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Languages Recognized by a Class of Finite 
Automata * 

A.V. Kelarev t O.V. Sokratova * 

Abstract 
We consider automata defined by left multiplications in graph algebras, 

and describe all languages recognized by these automata in terms of combina- . 
torial properties of words which belong to these languages, regular expressions 
and linear grammars defining these languages. This description is applied to 
investigate closure properties of the obtained family of languages. 

A language over an alphabet X is a subset of the free monoid X* generated by 
X . We use standard concepts of automata and languages theory (see [7], [11]). 

Graph algebras make it possible to apply methods of universal algebra to var-
ious problems of discrete mathematics and computer science. They have been 
investigated by several authors (see [2], [4], [5], [6], [8], [9], and [10] for references). 
Throughout the word graph means a finite directed graph without multiple edges 
but possibly with loops. The graph algebra Alg(D) of a graph D = (V,E) is the 
set V U { oo } equipped with multiplication given by the rule 

f z if (x,y)€E, 
\ oo otherwise, 

for all x,y EV. In this paper we use graph algebras as language recognizers. 
Let Alg(£)) be a graph algebra. Put A l g ^ D ) = Alg(£>) U {1 } , and extend 

the multiplication of Alg(D) to the whole set Alg1 (D) by assuming that 1 acts 
as an identity on all elements of Alg1 (D). Let T be a subset of Alg1 (D) , and 
let / : X —> Alg1 (D ) be any mapping. We consider the graph algebra automaton 
Atm(D,T) , where 

• the set of states is Alg1(£)); 

• 1 is the initial state; 
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• T is the set of terminal states; 

• the next-state function is given by a • x = f(x)a, for a £ Alg1 (D), x £ X. 

This automaton is defined by left multiplications of elements of the graph algebra. 
Our main theorem describes all languages recognized by graph algebra automata 

in terms of combinatorial properties of words which belong to these languages, as 
well as in terms of regular expressions for these languages or their complements 
(see Theorem 1). This description allows us to answer several natural questions 
concerning the class Q of languages recognized by graph algebra automata. First, 
we show that this class is not empty and, moreover, contains certain fairly large 
subclasses (see Corollary 4). Second, we verify that Q is a proper subclass of the 
class of languages recognizable by finite state automata (see Corollary 6). Third, 
we give examples which demonstrate that the whole Q is not closed for union, 
intersection, and product (see Example 7). However, we represent Q as a union of 
two classes Qa and Qt such that Qa is closed under intersection and left derivative, 
and Qb is closed under union and right derivative. Finally, we show that the whole 
class Q is closed under the Kleene *-operation and complement (see Corollaries 8 
and 9). 

Theorem 1 For any language L over an alphabet X, the following are equivalent: 

(i) L is recognized by a graph algebra automaton; 

(ii) at least one of the following two conditions is satisfied for all x,y £ X, and 
u, v £ X*: 

(a) xyu £ L implies yu £ L, and 

xu, yxv £ L implies yxu £ L; 

(b) yu £ L implies xyu £ L, and 

yxu £ L implies xu £ L or yxv £ L. 

(iii) there exist disjoint subsets X\, Xi of X and a relation G C X x X such that 
the language L \ {1 } or X+ \ L has the following regular expression: 

X*XiX* + X*X7+ Y^ X*XiXjX*; (1) 
(xj,xi)eG 

(iv) there exist subsets Q C X and P C X x X such that the language L \ { 1 } or 
X+ \L is generated by the right linear grammar with the alphabet X, the set 
W = {x' | x £ X} U {so} of nonterminal symbols, the start symbol so, and 
productions 

so xx' for all x £ X, (2) 
x' yy' for all (y,x) £ P, 

x' 1 for all x £ Q. 
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Proof. 
(ii)=>(i): First, suppose that the language L satisfies (a). Introduce a graph 

D = (V, E) with the set V — X of vertices, and the set E of edges consisting of all 
pairs (x,y) such that yxu € L for some u £ X*. Let / be the mapping from X to 
Alg1(Z?) defined by f(x) = x. Put T = ( {1 } U l ) i l L. 

Take an arbitrary word u = x\ • • • xn in L. If u — 1, i.e. n = 0, then 1 6 T, 
and the automaton A t m ( D , T ) accepts u. Further, assume that n > 0. The first 
implication of condition (a) shows that xk • • -xn £ L, for all k = 1 , . . . , n. It follows 
that (x2,xi), (xz,x2), •••, (xn,xn-i) £ E by the definition of E, and xn £ T by 
the definition of T. We get 1 • u = f(xn)(• • • f(xi)) = f(xn) = xn £ T , and so the 
automaton A t m ( D , T ) recognizes u. 

Consider any word u = xi • • - xn accepted by A t m ( D , T ) . If u = 1, then 1 £ T, 
and so u = 1 £ L. Further, assume that n > 0. As above, 1 • u £ T means that 
xn,... ,xi is a directed path in D and xn € T. By reversed induction on k we show 
that xk • • • xn £ L, for all k — 1 , . . . , n. If k = n, then xn £ T C L by definition. 
Assume that xkxk+i •••Xn £ L, for some 1 < k < n. Since (xk,Xk-I) £ E,~ we 
have xk-ixkv £ L, for some v £ X*. Then the second implication of (a) yields 
xk-\xk • • • xn £ L, as required. Therefore u = xi • • • xn £ L. Thus L is the language 
recognized by A t m ( D , T ) . 

Second, suppose that L satisfies condition (b). Observe that the complement 
L = X* \ L of L satisfies condition (a) if and only if L satisfies condition (b). 
Indeed, denoting the logical negation of a proposition P by P, we get 

(xyu g L => yu L) = 

= xyu £ L => yu £ L) 

= (xyu € L V yu € L) 

= (xyu € L V yu £ L) 

= (yu £ L => xyu £ L) and 
(xu,yxv $ L => yxu ^ L) = 

= (xu £ L A yxv £ L => yxu £ L) 

= (xu £ L A yxv £ L V yxu £ L 

= (xu £ L V yxu € L V yxv £ L) 

= (yxu £ L => xu £ LV yxv £ L). 

Therefore L = X* \L satisfies (a), and so it is recognized by some automaton 
Atm(D,T ) . Hence L is recognized by the automaton A t i n ( D , T ) , where T = 
Alg 1 ( i ? ) \ T . 

(i)=>(iii): Suppose that L is recognized by a graph algebra automaton 
A t m ( D , T ) of a graph D = (V,E). First, assume that oo £ T. Let us define 
the sets: 

Xx = {x £ X | f(x) = 00} X2 = {x£X\ f(x) £ T \ { 0 0 } } 
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and the relation 

G = {(xi^j) £ X x X | (f(Xi), f{Xj)) $ E}. 

Take an element u = xi • • • xn in L \ { 1 } . Since u ji 1, we get n > 0. By the 
definition, 1 • u = f{xn)(- • • f{x\)) £ T. The following three cases are possible: 

Case 1: 1 • u £ T \ { o o } . Then f(xn) = 1 • u £ T \ { o o } , and so u £ X*X2. 
Case 2: 1 • u = oo and f(xi) = oo, for some i = 1 , . . . ,n. Then u £ X*XiX*. 
Case 3: 1 • u = oo and all f{xi) oo. Then there exists i = 1 , . . . , n — 1 such 

that ( f ( x i + i ) , f { x i ) ) £ E. It follows that u £ X*XiXi+1X*. 
On the other hand, consider an arbitrary element U — * * * Xfi of the language 

defined by (1). If u £ X*XiX* or u £ X*X{X i+iX*, then 1 • u — oo, and sou £ L. 
If u £ X*X2, then either 1 • u = oo 6 T, and so u £ L, or 1 • u = f(xn) £T \ { o o } , 
and u £ L, again. 

Thus L \ { 1 } is given by the regular expression (1). 
Second, assume that oo ^ T. Then the complement of L is defined by the 

regular expression (1). 
(iii)=^(ii): Let L be a language defined by the regular expression (1). We are 

going to verify condition (b) of Theorem 1. If yu £ L, then obviously xyu £ L. 
Now, suppose that yxu £ L. First, assume that yxu £ X*X\X*. If y £ Xi, then 
yxv £ XiX* C L. Otherwise, xu £ X*XiX* C L. Second, assume that yxu £ 
X*X2. Then xu £ X*X2 C L. Third, assume that yxu £ X*XiXjX*, for some 
(Xj,Xi) £ G. If y = Xi, then yxv £ XiXjX* C L. Otherwise, xu £ X*XiXjX* C L. 
Thus condition (b) of Theorem 1 holds, and hence L is recognized by a graph 
algebra automaton. 

(i)=>(iv): Suppose that the graph algebra automaton A t m ( D , T ) of a graph 
D = ( V , E ) recognizes L. First, assume that oo & T. The standard method 
gives us a right linear grammar which generates L (see, for example, the proof 
of Proposition 6.2.3 in [3]). Removing redundant productions from this grammar, 
and simplifying notation of states, we get the right linear grammar mentioned in 
condition (iv) with Q = T and P = E. Note that so is a nontermainal state. Thus 
this grammar generates the same language. 

Second, assume that oo £ T. It can be easily seen that the grammar specified 
in (iv) generates X+ \ L. 

(iv)=^(i): Suppose that L \ { 1 } is generated by the right linear grammar given 
in (iv), and so we are given Q,P and T. Consider the graph D — (V,E) with the 
set V = X of vertices and the set E = P of edges. Let / be the mapping from 
X to Alg1(£>) defined by f(x) = x. Put T = Q. It is routine to verify that L is 
recognized by the graph algebra automaton A t m ( D , T ) of D. 

Suppose that L \ { 1 } = X* \ (L U {1 } ) is generated by the right linear 
grammar specified in (iv). Then L is recognized by the automaton Atm(Z), T), 
and hence L is recognized by the automaton Atm(D. T ) , where T = A l g ' ( D ) \ T . • 

Corollary 2 It is decidable whether a regular language belongs to the class Q. 



Languages Recognized by a Class of Finite Automata .49 

Proof, follows from condition (iii) of our main theorem. Indeed, given a regular 
language, for all disjoint subsets Xi,X2 of X and all-relations G C X x X, we can 
use well known algorithms to verify whether the regular language (1) is equal to 
L \ { 1 } or X+ \ L. • 

Denote by Qa the subclass of G containing the languages over X satisfying 
condition (a) of Theorem 1 and by Qb the subclass of Q containing the languages 
over X satisfying condition (b). Let Qi = {L C X* | L = X* \ L £ Gi], for i = a,b. 
It follows from the proof of Theorem 1 that 

Ga~Gb and Qb = Qa, (3) 

the regular expression (1) describes languages of the class Qb, and the right linear 
grammar specified in condition (iv) of Theorem 1 describes languages of the class 
Qa-

Corollary 3 A language L belongs to the class Qa fl Gt if and only if there exists 
a subset X2 of X such that L \ { 1 } is given by the regular expression: 

X*X2 (4) 

Proof. It is easily seen that the regular expression (4) is a particular case of the 
regular expression (1), and so every language defined by it belongs to Qb-

Further, it is easy to verify that every language defined by the regular expres-
sion (4) satisfies condition (a) of Theorem 1, and therefore belongs to Qa. Thus 
every language described by the regular expression (4) belongs to the class Qa fl Gb 

Conversely, consider an arbitrary language L of the class Ga^Gb- By Theorem 1, 
there exist disjoint subsets X\ ,X2 of X and a relation G C X x X such that L \ { 1 } 
has the regular expression (1). Moreover, we can choose XI = {x £ X | f(x) = oo} , 
X2 = {X£X \ f(x) £ T\ { o o } } and G = { ( x i i X j ) £XXX \ (f{xi),f(x-)) $ E}, 
where L is recognized by a graph algebra automaton A t m ( D , T ) of a graph D = 
(V, E) such that oo £ T. 

Since the language X+ obviously has a regular expression of the form (4), we 
may assume that L is not equal to any of the languages X+ and X*. 

First, suppose that Xi ^ 0. Take any x £ Xi and u £ X+. Condition (a) of 
Theorem 1 implies u £ L. This contradiction shows that X] = 0. 

Next, suppose that G -fc 0. Choose a pair (xj,xi) £ G and u £ X+. Then 
XiXju £ L, and condition (a) of Theorem 1 implies u £ L, a contradiction. Hence 
G = 0. 

Therefore L \ { 1 } is given by the regular expression (4). • 

In particular, the class Qa H Gb contains the languages 0, { 1 } , X+, and X*. 

Corollary 4 The class Qa contains all regular languages given by the regular ex-
pressions of the form 

X 1 X 2 X 3 X I • • • X 2 n X 2 n + i , (5) 
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where X1,X2,.. .,X2n+i C X U { 1 } , and XiHXj = { 1 } , for all 1 < i < j < 2n+ 1. 

Proof. Let L be a language defined by the regular expression (5). First, 
suppose that xyu € L. Since the empty word 1 belongs to all sets Xi , it follows 
that yu £ L. Second, suppose that xu,yxv € L. Since 1 is the only common 
element of Xi and X j for i ^ j, we see that both occurrences of the letter x 
in xu and in yxv come from the same set Xi , where 1 < i < 2n + 1. It fol-
lows that yxu £ L. Thus condition (a) of Theorem 1 holds, and therefore L £ Qa. • 

Next, we give an example of a language, which belongs to Qa but cannot be 
defined by a regular expression of the form (5). 

Example 5 Let X = {x\, x2, • • •, xn } , and let L be the set of all words xk such that 
A; is a positive integer, and 1 < i < n. It is easily seen that L satisfies condition (a) 
of Theorem 1, and so L £ Qa. However, for n > 1, it is clear that L cannot be 
described by an expression of the form (5), because all languages described by these 
expressions have a word containing all the letters x\,...,xn. 

It is easily seen that all languages in the class Qb, except 0 and {1 } , are infinite. 
On the other hand, the class Qa contains some finite languages, but not all, as the 
following corollary shows. 

Corollary 6 Let L be a finite language over an alphabet X, where = n. If 
LeGa, then\L\<2". 

Proof. First, we show that L has no words with two occurrences of the same 
letter. Suppose to the contrary that L contains a word w = axbxc, where x € X, 
a,b,c£ X*. Since L satisfies condition (a) of Theorem 1, it follows that L contains 
till words axbxbxc, axbxbxbxc,.... This contradicts the finiteness of L. 

Second, we show that if two letters Xi,Xj occur together in several words of 
L, then they occur in the same order in all of these words. Suppose to the con-
trary that L contains words w = ax\bx2c and w' = a'x2b'xic', where x\,x2 £ X, 
a,b,c,a',b',c' £ X*. It follows from the second implication of condition (a) of 
Theorem 1, that L contains the word w = axibx2b'x\c', a contradiction. 

Therefore every word of L is defined by the set of its letters. Thus 

It is well-known that all finite languages are regular. Hence we see that many 
regular languages are not recognized by graph algebra automata. The following 
example shows that the class of languages recognized by graph algebra automata 
is not closed under union, intersection, or product. 

• 
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Example 7 The languages Li = {a;i2;2, x 2 } and L2 = {^2X3, £3} are recognized by 
graph algebra automata, because they satisfy condition (a) of Theorem 1. However, 
their union L\ U L2 contains the words xyx2,x2x3, but does not contain X1X2X3. 
Hence Li U L2 does not satisfy condition (a). Obviously, it does not satisfy (b) 
either, because all languages with this condition are infinite. Therefore L\ U L 2 is 
not recognized by a graph algebra automaton. 

The languages Li = X* \ L\ and L2 = X* \ L2 are recognized by graph al-
gebra automata, as well. But their intersection, which is equal to L\ U £ 2 , is not 
recognized by graph algebra automata, because L\ U L2 $ Q. 

The languages L3 = { x i } and L2 = {x2x3,x3} satisfy condition (a) of Theo-
rem 1, and so they are recognized by graph algebra automata. However, neither (a) 
nor (b) holds for their product L3 • L2 = { x ix 2 x 3 , X1X3}. 

For any language L and word u £ X*, let Lu~x = {w £ I * | wu £ L} and 
u~lL = {w £ X* | uw £ L}. A class £ of languages is said to be closed under left 
(right) derivative if L £ £ implies u~lL £ £ (respectively, Lu~l £ £). 

Corollary 8 The class Q is closed under complement, Qa is closed under intersec-
tions and left derivative, and Qb is closed under union and right derivative. 

Proof. Equations (3) immideately show that Q is closed under complement. It is 
routine to verify that Qa is closed for intersection and left derivative and that Gb is 
closed under right derivative. 

Now, assume that Li,L2 £ Gb- Then L\, L2 £ Qa, and therefore 
Li U L2 = Li H L2 £ Ga, because Qa is closed under intersection. Hence 
L\ U L2 £ Gb, as required. • 

Corollary 9 The classes Ga and Gb are closed under the Kleene *-operation. 

Proof. Suppose that L € Ga- First, take any word xyu in L*, where x,y £ X,u £ 
X*. We have xyu £ Ln, for some n > 1. Consider the leftmost prefix of this word 
which is in L. If x £ L, then yu £ L n _ 1 C L*. Further, assume that xyu\ € L and 
U2 £ Ln~l, for some factorization u = uiit2, where ti j ,u2 £ X*. Then yu\ £ L, 
because L £ Ga- Therefore yu = yu\u2 £ L*, again. 

Second, take xu,yxv £ L*. If y £ L, then clearly yxu £ L*. Hence we may 
assume that yxv 1 £ L and v2 £ L*, where v = vii>2. We get xu\ £ L and u2 £ L*, 
where u = uiu2 . Since L £ Ga, we get yxui £ L, and therefore yxu = yxu\u2 £ L*, 
again. 

Thus the whole condition (a) of Theorem 1 is satisfied for L*, and therefore 
L* £ Ga-

Now, suppose that L £ Gb- Pick up any word yu £ L*, where y £ X, u € X* 
and x £ X. We have yui £ L and u2 £ L*, for some factorization u = U\U2- It 
follows that xyui £ L, and so xyu £ L*. 

Finally, take yxu £ L* and v £ X*. If y € L, then obviously xu £ L*. 
Therefore we may assume that yxu 1 £ L and u2 £ L*, for some factorization 
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u — u\u2, where u\,u2 £ X*. Since L £ Qb, it follows that xu\ £ L or yxv £ L. In 
the former case xu = xu\u2 £ L*, and in the latter case yxv € L*. Thus the whole 
condition (b) of Theorem 1 is satisfied, and so L* £ Qb- • 

The authors are grateful to two referees for valuable advice and suggestions that 
helped to improve the first version of this paper. 
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