Affine matching of two sets of points in arbitrary dimensions

Attila Tanács * Gábor Czédli ${ }^{\dagger}$ Kálmán Palágyi ${ }^{\ddagger}$

Attila Kuba ${ }^{\text {§ }}$

Abstract

In many applications of computer vision, image processing, and remotely sensed data processing, an appropriate matching of two sets of points is required. Our approach assumes one-to-one correspondence between these sets and finds the optimal global affine transformation that matches them. The suggested method can be used in arbitrary dimensions. A sufficient existence condition for a unique transformation is given and proven.

1 Introduction

Many applications lead to the following mathematical problem: Two corresponding sets of points $\left\{p_{i}\right\}$ and $\left\{q_{i}\right\}(i=1,2, \ldots, n)$ are given in the k-dimensional Euclidean space \mathbb{R}^{k}, and the transformation $T: \mathbb{R}^{k} \rightarrow \mathbb{R}^{k}$ is to be found that gives the minimal mean squared error

$$
\sum_{i=1}^{n}\left\|T\left(q_{i}\right)-p_{i}\right\|^{2}
$$

The dimension k is usually 2 or 3 . Some solutions have been proposed for this problem assuming rigid-body transformation (i.e., where only rotations and translations are allowed) $[1,3,6,7,13]$, affine transformation (i.e., which maps straight lines to straight lines, parallelism is preserved, but angles can be altered) [8], and non-linear transformation (i.e., which can map straight lines to curves) $[2,5,8]$. In [10], a solution is proposed when the correspondence between the

[^0]point sets is unknown, assuming affine transformation. It is mentioned, that if the correspondence was known, a simpler solution is possible e.g., using least squares method, but neither such a method nor a sufficient existence condition for unique solution is given or referenced.

In this paper, we present a method for solving the problem assuming affine transformation, which can be used in arbitrary dimensions. The method is described in Section 2. We state and prove a sufficient existence condition for a unique solution in Section 3. A related open problem concerning degeneracy is presented in Section 4.

2 Method for affine matching of two sets of points

Given a matrix

$$
\mathcal{T}=\left(\begin{array}{ccccc}
t_{11} & t_{12} & \cdots & t_{1 k} & t_{1, k+1} \\
t_{21} & t_{22} & \cdots & t_{2 k} & t_{2, k+1} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
t_{k 1} & t_{k 2} & \cdots & t_{k k} & t_{k, k+1} \\
0 & 0 & \cdots & 0 & 1
\end{array}\right)
$$

it determines an affine transformation $T: \mathbb{R}^{k} \rightarrow \mathbb{R}^{k}$ as follows: For $x=$ $\left(x_{1}, \ldots, x_{k}\right)$ and $y=\left(y_{1}, \ldots, y_{k}\right)$ in \mathbb{R}^{k} we have $y=T(x)$ if and only if

$$
\left(\begin{array}{c}
y_{i 1} \\
y_{i 2} \\
\vdots \\
y_{i k} \\
1
\end{array}\right)=\left(\begin{array}{ccccc}
t_{11} & t_{12} & \cdots & t_{1 k} & t_{1, k+1} \\
t_{21} & t_{22} & \cdots & t_{2 k} & t_{2, k+1} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
t_{k 1} & t_{k 2} & \cdots & t_{k k} & t_{k, k+1} \\
0 & 0 & \cdots & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{c}
x_{i 1} \\
x_{i 2} \\
\vdots \\
x_{i k} \\
1
\end{array}\right) .
$$

Note that homogeneous coordinates are used. Each affine transformation T can uniquely be represented in this form [4]. The transformation has $k \cdot(k+1)$ degrees of freedom according to the non-constant matrix elements.

Let us fix an affine transformation $T: \mathbb{R}^{k} \rightarrow \mathbb{R}^{k}$ and the corresponding \mathcal{T} as above. Let $\left\{p_{i}\right\}$ and $\left\{q_{i}\right\}$ be two sets of n points, where

$$
\begin{aligned}
p_{i} & =\left(p_{i 1}, p_{i 2}, \ldots, p_{i k}\right) \in \mathbb{R}^{k} \quad \text { and } \\
q_{i} & =\left(q_{i 1}, q_{i 2}, \ldots, q_{i k}\right) \in \mathbb{R}^{k} \quad(i=1,2, \ldots, n)
\end{aligned}
$$

Let $\left\{p_{i}^{\prime}\right\}$ be a set of n points in \mathbb{R}^{k}, where $p_{i}^{\prime}=T\left(q_{i}\right)(i=1,2, \ldots, n)$. Define the merit function \mathcal{S} of $k \cdot(k+1)$ variables as follows:
$\mathcal{S}\left(t_{11}, \ldots, t_{k, k+1}\right)=\sum_{i=1}^{n}\left\|p_{i}^{\prime}-p_{i}\right\|^{2}=\sum_{i=1}^{n} \sum_{j=1}^{k}\left(t_{j 1} \cdot q_{i 1}+\ldots+t_{j k} \cdot q_{i k}+t_{j, k+1}-p_{i j}\right)^{2}$.
which is generally regarded as the matching error.

The least square solution of matrix \mathcal{T} is determined by minimizing the function \mathcal{S}. Function \mathcal{S} may be minimal if all of the partial derivatives $\frac{\partial S}{\partial t_{11}}, \ldots, \frac{\partial S}{\partial t_{k, k+1}}$ are equal to zero. The required $k \cdot(k+1)$ equations:

$$
\begin{aligned}
\frac{\partial \mathcal{S}}{\partial t_{u v}}= & 2 \cdot \sum_{i=1}^{n} q_{i v} \cdot\left(t_{u, k+1}-p_{i u}+\sum_{l=1}^{k} t_{u l} \cdot q_{i l}\right)=0 \\
& (u=1,2, \ldots, k, v=1,2, \ldots, k) \\
\frac{\partial \mathcal{S}}{\partial t_{u, k+1}}= & 2 \cdot \sum_{i=1}^{n}\left(t_{u, k+1}-p_{i u}+\sum_{l=1}^{k} t_{u l} \cdot q_{i l}\right)=0 \\
& (u=1,2, \ldots, k)
\end{aligned}
$$

We get the following system of linear equations:
where

$$
\begin{aligned}
a_{u v}=a_{v u} & =\sum_{i=1}^{n} q_{i u} \cdot q_{i v} \\
b_{u} & =\sum_{i=1}^{n} q_{i u} \\
c_{u v} & =\sum_{i=1}^{n} p_{i u} \cdot q_{i v}
\end{aligned}
$$

$$
\begin{gathered}
d_{u}=\sum_{i=1}^{n} p_{i u} \\
(u=1,2, \ldots, k, v=1,2, \ldots, k)
\end{gathered}
$$

The above system of linear equations can be solved by using an appropriate numerical method [9]. There exists a unique solution if and only if $\operatorname{det}(M) \neq 0$, where

$$
M=\left(\begin{array}{cccc}
a_{11} & \ldots & a_{1 k} & b_{1} \\
\vdots & \ddots & \vdots & \vdots \\
a_{k 1} & \ldots & a_{k k} & b_{k} \\
b_{1} & \ldots & b_{k} & n
\end{array}\right)
$$

Note that if a problem is close to singular (i.e., $\operatorname{det}(M)$ is close to 0), the method can become unstable.

3 Discussion

In this section we state and prove a sufficient existence condition for a unique solution for the system of linear equations.

By a hyperplane of the Euclidean space \mathbb{R}^{k} we mean a subset of the form $\{a+x: x \in S\}$ where S is a $(k-1)$-dimensional linear subspace. Given some points q_{1}, \ldots, q_{n} in \mathbb{R}^{k}, we say that these points span \mathbb{R}^{k} if no hyperplane of \mathbb{R}^{k} contains them. If any $k+1$ points from q_{1}, \ldots, q_{n} span \mathbb{R}^{k} then we say that q_{1}, \ldots, q_{n} are in general position.
Theorem 1. If $q_{1}, \ldots, q_{n} \operatorname{span} \mathbb{R}^{k}$ then $\operatorname{det}(M) \neq 0$.
Proof. Suppose $\operatorname{det}(M)=0$. Consider the vectors $v_{j}=\left(q_{1 j}, q_{2 j}, \ldots, q_{n j}\right) \quad(1 \leq$ $j \leq k)$ in \mathbb{R}^{n}, and let $v_{k+1}=(1,1, \ldots, 1) \in \mathbb{R}^{n}$. With the notation $m=k+1$ observe that $M=\left(\left\langle v_{i}, v_{j}\right\rangle\right)_{m \times m}$ where \langle,$\rangle stands for the scalar multiplication.$ Since the columns of M are linearly dependent, we can fix a $\left(\beta_{1}, \ldots, \beta_{m}\right) \in \mathbb{R}^{m} \backslash$ $\{(0, \ldots, 0)\}$ such that $\sum_{j=1}^{m} \beta_{j}\left\langle v_{i}, v_{j}\right\rangle=0$ holds for $i=1, \ldots, m$. Then

$$
\begin{gathered}
0=\sum_{i=1}^{m} \beta_{i} \cdot 0=\sum_{i=1}^{m} \beta_{i} \sum_{j=1}^{m} \beta_{j}\left\langle v_{i}, v_{j}\right\rangle=\sum_{i=1}^{m} \beta_{i}\left\langle v_{i}, \sum_{j=1}^{m} \beta_{j} v_{j}\right\rangle= \\
\left\langle\sum_{i=1}^{m} \beta_{i} v_{i}, \sum_{j=1}^{m} \beta_{j} v_{j}\right\rangle=\left\langle\sum_{i=1}^{m} \beta_{i} v_{i}, \sum_{i=1}^{m} \beta_{i} v_{i}\right\rangle
\end{gathered}
$$

whence $\sum_{i=1}^{m} \beta_{i} v_{i}=0$. Therefore all the $q_{j}, 1 \leq j \leq n$, are solutions of the following (one element) system of linear equations:

$$
\begin{equation*}
\beta_{1} x_{1}+\cdots+\beta_{k} x_{k}=-\beta_{m} \tag{1}
\end{equation*}
$$

Since the system has solutions and $\left(\beta_{1}, \ldots, \beta_{m}\right) \neq(0, \ldots, 0)$, there is an $i \in$ $\{1, \ldots, k\}$ with $\beta_{i} \neq 0$. Hence the solutions of (1) form a hyperplane of \mathbb{R}^{k}. This hyperplane contains q_{1}, \ldots, q_{n}. Now it follows that if q_{1}, \ldots, q_{n} span \mathbb{R}^{k} then $\operatorname{det}(M) \neq 0$.
Q.e.d.

4 Conclusions

In real applications, it is assumed that both p_{1}, \ldots, p_{n} and q_{1}, \ldots, q_{n} span \mathbb{R}^{k}. Then, if the matching error is zero (i.e., $p_{i}^{\prime}=T\left(q_{i}\right)=p_{i}$ for $i=1,2, \ldots n$), the transformation is necessarily non-degenerate, i.e., $\operatorname{det}(\mathcal{T}) \neq 0$. Moreover, in this case the following property is fulfilled:

Observation 2. For all $I \subseteq\{1, \ldots, n\}$ with $k+1$ elements, the $p_{i}, i \in I$, span \mathbb{R}^{k} if and only if the $q_{i}, i \in I$, span \mathbb{R}^{k}.

This raises the question whether the transformation is necessarily nondegenarete in general or when Observation 2 holds or at least when Observation 2 "strongly" holds in the following computational sense: each simplex with vertices in $\left\{p_{1}, \ldots, p_{n}\right\}$ or with vertices in $\left\{q_{1}, \ldots, q_{n}\right\}$ has a large volume (k-dimensional measure) compared with its edges.

Surprisingly, all these questions have a negative answer, for we have the following three dimensional example.
Example 3. With $n=5$ and $k=3$ let $q_{1}=(0,0,24), q_{2}=(24,0,0), q_{3}=(0,24,0)$, $q_{4}=(0,0,0)$, and $q_{5}=(-24,-48,16)$. These five points determine five tetrahedra with reasonably large volumes, the smallest of them being 1536 , the volume of the tetrahedron $\left(q_{2}, q_{3}, q_{4}, q_{5}\right)$. Let $p_{1}=(0,0,0), p_{2}=(3,0,0), p_{3}=(0,3,0)$, $p_{4}=(0,0,3), p_{5}=(3,3,3)$, these are some vertices of a cube, so the tetrahedra they determine are at least of volume $9 / 2$. Yet,

$$
\mathcal{T}=\left(\begin{array}{rrrr}
2 & -6 & -6 & 12 \\
-9 & -1 & -9 & 18 \\
0 & 0 & 0 & 8 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

which is degenerate.
Experience shows that in real applications the choice of points always guarantees that the transformation is non-degenerate [11, 12]. However, from theoretical point of view the following open problem is worth raising: Find a meaningful sufficient condition to ensure non-degeneracy.

Acknowledgement

This work was supported by OTKA T023804, OTKA T026243, OTKA T023186, and FKFP 0908/1997 grants.

References

[1] Arun, K.S., T.S. Huang, S.D. Blostein, Least squares fitting of two 3-D point sets, IEEE Trans. Pattern Analysis and Machine Intelligence 9 (1987), 698703.
[2] Bookstein, F.L., Principal warps: thin-plate splines and the decomposition of deformations, IEEE Trans. Pattern Analysis and Machine Intelligence 11 (1989), 567-585.
[3] Faugeras, O.D., M. Hebert, A 3-D recognition and positioning algorithm using geometrical matching between primitive surfaces, Proc. Int. Joint Conf. Artificial Intelligence, Karlsruhe, 1983, 996-1002.
[4] Foley, J.D., A. van Dam, S.K. Feiner, J.F. Hughes, Computer Graphics - Principles and practice, Addison-Wesley Publishing Company, Reading, Massachusetts 1991.
[5] Fornefett, M., K. Rohr, H.S. Stiehl, Radial basis functions with compact support for elastic registration of medical images, Proc. Int. Workshop on Biomedical Image Registration, Bled, 1999, 173-185.
[6] Horn, B.K.P., Closed-form solution of absolute orientation using unit quaternions, J. Opt. Soc. Amer. A 4 (1987), 629-642.
[7] Horn, B.K.P., Closed-form solution of absolute orientation using orthonormal matrices, J. Opt. Soc. Amer. A 5 (1987), 1127-1135.
[8] Maguire, D., M.F. Goodchild, D.W. Rhind (eds.), Geographical information systems - Principles and Applications, Longman Scientific and Technical, 1991.
[9] Press, W.H., B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Numerical Recipes in C: The Art of Scientific Computing, Cambridge University Press, 1992.
[10] Sprinzak, J., M. Werman, Affine Point Matching, Pattern Recognition Letters 4 (1994), 337-339.
[11] Tanács, A., K. Palágyi, A. Kuba, Medical image registration based on interactively defined anatomical landmark points, Int. J. Machine Graphics § Vision 7 (1998), 151-158.
[12] Tanács, A., K. Palágyi, A. Kuba, Target Registration Error of Point-Based Methods Assuming Rigid-Body and Linear Motions, Proc. Int. Workshop on Biomedical Image Registration, Bled, 1999, 223-233.
[13] Umeyama, S., Least-squares estimation of transformation parameters between two point patterns, IEEE Trans. Pattern Analysis and Machine Intelligence 13 (1991), 376-380.

[^0]: *Department of Applied Informatics, University of Szeged, H-6701 Szeged P.O.Box 652, Hungary, e-mail: tanacs@inf.u-szeged.hu
 ${ }^{\dagger}$ Bolyai Institute, University of Szeged, H-6720 Szeged, Aradi vértanúk tere 1, Hungary, e-mail:czedli@math.u-szeged.hu
 \ddagger Department of Applied Informatics, University of Szeged, H-6701 Szeged P.O.Box 652, Hungary, e-mail: palagyi@inf.u-szeged.hu
 ${ }^{\S}$ Department of Applied Informatics, University of Szeged, H-6701 Szeged P.O.Box 652, Hungary, e-mail: kuba@inf.u-szeged.hu

