote the kernels of x i and x i by 7r2 and , respectively. (7r2 is a congruence 
of A,7Ti is a congruence of B as well as of C 2 ( = A/7r2 ) . ) Introduce a partition ir[ 
of the state set A of A by 

a = 6 (mod 7ri) o X2(a) = X2(&) (mod 7Ti). 

7rj is a congruence of A (since 7ri,7r2 are congruences), and 

C ! = (A/7rl)\<7. 

This representation of C i assures C i e R(H(A)). • 

L e m m a 5 HA(R(A)) C R{HA(A)). 
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Proof. As in the preceding proof, we deal with the case A = {A} . Let С belong 
to HA(R(A)). There exists a CR(< such that, with the maximal congruence 
7Г of В = A\<t, we have С = В/я - . The first sentence of Lemma 1 guarantees that 
the state partition ТГ is the maximal congruence of A also, thus Ci = A//T is a 
simple automaton. There exists the automaton Ci\u (since а < а ^ х by (2.4)), 
and 

С = СДСТ E R(HA(A)) 

is evident. • 

L e m m a 6 HA(R(H(A))) = R(HA(A)). 

Proof. Assume C2 € R(HA(A)). The automaton C 2 is simple (by the second 
sentence of Lemma 1), consequently 

{ С 2 } = Я Л ( С 2 ) С 

С HA(R(HA{A))) С HA(R{H(A))). 

Thus D has been verified. The inclusion С follows from Lemma 5 and (2.1): 

HA(R(H(A))) С R(HA(H(A))) = R(HA(A)). 

• 
Proof of Theorem 1. For verifying (I), first we observe 

(А С ) R ( H ( S { A ) ) ) С /С. 

Conversely, suppose В € 1С. There exist a positive integer t and t automata 
A i , A 2 , . . . , A t such that A i € A, A t = B, and, for any i (where 2 < i < i ) , B j can 
be obtained from B j _ i either by R. or by H or by S. 

Our next aim is to show the implication 

A i _ i € R(H(S(Ai))) A i € R(H(S(A,))). ( 4 . 1 ) 

If A i e i ? (A i_ i ) or A j 6 ff (A i_ i ) , then (4.1) holds by the idempotency of R or 
by Lemma 4, respectively. When A4 € 5 ( A j _ i ) , then (4.1) follows from Lemmas 
2, 3 and the idempotency of S. 

Our inference can be summarized as follows: 

В e { A i , A 2 > . . . , A t } С R(H(S(Ai))) С R(H(S(A))). 

Now we turn to showing (II) and (III). Lemma 6 and (2.2) imply the equalities 

HA(R{H(S(A)))) = R(HA(S(A))) ( 4 . 2 ) 

and 
RA(R(H(S(A)))) = RA(H(S(A))), ( 4 . 3 ) 
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respectively. Since the statement (I) is true, (4.2) expresses (II) and (4.3) expresses 
(III). 

Finally, we prove (IV). Consider an arbitrary input-reduced simple automaton 
B'which is contained in K.. We have 

{ B ' } = RA{HA(B')) C Ra(Ha()C)). 

This means that RA(HA(K,)) exhausts the class of input-reduced simple automata 
which belong to K.. The deduction 

Ra{Ha(IC)) = Ra(Ha(R(H(S(A))))) = 

= Ra(R(Ha(S(A)))) = Ra(Ha(S(A))) 

is valid by (I), Lemma 6 and (2.2). • 

5 Final remarks 
Some statements, related to lemmas in the preceding section, can be proved by 
similar ideas; for example, the equalities 

Ha(S(H(A))) = S(Ha(A)) 

and 
Ha(Ra{Ha{A)))=Ra{Ha(A)). (5.1) 

I have become acquainted with facts belonging to the present topics when H. 
Andreka and Zs. Baranyai showed that (5.1) holds (in case |.4| = 1) but 

Ra{Ha(Ra(A)))=Ha(Ra(A)) 

is not valid in general [2]. 
We have stated equality in Lemma 2 for automata, in the general theory of 

algebraic structures only the inclusion S(H(A)) C H(S(A)) is valid. In addition, 
it follows from Lemma 2 that 

S(Ha(A)) = Ha(S(H{A))) = HA{H(S{A))) = Ha{S(A)) (5.2) 

in the field studied here. Consequently, the formulae in the statements (I ) - (IV) of 
Theorem 1 can equivalently be replaced by 

R(S(H(A))), R(S(Ha(A))), 

Ra(S(H(A))), Ra(S(Ha(A))), 

respectively. 
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a ¿ (a ,x i ) 5(a,x 2) 
1 2 3 
2 3 3 
3 2 2 

Table 1 

e S(e,x i ) S(e,x2) A(e) 
1 2 4 2/1 
2 3 3 2/2 
3 1 1 2/3 
4 3 3 2/2 

(a) 

c <5(c,zi) S(c,X2) A(c) 
1 2 2 2/1 
2 3 3 2/2 
3 1 1 2/3 

(b) 

d <5(<i, x) m 
1 2 2/1 
2 3 2/2 
3 1 2/3 

(c) 
Table 2 

Is Lemma 3 true with equality (instead of C)? The next example shows that the 
answer is negative (in general). Consider the automaton A determined by Table 1 
(the output function is indifferent), see also Figure 1. Let B be the autonomous 
automaton having two states in which 5(bi,x) = b2 and S(b2,x) = b\. This B is 
contained in R(S(A)), it does not belong to S(R(A)). 
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Analogously, Lemma 5 loses its validity if inclusion is replaced by equality. 
Indeed, let E , C , D be the Moore automata determined by Tables 2/a, 2 /b , 2 /c , 
respectively; see also Figure 2 for E. Then R{HA(E)) = { C , D } and H A ( i ? ( E ) ) = 
{ D } -
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