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P Systems with Communication Based on 
Concentration 

Jürgen Dassow * Gheorghe Päun * 

Abstract 
We consider a variant of P systems where the communication of objects 

is controlled by the "concentration" of these objects: after each evolution 
step, the objects are redistributed among the regions of the system in such 
a way that each region contains the same number of copies of each object 
(plus/minus one, when the number of objects is not divisible by the number 
of regions). We show that P systems of this form, with only one flip-flop 
catalyst but without using other control ingredients, can generate the Paxikh 
images of all matrix languages. When an unbounded number of catalysts 
is available, a characterization of recursively enumerable sets of vectors of 
natural numbers is obtained (by systems with only one membrane). 

1 Introduction 
The P systems are a class of distributed parallel computing devices of a biochemical 
type (so, they belong to the rather active area of Molecular Computing) which were 
recently introduced in [11]; an early survey can be found in [12]. 

In short, in the basic model one considers a membrane structure consisting of 
several cell-membranes which are hierarchically embedded in a main membrane, 
called the skin membrane. The membranes delimit regions, where we place ob-
jects, elements of a finite set (an alphabet). The objects evolve according to given 
evolution rules, which are associated with the regions. An object can evolve in-
dependently of the other objects in the same region of the membrane structure, 
or in cooperation with other objects. In particular, we can consider catalysts, 
objects which do not evolve alone, but only assist other objects to evolve. The 
evolution rules are given in the form of transition rules for multisets, can be the 
subject of a given priority relation, and in their right hand members contain sym-
bols (a, here), (a, out), (a, inj), where a is an object. The meaning is that one 
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occurrence of the symbol a is produced and remains in the same region, is sent out 
of the current region, or is sent to the region associated with membrane j (which 
should be reachable from the region where the rule is applied), respectively. The 
membranes can be dissolved. When such an action takes place, all the objects of 
the dissolved membrane remain free in the membrane placed immediately outside, 
but the evolution rules of the dissolved membrane are lost. The skin membrane is 
never dissolved. 

The application of evolution rules is done in a maximally parallel manner: at 
each step, all objects which can evolve should evolve. 

Starting from an initial configuration and using the evolution rules, we get a 
computation. We consider a computation completed when it halts, no further rule 
can be applied. The multiplicity of objects present in a designated membrane in 
a halting configuration is the result of the computation. Thus, in this way we 
compute vectors of natural numbers. 

Many variants are considered in [3], [4], [5], [10], [11], [13], [14], [16]. Most of 
them are computationally complete, equal in power to Turing machines. When 
an enhanced parallelism is provided, for instance, by allowing membrane division, 
then linear time solutions to NP-complete problems can be obtained, [7], [10], [14], 
[19]. 

One of the most non-realistic features of many of these variants is the use of 
the target indications out and irij] expecially the last one is rather far from bio-
chemistry. Attempts to get rid of indications of the form inj were already done in 
[13] (where electrical charges are used instead of labels: each object is marked with 
+ , —, or 0 and the same with the membranes; when an object is introduced with 
a mark + or —, it will be passed to a membrane of the opposite sign, nondeter-
ministically chosen among the neighboring membranes) and in [15] (indications of 
the form in, without any membrane specification, are used, associated with other 
ingredients which are used to control the communication). 

Here we make one more step "towards reality": the main way of communicating 
chemical objects in biochemistry is based on differences of concentration (gradient) 
among regions of a cell, see;[8], [9]. We consider here a variant of P systems where 
this idea alone governs all communications (that is, we remove all commands out 
and inj, and we use only communication driven by the concentration difference). 
We use no other control ingredients (priority among evolution rules, actions con-
trolling the thickness of membranes, such as the dissolving action, etc), but only 
catalysts (in the powerful form of bistable catalysts, able to change their state 
among two states, in a flip-flop manner). Using only one catalyst, we cover in this 
way. at least the Parikh images of matrix languages. When an arbitrary number 
of bistable catalysts is used, we can characterize the recursively enumerable sets of 
vectors of natural numbers. Systems consisting of one membrane only are enough 
(hence in such a case only the communication to the outer region of the system is 
possible). 
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2 A Remark on Matrix Grammars ™ 
Before we consider P systems we briefly recall the definition of matrix grammars 
and their associated languages because we shall use those grammars in the study 
of the generative power of P systems. Moreover, we add a new normal form for 
matrix grammars which is useful in this paper and is of some interest in the theory 
of matrix grammars. For further elements of formal language theory we refer to 
[17]. (We only mention that V* is the free monoid generated by V under the 
operation of concatenation; A is the empty string, |x| is the length of x G V* and 

is the Parikh vector associated with x € V*.) 
A matrix grammar with appearance checking is a construct G = (TV, T, S, M, F), 

where TV, T are disjoint alphabets, 5 £ TV, M is a finite set of sequences of the 
form (Ai —• x\, ...,An —> xn), n > 1, of context-free rules over J V U T (with 
AI € N,Xi £ (TV UT)* , in all cases), and F is a set of occurrences of rules in M 
(we say that TV is the nonterminal alphabet, T is the terminal alphabet, S is the 
axiom, while the elements of M are called matrices). 

For VJ, z 6 (TV U T)* we write w = > z if there is a matrix {A\ x\, ..., An 

xn) in M and the strings Wi e (TV U T ) * , l < i < n + 1, such that w — wi,z = 
w n + i , and, for all 1 < i < n, either Wi = w^Aiw'-, tuj+i = w'^iw'-, for some 
w^w'l € (TV U T)*, or Wi = Wi+1, Ai does not appear in Wi, and the rule Ai Xi 
appears in F. (The rules of a matrix are applied in order, possibly skipping the 
rules in F if they cannot be applied; we say that these rules are applied in the 
appearance checking mode.) If F = 0, then the grammar is said to be without 
appearance checking (and F is no longer mentioned). 

We denote by ==>* the reflexive and transitive closure of the relation = > . The 
language generated by G is defined by L(G) = {w e T* \ S = > * w}. The family of 
languages of this form is denoted by MATac. When we use only grammars without 
appearance checking, then the obtained family is denoted by MAT. By PsMAT 
we denote the Parikh sets associated with languages in M A T . 

It is known that MAT C MATac = RE and that each one-letter language in 
the family MAT is regular, [6]. Further details about matrix grammars can be 
found in [2] and in [17]. -

A matrix grammar G = (TV, T, S, M, F) is said to be in the binary normal form 
if TV = TVX U TV2 U {S, t } , with these three sets being mutually disjoint, and the 
matrices in M are of one of the following forms: 

1. (S XA), with X e Ni, A e TV2, 

2. (X Y,A x), with X,Y e Ni,A £ N2,x G TV2Ma;| < 2, or x € T U {A} , 

3. (X Y,A f ) , with X,Y e Ni, A £ TV2, 

4. (X A, A x), with X e TVi, A £ TV2, and x 6 T U {A}. 

Moreover, there is only one matrix of type 1 and F consists exactly of all rules 
A —> f appearing in matrices of type 3; f is a trap symbol, once introduced, it is 
never removed. A matrix of type 4 is used only once, at the last step of a derivation. 



12 Jiirgen Dassow, Gheorghe Faun 

Furthermore, for any symbol X € Ni, there is a matrix whose left-hand side of the 
first rule is X . 

According to Lemma 1.3.7 in [2], for each matrix grammar there is an equivalent 
matrix grammar in binary normal form. 

We now introduce a stronger normal form. 
A matrix grammar G = (N, T, S, M, F) is said to be in strong binary normal 

form, if N = Ni U N2 U {S, f } , with these three sets being mutually disjoint, and 
the matrices in M are of one of the following forms: 

1. ( 5 XA) with X G Ni, A € N2, 

2. (X y, A a) with X, F <E Nlt A € N2, a e N% U N2 U T U {A} , 

3. ( X Y, A-+ f ) with X, Y € Nlt A e N2, 

4. (X A) with X £ Nr. 

Moreover, there is only one matrix of type 1 (the start matrix) and only one of 
type 4 (the final matrix) and F consists exactly of all rules A —> f appearing in 
matrices of type 3, where f is the trap symbol, again. The matrix of type 4 is 
used only once, in the last step of a derivation such that after the application of 
this final matrix only terminal symbols and possibly some trap symbols are left. 
Finally, we may assume that each control symbol from Ni appears at least once 
on the left-hand side of the first production of a matrix in M and that the final 
control symbol only appears on the left-hand side of the final production. 

Lemma 1. For any matrix grammar G with appearance checking there is a matrix 
grammar G' in strong binary normal form such that L(G') = L(G). 

Proof. Let G = (N, T, S, M, F) be a matrix grammar. Without loss of generality, 
we can assume that G is in binary normal form as given above. Thus N = Nx U 
N2\J { 5 , f } - Let n be the cardinality of N2 and N2 = {Ak \ 1 < k < n}. We 
immediately obtain the corresponding matrix grammar in strong binary normal 
form-G' = [n',T, S, M', F') in the following way: 

• N' = N U {Zk | 0 < k < n } , where the 0 < k < n, are new symbols not 
contained in N . 

. M' = (M\{(X A, A a) I (X A, A a) 6 Mj) U M" with 
M " = { ( X Z0, A a ) | {X A, A a ) <E M } U 

{ ( Z f c _ ! Zk, Ak t) | 1 < k < n} U {(Zn A)} , 

• (Zn —> A) is the final matrix. 

Obviously, instead of one of the final matrices (X ->• A, A a) of G we 
use (X —Zo, A —> a ) , check the presence of an element of N2 by the rules 
(Zk-i -t Zk, Ak f ) , 1 < k < n, and finally terminate by ( Z n A). • 
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3 P Systems: Some Variants ;> 
We first introduce the basic class of P systems, then we briefly define several vari-
ants. The definitions are not completely formal; for details, the reader is referred 
to the papers listed in the bibliography. 

A membrane structure is a construct consisting of several membranes placed 
in a unique "skin" membrane; we identify a membrane structure with a string of 
correctly matching parentheses, placed in a unique pair of matching parentheses; 
each pair of matching parentheses corresponds to a membrane. Graphically, a 
membrane structure is represented by a Venn diagram. 

Each membrane identifies a region, delimited by it and the membranes immedi-
ately inside it (if any). A membrane without any other membrane inside it is said 
to be elementary. 

Figure 1 represents a membrane structure, described by the string 

L1L2L3L4 J 4J 3 L 5 J 5J 2 L6 UtI 8 J 8J 6 L J 9J1 ' 

skin regions 

membranes 

elementary 
membranes 

Figure 1. A membrane structure. 

If in the regions delimited by the membranes we place multisets of objects from 
a specified finite set V, as well as evolution rules for these objects, then we obtain 
a P system. 

More precisely, a P system (of degree m,m > 1) is a construct 

n = {V, T, C, /x, wi,..., wm, Ri,,..., Rm), 

where: 
(i) V is an alphabet; its elements are called objects', 
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(ii) T Ç V (the output alphabet); 

(iii) C Ç V,C (~)T = Qi (catalysts); 

(iv) fj. is a membrane structure consisting of TO membranes (labeled with 
1 , 2 , . . . , to); 

(v) Wi, 1 < i < m, are strings over V associated with the regions 1 , 2 , . . . , m of ii\ 
they represent multisets of objects present in the regions of /x (the multiplicity 
of a symbol in a region is given by the number of occurrences of this symbol 
in the string corresponding to that region) ; 

(vi) Ri, 1 < i < TO, are finite sets of evolution rules over V associated with the 
regions 1 , 2 , . . . , m of fi. 
The evolution rules are of the forms a v or ca —» cv, where a G V — C, 
c E C , and v is a string over 

(V x {here, out}) U (V x {inj | 1 < j < m } ) . 

When presenting the evolution rules, the indication "here" is often omitted. 
The membrane structure and the multisets w^, 1 < i < m, in II constitute the 

initial configuration of the system. We can pass from a configuration to another 
one by using the evolution rules. This is done in parallel: all objects, from all 
membranes, that can be the subject of local evolution rules, should evolve simulta-
neously. 

The use of a rule ca —> cv (similarly for rules a —> v) in a region with a multiset 
w means to subtract the multiset a from w, then to follow the prescriptions of v: 
if an object appears in v in the form (b,here), then it remains in the same region; 
if we have (b,out), then a copy of the object b will be introduced in the membrane 
immediately outside the region of the rule ca cv (if the rule is applied in the 
skin membrane, then the object leaves the system); if we have (b,ini), then a copy 
of b is introduced in the membrane with the label i, providing that this membrane 
is adjacent to the region of the rule ca —> cv, otherwise the rule cannot be applied 

A sequence of transitions between configurations of a given P system II is called 
a computation with respect to II. A computation is successful if and only if it halts, 
that is, there is no rule applicable to the objects present in the last configuration. 
The result of a successful computation consists of the vector of natural numbers 
which specify the number of copies of terminal objects which leave the skin mem-
brane (e.g., if T = {a,b,c} and no copy of a, four copies of b, and two copies of c 
leave the system, then the computed vector is (0,4,2).) 

Several further ingredients were considered in the literature: priority relations 
among evolution rules, the action of dissolving a membrane, an opposite action 
to dissolving, which makes thicker the membranes, inhibiting the communication, 
"electrical charges" associated with objects and membranes, used for controlling 
the communication [13], bistable catalysts [16]. We introduce here only the last of 
these ingredients, because it will be also used in our variant of P systems. 



P Systems with Communication Based on Concentration 15 

The bistable catalysts are catalysts able to change their state among two possi-
bilities, c and c. Specifically, we allow rules of the forms co —> cv and ca —> cv, but 
not also of the forms ca —> cv and ca —> cv; that is why we also call these catalysts 
flip-flop catalysts. 

For the power of P systems which use certain combinations of these ingredients 
we refer to the papers mentioned at the end of the present work. In particular, 
several characterizations of the recursively enumerable sets of vectors of natural 
numbers can be found in [11], [13], [15]. 

4 Définition of P Systems with Communication 
Based on Concentration 

The indication im looks rather unrealistic from a biochemical point of view, so 
it is of interest to try to avoid its use. Actually, we will remove all indications 
here, out, inby controlling the communication of objects only by means of their 
concentration in the regions of the system. 

At the first sight, this can be done in a very simple way: in the set V of objects 
we consider a subset, Vc Ç V, and whenever such objects are introduced, they 
are immediately redistributed among all regions of the system in such a way that 
all regions will have the same number of occurrences of each symbol from Vc; a 
difference of one occurrence is allowed when the total number of occurrences is not 
divisible by the number of regions. Note that a system with m membranes defines 
m + 1 regions, m regions inside the system, plus the outer region. -

Note also that always we take into consideration each object in Vc separately 
and we do not count these objects (and then redistribute them) as being indistin-
guishable. 

A problem appears when the number of copies of one object to be redistributed 
is not a multiple of m + 1, where m is the number of membranes in the system. In 
such a case, the "remainder objects" are redistributed according to the following 
"efficiency principle" : we move objects at the lowest distance (crossing the smallest 
number of membranes). For instance, if we have m -1-2 objects in a region, then all 
regions (including the outer region) will get one object, while the region where the 
objects were produced will remain with two copies. If we have started with m + 3 
objects, then each region will get one object, one further object will remain in the 
region where the objects were produced, and one further object will be sent to one 
of the neighboring regions, randomly choosen. 

Because in the proofs in the following sections we will always introduce objects 
to be communicated in only one region at a time, the above mentioned principle will 
be enough to govern the communication, so we ignore the more complex situations 
which can appear. 

In this framework, no indication here, in, out is necessary. The objects in Vc 

will go in or out, according to their concentration, the objects in V — Vc remain in 
the region where they are introduced. 
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Of course, no catalyst can appear in Vc and all terminal symbols are in this set 
(we have to read the result of a computation outside the system, hence we have to 
send out of the system the terminal symbols). 

How the redistribution of objects takes place in a practical circumstance is not 
considered here. We assume that the redistribution is done instantaneously, always 
correctly, and at the level of the whole system in a step, by a magical mechanism 
which is not explicit in our model. 

We denote by Ps(II) the set of vectors of natural numbers computed by a 
P system II and by PsLPm(con,2Catk) the family of sets Ps(II) of this form 
generated by P systems which communicate by concentration, use at most k bistable 
catalysts, and have at most m membranes; when m oik are not specified, we replace 
them with *. (The notation reminds the notion of a Parikh set, ^v(L), associated 
with a language L ÇV*.) We also denote by PsRE the Parikh images of recursively 
enumerable languages (the family of such languages is denoted by RE), which is 
nothing else than the family of recursively enumerable sets of vectors of natural 
numbers. 

5 The Power of P Systems with Concentration-
Based Communication 

First we show that systems with one pair of catalysts are sufficient to generate all 
matrix languages (without appearance checking). 

Theorem 1. PsMAT C PsLP*(con,2Cah). 

Proof. We first prove the inclusion. 
Let us consider a matrix grammar without appearance checking, G = 

(N, T, S, M), in the binary normal form (that is, N = NiUN2U{S}). Assume that it 
contains n two-rule matrices, labeled in a one-to-one manner with m i , m 2 , . . . , mn. 

We construct the P system (of degree n + 1) 

n = (V,Vc,T,C,n,wo,wi,... ,wn,Rv,Ri,... ,i?„), 

with 

V = NuTUVcUCu{D,E,E',E",É,t,#}U{X' ¡X eNi), 
Vc = {Xi,Ai | nu = {X a, A -> 0) e M,l < i < n) 

U { X | X € A^i} U T U {â | a 6 T} , 
C = {c,c}, 

» = loll ] 1 [2 ] 2 - - - [ „ ]Jo> 
wq = XADEc, for (S —> XA) being the initial matrix of G, 

Wi = Ec, for all i — 1 , 2 , . . . ,n, 

and with the following sets of evolution rules: 
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1. The set Ro contains the following rules: 

(a) X -> X 2 n + 2 , 
cA -> cA"+2, for all 1 < i < n such that mi : (X a , A -)• (3) 6 M , 

(b) cD cf, 
t t, 

(c) cX -> cX, for all X 6 Nu 

(d) cE" ->• cE, 

(e) E 
E' E", 
E" -> E, 

(f) a -> a n + 2 , 
a # , for all a G T, 

(g) X i -»• # , for all X G Nui = 1 , 2 , . . . . n , 
->• # , for all A G N2,i = 1,2, . . . , n . 

2. For each i = 1 , 2 , . . . , n such that nu : (X —> a, A —> /3), the set Ji, contains 
the following rules: 

(a) c X j - » ca2 

(of course, if a = A, then the rule is cX{ —> c), 
(b) cAi -»• cp2 , 

where j3 is a for ¡3 = a, a G T and /? = /3 if ^ G Ar2*, 
(c) cAi - t cf, 

cE ->• cf, 

(d) ^ ->• # , for all y G Nu 1 < j < n,j ± i, 
Bj -)• # , for all B G iV2,1 < j < n,j jt i, 

(e) Y -»• # , for all y G iVi, 
B # , for all B G JV2, 
a -»• # , 

a # , for all a G T. 

The system works as follows. 
The object f is a trap object, once introduced it can evolve forever, thus the 

computation will never finish. The object # is a dummy one, non-active. 
Each matrix from M is simulated in II in three steps, as follows. 
Assume that in the skin membrane we have one symbol from N\, some symbols 

from N2, the symbols D,E, and the catalyst c (plus occurrences of the dummy 
symbol, which we will ignore from now on); initially, we have here the multiset 
represented by XADEc, where (5 —> XA) is the initial matrix of M. Assume that 
at the same time in each membrane 1 , 2 , . . . ,n we have the objects E and c, as in 
the initial stage. 
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In the skin membrane, the symbol X £ N2 will introduce n + 2 copies of X,, 
for some 1 < i < n, and, at the same time, the catalyst plus a symbol A £ N2 
will introduce n + 2 symbols Aj, for some 1 < j <n, while the catalyst becomes c; 
moreover, E will be replaced by E'. The symbols X{, Aj should be redistributed. 
Because we have exactly n -1-2 copies of each of them, exactly one copy of each of 
them will be placed in each region of the system (one symbol leaves the system). 
Note that if the catalyst is not used by a rule cA cA"+2, then it must be used 
by the rule cD —>• cf and the computation never stops. 

We distinguish eight cases, according to the symbols present in a membrane 
i, 1 < i < n, after one evolution step (we denote by z\ the string representing the 
multiset of these symbols): 

1. Zi = XiAiEc . Using the rule cXi ->• ca2 we pass to (the multiset represented 
by) z' = a2AiEc. One copy of a is sent to the skin membrane, one remains 
here. Using the rules cAi ->c/32 and a —> # , we pass to z" = #fi2Ec. One 
copy of each symbol from ¡3 is sent to the skin membrane, one remains in 
membrane i and at the next step is replaced by # . 

Note that if we do not use the rule cXi —> ca2 at the first step, then we have 
to use the rule cAi —» cf; similarly, if we do not use the rule cAi —> eft2 at 
the second step, then we have to use the rule cE —> cf. In both cases, the 
computation will never halt. 

Simultaneously, in the skin membrane we proceed as follows. After the first 
step we here have a multiset z\ = XiAiDE'cu, where u consists of all symbols 
from N2 which remain here (plus dummy symbols). At the same time, we 
receive from membrane i a symbol Y, for some Y £ N\ (or nothing, if the 
matrix mi was a terminal one, rrii : (X —» A, A —» x)) , and E' is replaced 
by E". At the next step, the symbols Xi,Ai are replaced by # , while cY 
are replaced by cY and E" is replaced by E. The multiset still contains 
the symbols E and c. At the same time, we receive from membrane i either 
symbols from N2 or a symbol a, a £T. The multiset contains again D,E,c, 
a symbol from and some symbols from N2, hence we return to a contents 
as that from the beginning. At the next step, for the symbol a, a £ T, we 
produce n+2 copies of a; exactly one of these copies enters each of the regions. 
In all membranes of the system, a is immediately replaced by # . The copy 
which leaves the system contributes to the result of the current computation. 

Therefore, after three steps in membrane i and three steps in the skin mem-
brane, we have accomplished the simulation of the matrix rrii. The procedure 
can be iterated. 

2. Zi = X i A j E c , for some i ^ j. At the first step we can again use the rule 
cXi ca2, simultaneously with Aj # , but at the next step we have to 
introduce the trap-object f, because we have to use the rule cE — c f . The 
computation never stops. 

3. Zi = X iEc , exactly as in case 2, without using the rule A j —» # . 
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4. Zi = X j A i E c , for some j ^ i. At the first step we have to use the rule 
cAi —> cf (simultaneously with X j —> # ) , so the computation never stops. 

5. Zi = AiEc; exactly as in case 4 (without using the rule X j # ) . 

6. Zf = XjAkEc, for some j ^ i,k ^ i. We replace Xj,Ak by # and, from the 
point of view of membrane i, the computation can continue. 

7. Zi = XjEc, for some j ^ i\ exactly as in case 6. 

8. Zi = AjEc, for some j i; exactly as in case 6. 

Therefore, if a symbol Xi or a symbol Ai is introduced, then the computation 
can correctly continue and halt if and only if both symbols Xi and Ai were intro-
duced. At the first sight, cases 6, 7, 8 do not correctly control the computation, 
but this is still done: when a symbol X j or Ak is introduced, n-(-2 copies of it are 
introduced; one of these copies will reach membrane j, respectively k, and these 
membranes check whether or not both these symbols are present and whether or 
not j = k. 

The derivation in the grammar G stops by using a matrix of the form rrii = 
(X —> A, A —> a), for some a £ T U {A}. When this matrix is simulated in II, 
no symbol Y is sent from membrane i to the skin membrane. Instead of the rule 
cY cY, we can use the rule cE" cE. If no symbol from TV2 is present, then 
the computation stops. 

As long as any nonterminal is present in the skin membrane, the computa-
tion must continue. If we have only symbols from Ni or only symbols from N2, 
then the computation will never stop (see again cases 3, 5, 7, 8 discussed above). 
Consequently, a computation stops if and only if it correctly simulates a terminal 
derivation with respect to G. 

From the previous construction, it is now clear that ^ t ( L ( G ) ) = Ps(II), that 
is, PsMAT C PsLP,(con,2Cat1). 

In order to prove the strictness of the inclusion we consider the P system 

n = ({A, B, D, X, X',X", Y, c, a, f } , {a}, {a } , {<:},[,],, cAB, 

with 

Ri = {cA -» cAB, cA -> cA, A -» f, cA cXY, B Baa, 

a D, cB cD, cX' cX, X ->• X', 

X' f, cX' -> cX", cY -> cf, t t } -

We start by having one copy of the object B. The first phase of a computation 
consists in using n — 1, n > 1 times the couple of rules cyl —> cAB, cA-> cA, which 
introduces n copies of B. When using the rule cA cAB, in parallel, we also use 
the rule B -> Baa, while in parallel with using the rule cA —» cA, we use both 
rules B —> Baa and a —> D. This means that for each B, one of the two copies of a 
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introduced by the rule B —» Baa is sent out of the system and one remains inside; 
the copy which remains in the system is then replaced by the "dummy" object D. 
After these 2(n — 1) steps, we use the rule cA —> cAB,cA —> cXY - in parallel 
with B —• Baa and a —> D. In this way, we send out of the system 1, 2, 2, 3, 3 , . . . , 
n,n,n + 1 copies of a, which is, in total (n + l ) (n + 1) - 1, for some n > 1. 

Note that during this phase, we cannot use the catalyst together with another 
object, because of the rule A —> \\ as long as A is present, it has to evolve by one 
of the rules cA —>• cAB, cA —> cA, otherwise the computation will never terminate. 

After removing the object A (and introducing the objects X, Y), we have to use 
the rule cB —> cB; one copy of B is replaced by D, the others introduce two copies 
of a, while X becomes X'. The rule cB —> cD must me used, otherwise we have to 
use cY —> cf. For each B, one copy of a is sent out, the other one will remain inside 
the system and it will be replaced by D at the next step. The catalyst returns to 
the non-barred version by using the rule cX' cX. The process is iterated, and it 
is somewhat symmetric to the first phase: the number of copies of B is decreased 
step by step and, in parallel, copies of a are sent out of the system. Again, we 
have pairs of steps, hence we send out n + l , n , n , . . . , 2 , 2 , l , l , which means in total 
(n + l ) (n + l ) . 

When exactly one copy of B is present, we can use the rule cX' —> cX", which 
can be followed only by cB cD, and then no rule can be used. 

Therefore 
P s ( n ) = {2n2 + 4 n + l | n > l } . 

By the above mentioned fact that all languages L £ MAT where L C {a}* for 
some letter a are regular,, we obtain -Ps(II) $ PsMAT. • 

In the proof of the strictness of the inclusion we have used a P system with 
one region and one catalyst. If we keep the restriction concerning the number of 
regions but delete that concerning the number of catalysts, we are able to generate 
all recursively enumerable languages. 

Theorem 2. PsRE = PsLP^ccm, 2Cat*). 

Proof. Because PsMATac — PsRE and because the inclusion PsLP\ (con, 
2Cat*) C PsRE is straightforward, we only have to prove that PsMATac C 
PsLPi(con,2Cat,). 

Starting from a matrix grammar G = (TV, T, S, M, F) in strong binary normal 
form with N = Ni UN2 U {5 , f } and n matrices of the form : (X Y, A a), 
1 < i < n, and k matrices of the form mn+j : (X Y, A f ) , 1 < j < k, we 
construct the corresponding P system 

U = (V,T,C,[1)1,w1,R1) 

where 

V = N UTUC U {E,f}U {X',X" | X e N1}, 

C = {ci,ci | 1 < i < n} U {dj,d] | 1 < j < k) , 

wi — XAEciC2...Cnd\d2...dk, 
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where ( 5 X A ) is the start matrix in M , and the set Ri contains the following 
rules: 

1. For each matrix m* : (X —> Y, A —> a ) , 1 < i < n, we consider the rules: 

dX ->• ciY , Y' —» Y, CjE - 4 Cif, CiA a, 

where a = a 2 for a £ T , and a = a otherwise. 

2. For each matrix mn+j • (X Y, A -» f ) , 1 < j < k, we consider the rules: 

dj-Ji -> d j y ' , y ' -> Y", djA -> d,-t, d j Y " -> d , -y . 

3. For the final matrix (Z —» A) we take the rule Z -> A, and we also use the 
rule f —> f to ensure that the computation never stops if the trap symbol f 
has been introduced. 

At any moment, except after the last step of a computation, where the final rule 
Z —> A is applied, exactly one symbol from Nx U A'i U N" is present. If a matrix 
mi : (X -4- y, A —> a), 1 < i < n, is simulated, then first the first production 
X —> Y is evolved together with the catalyst c, yielding Y from X in two steps, 
and in the second step the corresponding second rule A —> a must be simulated 
together with the catalyst 57, otherwise the trap symbol f is introduced. For a € T 
we generate a second copy, which can leave the system. 

For simulating a matrix m n + ; - : ( X Y, A -> f ) , 1 < j < k, three computation 
steps in II are necessary: if the symbol A is present, in the second step catalyst dj 
must react together with A thus generating the trap symbol f ; otherwise, dj can 
wait for being evolved to dj again together with Y". 

A computation in II now stops if and only if the final matrix has been simulated 
and no trap symbol f is present, i.e., exactly if and only if a successful derivation 
in G has been simulated correctly in II. 

Consequently, we obtain $ t ( L ( G ) ) = ^ ( ¿ ( I I ) ) , which concludes the proof. • 

We close this paper with the observation that the concentration of symbols was 
already used in [1] as a control mechanism of L systems. We can combine the idea 
of [1] with that proposed in this paper and we can consider a sort of "bi-cameral 
DOL systems", as a pair of DOL systems (morphisms) which work separately on 
multisets of symbols and, after each rewriting step, redistribute the symbols in the 
same way as in a P system with a concentration-controlled communication. As 
the output of such a device we consider the union of the two multisets (or the 
Parikh image of this union). The power and the properties of these cooperative 
DOL systems remain to be investigated. Anyway, it is clear that they can induce 
growth functions and length sets which are not growth functions or length sets of 
usual DOL systems: take two different unary DOL systems; by redistribution we will 
get a length set which does not consist of the powers of a given natural number, as 
the length set of a unary DOL language is. 
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22 Jiirgen Dassow, Gheorghe Faun 

References 
[1] J. Dassow, Concentration dependent OL systems, Intern. J. Computer 

Math., 7 (1979), 187-206. 

J. Dassow, Gh. Päun, Regulated Rewriting in Formal Language Theory, 
Springer-Verlag, Berlin, 1989. 

J. Dassow, Gh. Päun, On the power of membrane computing, J. of Universal 
Computer Sei., 5, 2 (1999), 33-49 (www.iicm.edu/jucs). 

R. Freund, Generalized P systems, Fundamentals of Computation Theory, 
FCT'99, Ia§i, 1999, (G. Ciobanu, Gh. Päun, eds.), LNCS 1684, Springer, 
1999, 281-292. 

R. Freund, F. Freund, Molecular computing with generalized homogeneous 
P systems, Proc. Conf. DNA6 (A. Condon, G. Rozenberg, eds.), Leiden, 
2000,113-125. 

D. Hauschildt, M. Jantzen, Petri nets algorithms in the theory of matrix 
grammars, Acta, Inform., 31 (1994), 719-728. 

S. N. Krishna, R. Rama, A variant of P systems with active membranes: 
Solving NP-complete problems, Romanian J. of Information Science and 
Technology, 2, 4 (1999), 357-367. 

W. R. Loewenstein, The Touchstone of Life. Molecular Information, Cell 
Communication, and the Foundations of Life, Oxford Univ. Press, New 
York, Oxford, 1999. 

S. S. Mader, Biology (Fifth Edition), McGraw-Hill, Boston, 1996 (Chapter 
6: Membrane structure and function, 84-102). 

[10] C. Martin-Vide, V. Mitrana, P systems with valuations, in vol. Unconven-
tional Models of Computation (I. Antoniou, C.S. Calude, M.J. Dinneen, 
eds.),. Springer-Verlag, London, 2000, 154-166. 

[11] Gh. Päun, Computing with membranes, J. Computer and System Sei., 61, 
1 (2000), 108-143 (see also TUCS Research Report No. 208, November 1998, 
http://www.tucs.fi). 

[12] Gh. Päun, Computing with membranes. An introduction, Bulletin of the 
EATCS, 67 (Febr. 1999), 139-152. 

[13] Gh. Päun, Computing with membranes. A variant, Intern. J. of Foundations 
of Computer Science, 11, 1 (2000), 167-182. 

[14] Gh. Päun, P systems with active membranes: Attacking NP complete prob-
lems, J. Automata, Languages, and Combinatorics, 6, 1 (2001), 75-90. 

http://www.iicm.edu/jucs
http://www.tucs.fi


P Systems with Communication Based on Concentration 23 

[15] Gh. Päun, Y. Sakakibara, T. Yokomori, P systems on graphs of restricted 
forms, submitted, 1999. 

[16] Gh. Päun, S. Yu, On synchronization in P systems, Fundamenta Informat-
icae, 38, 4 (1999), 397-410. 

[17] G. Rozenberg, A. Salomaa, eds., Handbook of Formal Languages, Springer-
Verlag, Heidelberg, 1997. 

[18] Y. Suzuki, H. Tanaka, On a LISP implementation of a class of P systems, 
Romanian J. of Information Science and Technology, 3, 2 (2000), 173-186. 

[19] CI. Zandron, CI. Ferretti, G. Mauri, Solving NP complete problems using 
P systems with active membranes, in vol. Unconventional Models of Com-
putation (I. Antoniou, C.S. Calude, M.J. Dinneen, eds.), Springer-Verlag, 
London, 2000, 289-301. 

Received August, 2000 


