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Mathematical models fof simulation of continuous 
grinding process with recirculation 

Piroska B. Kis* Csaba MihalykoJ and Bela G. Lakatos* 

Abstract 

New mathematical and computer models and simulation programs were 
elaborated for studying processes of continuous grinding mills working with 
classification and partial recirculation of the product. The computer models 
were developed on the basis of the axial dispersion model taking into consid-
eration also the effects of the mixing of the material to be ground. The effects 
of changes of parameters of both the mill and the material were studied. The 
stationary states of the continuous grinding mills working with and without 
classification and recirculation were compared to each other. The mathemat-
ical models and the computer programs developed axe suitable for computing 
the processes of the grinding mills either with or without recirculation. They 
are usable for simulation based analysis and design of both continuous and 
batch grinding devices. 

1 Introduction 
Grinding is an important technological process in process industry. The two basic 
types of grinding are the batch and the continuous grinding. The mathematical 
analysis of batch grinding has been carried out in a number of aspects [1-9]. Con-
siderable experimental research has been taken on continuous grinding [10-13], too, 
but fewer results were published concerning the mathematical modelling of the con-
tinuous grinding processes. 
The mathematical description of continuous grinding mills can be formulated by 
means of distributed parameter models. One of these types of models, derived from 
the integro-differential equation of continuous grinding, was published and verified 
by Mihálykó et al. [13]. By using this discrete type model, the effects of system 
parameters on the behaviour and performance of the mills can be studied exten-
sively. However, the classification and partial recirculation of the material to be 
ground, that is an important and often used solution for increasing the quality of 
the product of griders, was not included into this model. 
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The aim of the present paper is to develop a generalised model, taking into con-
sideration the classification and recirculation processes of the material to be ground. 
The kinetics of grinding is modelled by the fundamental grinding equation. The 
computer models presented are based on" the resulting partial integro-differential 
equation. The newly developed computer models are suitable for simulation of con-
tinuous grinding mills working with and without classification and recirculation. 

2 Mathematical model of continuous grinding 
with recirculation 

In order to review the theory let us introduce the following notation. Let t denote 
time, tr - the time spent by material in the recycling loop, X - length of the mill, x 
- axial coordinate of the mill, L - particle size, v(x,t) - the average linear velocity 
of the particles in the mill, D(x,t). - the axial dispersion coefficient characterising 
the mixing of particles in the mill, and m(x,L,t) - the mass density function of 
particles in the mill. The mass density function characterises the size distribution 
of particles by means of which m(x,L,t)AL expresses the mass of particles at axial 
coordinate x of the mill at time of t within the particle size interval ( L, L+dL) 
in a unit volume of the mill. Let rriin(L,t) denote the mass density function of 
the particles entering the mixing device, mr(L,tr) the mass density function of the 
particles leaving the classifier and entering .the mixing device again. 

Let f(L, t) denote the mass flow density function of the particles leaving the mill, 
as it shown in Fig. A, ff(L, t) denotes the mass flow density function of the particles 
entering the mill, and f0ut(L,t) is the mass flow density function of the particles 
leaving the grinding system. Let fr(L,t) denote the mass flow density function 
of the particles classified and recycled with the delay time tT. Furthermore, let 
fin(L, t) be the mass flow density function of the particles fed into the system, 
and ip(L, t) be the selection function describing the classifying device. All of these 
flows are presented in Fig.A, illustrating schematically the structure of the whole 
continuous grinding system with classification and recirculation. 

I _i 

Fig.A. Continuous grinding system with classification and recirculation 
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Using the above notation, the mathematical model of the grinding mill can be 
written as a partial integro-differential equation: 

dm(x, L, t) _ d _ f n / ,dm(x,L,t)\ dv(x,t)m(x,L,t) 
at - dx V  j dx dx ~ ( l j 

"max 

—S(L, t)m(x, L, t) + j S(l,t)b(LJ)m(x,l,t)dl 

subject to the following initial and boundary conditions: 

m(x,L, 0) = mo(x,L) (2) 

ff(L,t) = v(x, t)m(x, L, t) - D(x, t) f ) , if x = 0 (3) 

D { x t ) d j n ( ^ = 0j , f x = x (4) 

The left-hand side of Eq.(l) describes the rate of accumulation, the first term 
on the right-hand side represents the axial dispersion, while the second term corre-
sponds to the convective flow of particles in the axial direction of the mill. The third 
and fourth terms of the right-hand side of Eq.(l) describe the rates of changes of 
particles due to the grinding process. The selection function S(L,t) represents the 
rate of breakage of particles of size L. By means of function b(l,L), called break-
age density function, b(l,L)dL expresses the mass fraction of the product of size 
(L, L+dL) when particles of size I are broken. Based on that, B(l, A) denotes the 
breakage distribution function which expresses the mass fraction of particles of size 
/ broken into the size interval [Lmin, A), where L m i n is the grindability limit of the 
mill. As a consequence, B(l, A)'= . b(l,L)dL. 

The initial condition (2) expresses the fact that the mill is assumed to be filled 
with solids characterised with mass density function mo at the beginning of the 
process. Boundary conditions (3) and (4) reflect the continuity of particle fluxes at 
the inlet and that of the mass density function at the outlet of the mill, respectively. 
In boundary condition (3), the left-hand size term represents the flow from the 
transfer pipe into the mill, which is equal to the flow density of particles, consisted 
of convective and dispersive parts described by the right-hand side of Eq.(3). This 
boundary condition expresses the assumption that there is no back-mixing from 
the mill into the transfer pipe. At the exit boundary X, the particles are assumed 
to flow from a mixed region to a region where there is no mixing at all, so that 
the composition suffers no change here, and the boundary condition at the outlet 
reduces to the form of Eq.(4). 

A continuous grinding system with classification and recirculation can be oper-
ated in various ways. Here we consider two models. In both cases, the material to 
be ground is fed into the mill through a mixer in which the mass flow fin(L,t) of 
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the fresh raw material, as well as the mass flow fT(L, t — tr) of large size fractions 
recycled from the classifier, are mixed. In the first case, however, called model 
number I, the total mass flow of the fresh raw material is constant and does not 
depend on the amount of the recycled particulate product. Since the mass flow of 
the recycled material depends on the operating parameters of the mill and classifier, 
this mode, in general, leads to time dependent loading of the mill. This type of 
grinding system with classified product removal can be described by the following 
equations: 

Eq.(5) describes the mass flow density at the outlet of the mill. Eq.(6) expresses, 
by means of the selection function ip(L,t) characterising in principle the operation 
of the classifying device, that fraction of the particulate product that consists of 
particles having sizes larger than required and, as a consequence, are returned into 
the mill again. The quantity of returned particles therefore is determined by the 
selection function. Eq.(7) describes that part of the particulate product that is 
fine enough to leave the grinding process. Finally, Eq.(8) describes the mixture of 
particles resulted in mixing of the fresh raw material fed into the system and of the 
recycled.mass flow by the mixing device. Also, Eq.(8) expresses that there is a time 
delay tr in the recycled stream caused by the classifier device and the transport of 
particles through the recirculation line. 

The second operation mode of continuous grinding systems with selective re-
circulation, considered here and called model number II, is as follows. The total 
mass flow of the material fed freshly into the grinding system is controlled in time 
according to the actual mass-flow of the recycled particles, that may be variable 
in time depending on the operating conditions of the mill and the classifying de-
vice,. in order to have constant loading of the mill itself. This type of operation 
of .the, continuous grinding system with selective recirculation is also described by 
Eq.(l) subject to the initial and boundary conditions (2)-(8), but it satisfy also the 
following constraint: 

where Lmax denotes the maximal size of the particles to be ground by the mill. 
The main difference between the two models is that model number I describes 

such a case when the mean residence time of the particles in the mill is varied de-
pending on the actual size distribution of the fresh raw material fed into the system 
and on the operation conditions of the mill and classifying device. Conversely, in 
the second case the mean residence time of the material to be ground in the mill is 
constant by applying some appropriate control of the flow of raw material fed into 
the grinding system. 

f{L,t) = v(X,t)m(X,L,t) 
fr(L,t) = ij)(L,t)v{X,t)m(X,L,t) 

fout{L,t) = [1 -^(L,t)}v(X,t)m(X,L,t) 

(5) 

(6) 

(7) 

(8) fin(L,t) + fr(L,t-tr) = ff{L,t) 

(9) 
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3 Discrete mathematical model of continuous 
grinding with classification and recirculation 

In order to develop the computer models suitable for simulation of continuous 
grinding process with classification and recirculation, we had to discretise the par-
tial integro-differential equation (1), describing the transport arid breakage of the 
material to be ground in the mill itself, subject to the initial and boundary condi-
tions (2)-(8). The discretization method used here is based on that developed and 
presented by Mihalyko et al. [13]. This type of discrete models has proved very 
useful in modelling and computer simulation of both batch and continuous grinding 
processes without classification. ' 

Let us introduce the following notation. Let T denote the final time of a grinding 
process. We subdivide the interval [0, T] into N equal subintervals, let r denote the 
length of a subinterval, and let t„= n-r. We subdivide also the interval [Lmin,Lmax\ 
representing the extent of sizes of the whole particle population, into I equal subin-
tervals, and let li denote the ith size fraction of those. The interval [0,X] represents 
the length of the mill, and we subdivide it into J equal subintervals. Let h denote 
the length of a subinterval, and let xj=j-h. After the discretization process, we 
consider the mill as consists of imaginary columns. Let V(xj,li,t„) denote the 
quantity of the particles belong to the ¿th particle size fraction in the j t h column 
of the mill at tn moment of time t. Further, let V F denote the velocity of the 
material to be ground forward, while VB the velocity of that backward in axial 
direction, respectively, so that (V f ~ V B) is the velocity of the convective flow 
in the axial direction in the mill. Let at denote the quantity of the freshly fed 
particles of size U, ri the rate of the returned part of the mass for for particles of 
size U leaving the mill, where 0 < r* < 1, and d the discretised time delay in the 
recirculation line. 

As concerns the kinetics of breakage, usually the discretised versions of functions 
S and B, defined in Eq.(l) for the continuous case, are used for that purpose. 
Namely, here we chosen S(lk) = Ks-(lk)n and B(lk,li) = (h/lk)m, where S(lk) 
denotes the breakage selection function, representing the specific rate of breakage 
of particles of size with parameters n and Ks, and B(lk,U) with parameter 
m denotes the breakage distribution function interpreted as fraction of breakage 
product from size interval Ik which falls into size interval U. 

The discrete model number I of the continuous grinding system with classifica-
tion and partial recirculation of product is as follows. 

The quantities of particles in the first column of the mill at the moment of time 
tn+1 are expressed as 

V(Xl ,h,tn+1) = (1 -VF)-(1-S(li))-V(x1,h,tn) + VB-V(x2,li,tn) 

(10) 
k=i 

+ ri • V(xj,li,tn-d) ¿ = 1 , 2 , . . . , / 
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where the first term on the right-hand side, (1 - V » • (1 - S(U)) • V(x\, li,tn), gives 
the amount of those particles from the ¿th size subinterval at the moment of time 
t„ which have not moved forward and have not broken. The second term, 
Vjb- V(x2, h, tn) represents the quantity of thoseparticles from the ¿th size subinter-
val at the moment of time £„ which have moved backward from the second column. 
The third term, (1 - VF) • Pm ' V(XI,life,in), expresses the quantity of those 
particles from the ¿th size subinterval at the same moment of time which have not 
moved forward from the first column to the second one, but have broken from some 
size subinterval to the ¿th subinterval of particle size. The term en is the quantity 
of the freshly fed particles belonging to the ¿th subinterval. Finally, the last term, 
Ti-V(xj,li,tn_j), gives the quantity of the particles fed again into the mill because 
of their recycling. 

The quantities of particles in some inner column of the mill can be described at 
the moment of time £n+i as 

. V{xhU,tn+l) = (1 -VF-VB)-(1-S(!i))-V(xj,li,tn) 

+ VF-V{xj-1,li,tn) + VB-V(xj+1,li,tn) (11) 

i 

+(1 - VF - VB) • J^Pfc.i • V(xj,lk,tn) 
• • • A-.-i 

j = 2,..., J — I, ¿ = 1,2,...,/ 

The first term on the right-hand side of Eq.( l l ) , (1 - VF - VB) • (1 - S(h)) • 
V(xj,li,tn), expresses the quantity of those particles from the ¿th subinterval at the 
moment of time tn which have moved neither forward nor backward and have not 
broken. The second term, VF • V{xj-i,U,tn), represents the quantity of particles 
from the ¿th size subinterval at the moment of time tn which have moved forward 
from the previous column. The third term, VB • V(xj+i, li, tn), gives the quantity 
of particles from the ith size subinterval at the moment of time tn which have 
moved backward from the next column. Finally, the last term, (1 — - VB) • 
Sit=i Pk,i 'V(xj, Ik, tn), represents the quantity of those particles which have moved 
neither forward nor backward from the j t h column, but have broken from some size 
subinterval to the ¿th one larger from that. 

At the last, the discretised process in the last column of the mill at the moment 
of time tn+1 can be given as 

V(xj,littn+1) = (l-yir)-(l-5(/i))-y(xJ,Zi,in) 

+ VF-V(xJ-1,li,tn) (12) 

/ 

+ (1 - V F ) - Y , P k , i - V ( x J , l k , t n ) i — 1,2,...,/ 
k=i 
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The first term on the right-hand side of Eq.(12) expresses the quantity of those 
particles which have not moved forward from the last column, and they have not 
broken, i.e. there is no back mixing from the last column. The second term 
represents the amount of those particles which have moved forward from the last 
column, i.e. these particles have left the mill at the outlet at the moment of time 
tn. The third term gives the quantity of those particles, which have not moved 
forward from the last column, but have broken from some particle size subinterval 
to the ith one. In Eqs (10)-(12) the meaning of symbols pk,% is, in principle, 

Pk,i = T • S (Ik) • [B(lk,h) - B(lk,h-1)] for all k a n d ¿. ' : 

The discrete model number II, considered in this paper, differs from that given 
by Eqs (10)-(12) only in the equation describing the processes occurring in the first 
column of the discretised version of the mill. Namely, the quantities of particles in 
the first column of the mill at the moment of time tn+\ are expressed as 

V(x1,li,tn+1) = (1-VF)-(1-S(li))-V(x1,li,tn) + VB-V(x2;ii,tn) " 
i 

+ (1 - V F ) - Y ^ P K i - V ( x 1 , l k , t n ) + a i (10/a) 
k=i 

+ ri-V(xj,li,tn-d) • 2 = 1 , 2 , . . . , / 

where now m = a,i(tn) i = 1 ,2 , . . . , / and 

/ 
n ) + r , • V(xj, h, tn-d)) is c o n s t a n t . (13) 

i— 1 

Eq.(13) is the discretised version of Eq.(9).- Since the second term on right hand 
side of Eq.( l l ) , Vf • V(xj-\, h, tn), represents the influence of a column to the next 
one, the changes in the first column move smoothly to the other ones of the. mill.. 

4 Simulation results and discussion 
Based on the discretised equations (10)-(13), two computer programs, written, in 
the language C, were developed for numerical experimentation. The size distribu-
tions of both the fed material and the initial loading material were chosen to be 
monodisperse in the simulation runs. The sizes of particles fed into the grinding 
system were chosen larger than Lmax/2. At the same time, classification of the 
product was assumed to be total and sharp at particle size Lmax/2, i.e. the selec-
tion function was chosen the Heaviside function of the form ip(L, t) = l-(L-Lmax/2) 
so that all particles larger than Lmax/2 were returned from the classifier to the 
mixer. 

The cumulative size distribution of the material being in the mill at coordinate 
x j of the mill and that of the product leaving thè mill, were computed for all 
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moments of time tn (n = 0, 1, 2, . . . N) as the sum 

Mj{L,tn) = 0' = 1 , 2 , . . . , J - 1), and 
li<L 

Mj(L,tn) = £V(xj,li,tn), 
li<L 

respectively. The oversize distribution functions were obtained by means of the 
relations Rj(L, tn) = 1 -Mj{L,tn) ( j = 1, 2,. . . J-1) and Rj(L,tn) = 1 -Mj(L,tn). 

Eq.(l) describing the continuous grinding process may become independent of 
the time when t —>• oo. In this case, the stationary state is achieved when the 
dependence on time becomes negligible. Then, the size distribution and the total 
mass of the material leaving the mill also become independent on time. There 
may exist, however, such operation conditions of the grinding system, mostly due 
to the size dependent removal of the product, that the system does not achieve 
stationary state. In this case, the amount of the material to be ground in the mill 
increasing monotonically what leads to overloading of the mill after elapsing some 
time. Overloading is a heavy breakdown, and the mill must be stopped. 

The simulation program was used to examine how the classification and partial 
recirculation, as well as the time delay in the recirculation line affect the stationary 
state and the oversize distribution of the product leaving the mill. The effects of 
changes of parameters both of the mill and the material to be ground were also 
examined. Let us see a few examples. 

The effects of the classification and recirculation, and of the variation of the 
delay parameter d on the duration of transients and on some characteristic param-
eters of the size distribution of the particulate product is presented in Tables 1 and 
2 for two different values of parameter Ks of the breakage selection function. 

It is well seen from these tables that the duration of time required for reaching 
the stationary state is increased considerably with increasing the time delay, whilst 
the average size and dispersion of the size distribution are reduced. Table 1 contains 
simulation results for material the size reduction of which is easier, Ks=10-7, than 
that of the material with parameter Ks = 0.5 • 10 - 7 the results of which are shown 
in Table 2. Comparing data in Tables 1 and 2 allows concluding that the extent of 
reduction of both the average size and the dispersion is smaller in the case of easy-
to-grind material than in the opposite case. The extent of time delay influences 
the time required, for reaching the stationary state, the average size and dispersion 
of the size distribution of the product significantly. The results obtained for cases 
d—3 and £¿=10 axe very similar. 

Using the same process and kinetic parameters as before, we obtained results 
shown in Tables 3 and 4 for the discrete model number II. It is seen that the effects 
of the recycling are not as much significant as in the case of the discrete model 
number I. In principle, in the case of the discrete model number II, the duration of 
time of transients is increased only to negligible extent, while only small changes 
can be observed in the average size and the dispersion of the size distribution of 
the material leaving the mill. 
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Table 1: Dependence of the duration of time required for reaching the stationary 
state, and of the characteristic parameters of the size distribution of the material to 
be ground at the outlet of the mill at the stationary state. Discrete model number 
I. Parameters: 7=20, J=30, m=3, n=2, VF =0.5, F s = 0 . 1 , Lm a x=2000. 

Recircu-
lation, 
Delay 

Ks Time required 
for reaching the 
stationary state 

The average size 
of the material 
leaving the mill 

The dispersion 
of the material 
leaving the mill 

No i o - 7 86 644.91 270.22 
Yes, d=3 i o - 7 145 635.15 267.45 
Yes, d=5 IO"7 145 635.23 267.52 
Yes, d=10 10~7 145 635.38 267.68 

Table 2: Dependence of the duration of time required for reaching the stationary 
state, and of the characteristic parameters of the size distribution of the material to 
be ground at the outlet of the mill at the stationary state. Discrete model number 
I. Parameters: 1=20, J=30, m=3, n=2, VF =0.5, F s = 0 . 1 , Im ox=2000. 

Recircu-
lation, 
Delay 

Ks Time required 
for reaching the 
stationary state 

The average size 
of the material 
leaving the mill 

The dispersion 
of the material 
leaving the mill 

No 0.5 • 10~7 82 855.15 334.47 
Yes, d=3 0.5 • IO"7 155 830.54 321.10 
Yes, d=5 0.5 • 10~7 158 830.61 321.15 
Yes, d=10 0.5- IO"7 166 830.68 321.25 

Table 3: Dependence of the duration of time required for reaching the stationary 
state, and of the characteristic parameters of the size distribution of the material to 
be ground at the outlet of the mill at the stationary state. Discrete model number 
II. Parameters: 1=20, J=30, m=3, n=2, VF =0.5, VB=0.l, Lmax=2000. 

Recircu- Ks Time required The average size The dispersion 
lation, for reaching the of the material of the material 
Delay stationary state leaving the mill leaving the mill 
No io-' 86 644.91 270.22 
Yes, d=3 10"7 87 639.54 265.43 
Yes, d=5 io-

7 87 639.61 265.46 
Yes, d=10 io-' 88 639.38 265.59 

As a second example, we examine the oversize distribution of the leaving ma-
terial as a function of time by using the discrete model number I. We compare the 
oversize distribution functions of the leaving material obtained by simulating the 
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Table 4: Dependence of the duration of time required for reaching the stationary 
state, and of the characteristic parameters of the size distribution of the material to 
be ground at the outlet of the mill at the stationary state. Discrete model number 
II. Parameters: 1=20, 7=30, m=3, n=2, V> =0.5, K s =0 .1 , I m o x =2000 . 

Recircu-
lation, :. 
Delay 
No 

Ks 

0.5 • 10~7 

Time required 
for reaching the 
stationary state 
82 

The average size 
of the material 
leaving the mill 
855.15 

The dispersion 
of the material 
leaving the mill 
334.47 

Yes, d=3 0.5 • 10" ' 86 840.42 323.00 
Yes, d=5 0.5 • lO - 7 86 840.55 323.09 
Yes, d=10 0.5 • 10- ' 87 840.18 323.22 

behaviour of the grinding system with and without classification and recirculation. 
In these simulation runs we used process and kinetic parameters given in Figs 1-4. 

When grinding occurs without classification and partial recirculation of the 
product, the stationary state is reached at the t=76th unit of the simulation time. 
In the case of applying classification and recirculation, however, the stationary state 
was reached at the 1153th unit of simulation time. The oversize distributions of the 
material to be ground at the outlet of the mill are shown in Figs 1-4 at t=10 and 
£=20 units of time. Figs 1-2 refer to grinding without recirculation. Comparing 
Figs 1 and 3, as well as Figs 2 and 4, it is seen that after a few units of time from 
the beginning of the process the oversize distribution functions are very similar to 
each other in both cases with or without recirculation. The effects of time delay 
and recirculation are hardly visible. 

\ 

\ 
\ 

... 

V 

X 

... 

Average size: 2123, Dispersion: 534 Average size: 1995, Dispersion: 599 

Figs 1-2. The oversize distributions of the particulate product at the outlet of 
the mill after ¿=10, i=20 units of time, respectively. Continuous grinding without 
recirculation. Discrete model number I. Parameters: I—20, J=20, m=2, n=2, 
Vir=0.5, F B =0 .1 , Lma±=3050, Ks= 9-1Q-9. 
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o., 

\ 

\ ... 

V 
\ 

\ . . • [ - i i 'n 
.no 

Average size: 2123, Dispersion: 545 Average size: 1995, Dispersion: 599 

Figs 3-4. The oversize distributions of the particulate product at the-outlet of 
the mill after £=10, t=20 units of time, respectively. Continuous grinding without 
recirculation. Discrete model number I. Parameters: 1=20, J=20, m=2, n=2, 
VF=0.5, VB=0.1, Z w = 3 0 5 0 , KS= 9-10"9, d=4. 

Let us now see the oversize distribution functions at the 40i/l unit of simulation 
time. Fig.5 refers to grinding without classification and recirculation, while Fig.6 
refers to grinding with that. Here, we already see some differences between, the two 
types of grinding mode. When the mill operates with recirculation the amount of 
particles belonging to the large particle size intervals is larger than in the opposite 
case. The oversize distribution function, shown in Fig.5, is similar to the oversize 
distribution function in stationary state, which is shown in Fig.10. 

... 

"X. 

\ v 

... 

X . 

Average size: 1790, Dispersion: 644 Average size: 1800, Dispersion: 642 

Fig.5. The oversize distribution func-
tion shown at the outlet of the mill 
after ¿=40 units of time. Continuous 
grinding without recirculation. 

Fig.6. The oversize distribution func-
tion shown at the outlet of the mill 
after ¿=40 units of time. Continuous 
grinding with recirculation. 

In this example, the stationary state is reached after rather long time when 
grinding is carried out with recirculation. The composition is changed very slowly. 
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The oversize distribution functions are almost the same at ¿=600ift, at ¿=900 i / l and 
in the stationary state, as these are shown in Figs 7-8 and in Fig.12. 

* X 
\ 

... \ 
\ ... \ 

\ 

,0,0 

Average size: 1604, Dispersion: 582 Average size: 1603, Dispersion: 582 

Figs 7-8. The oversize distribution functions shown at the outlet of the mill after 
¿=600 and ¿=900 units of time, respectively. Continuous grinding with recircula-
tion. 

Close to the stationary state, the time evolution of the oversize distribution 
functions becomes very slow as it is shown in Figs 9-10 and in Figs 11-12. 

\ 

1 

\ \ 

... 
\ 

Average size: 1704, Dispersion: 654 Average size: 1700, Dispersion: 655 

Figs 9-10. The oversize distribution functions shown at the outlet of the mill 
after ¿=66 and ¿=76 units of time, respectively. Continuous grinding without 
recirculation. 

Figs 10 and 12 show that the stationary states are different in this case. When 
grinding was performed with classification and recirculation, the average size of 
the product was reduced with 5.7%. The time required for reaching the stationary 
state increased significantly due to the recirculation. 

Let us now see what transient and stationary processes can be observed in-
side the mill. Since, by making the discretization of the partial integro-differential 
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Figs 11-12. The oversize distributions shown at the outlet of the mill after £=1143 
and £=1153 units of time, respectively. Continuous grinding with recirculation. 

equation (1), we subdivided the length of the mill into 20 equal subintervals, sub-
sequently called those columns, processes at different places inside the mill can be 
monitored as processes in the columns. The oversize distribution functions of the 
first, third, tenth, fifteenth and twentieth columns of the mill are shown in Figs 
13-16, respectively, at t=5th, t=8th, £=150^, £=287th units of simulation time by 
using the discrete model number I. It is seen that the stationary state is reached 
at £=287 th units of time. Figs 9 and 10 show that after a few units of time the 
oversize distribution functions in the columns in question are very similar to each 
other since the initial loading of the mill and the size distribution of the fed material 
were chosen to be monodisperse. In stationary states, the size distribution of the 
material close to the inlet of the mill is quite different from that which is observed 
inside of the mill and near the outlet. The effects of the feed are seen only close 
to the inlet. The size distributions of the columns change only hardly approaching 
the stationary state. This is shown in Figs 15 and 16. In this case stationary state 
is reached very slowly. 

The model number I, as it was defined before, describes such processes in the 
grinding system in which the total mass flow inside the mill, due to the dependence 
of the amount of the recycled material on the classifying device, may be changed. 
As a consequence, we can observe changes of the total mass flow in any column of 
the mill. The total mass flow of the particles in the first, tenth and last columns of 
the mill are shown in Fig. 17 as a function of time. Due to the action of classification 
and recirculation, the total mass flow begins to increase in the first column of the 
mill after d=4 units of time Naturally in this case the time delay was 4 discrete 
time units. It is seen in Fig. 17 that as the impulse of the total mass flow is shifted 
towards the outlet of the mill it is dispersed and the peak becomes smaller and 
smaller, i.e. the mixing process is smoothing the impulse. After reaching the new 
stationary state, the mass flow becomes equal and constant in time in each column 
of the mill, but this occurs at higher loading value. 
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Figs 13-16. The oversize distribution functions shown in the first, third, tenth, 
fifteenth and twentieth columns of the mill at t=5th, t=8th, t-150th and t=287th 

units of simulation time. Continuous grinding with recirculation. Discrete model 
number I. Parameters: 1=20, J=20, m=2, n=2, VF =0.3, VB=0.1, Lm o I=5000, 
Ks = 10~8, d=4. 
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Fig.17. Variation of the total mass flow as. a function of time in the first, tenth 
and last column of the mill, respectively. Continuous grinding with recirculation. 
Discrete model number I. Parameters: /=20, J=20, m=2, n=2, VF =0.3, Vb= 0.1, 
Lm a i=5000, Ks=10~8, d=4. 
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Fig. 18. Variation of the total mass flow as a function of time in the first, tenth 
and last column of the mill, respectively. Continuous grinding with recirculation. 
Discrete model number I. Parameters: 1=20, J=20, m=2, n=2, V> =0.3, ^ # = 0 . 1 , 
Lmax=U00, #s=10-8, d=4. , 

In some case of simulation runs, damped oscillations of the total mass flow were 
detected as it is shown in Figs 18 and 19. In Fig. 18, for instance, oscillations of 
the total mass flow in the first, tenth and last column of the mill are presented. In 
this case, in principle, oscillations become damped entirely after three decreasing 
characteristic peaks, and the mill reaches a stable stationary state at £=285 th units 
of simulation time. 

Fig.19. Variation of the total mass flow as a function of time in the first, tenth 
and last column of the mill, respectively. Continuous grinding with recirculation. 
Discrete model number I. Parameters: 1=20, J=20, m=2, n=2, V> =0.3, Vjg=0.1, 
Lmax=mo, Ks=10-8, d=4. 
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Another example is shown in Fig. 19, which is quiet different from the processes 
seen in Fig.18. In this case, the total mass flow exhibits oscillations with increasing 
peaks, although the amplitudes here are decreased, too, but after damping the 
oscillations the mass flow remains increasing monotonically. 

In this case, the classifying device, because of the insufficient grinding efficiency 
of the mill, returns increasing amount of material to be ground again, thus, as a con-
sequence, the load of the mill may increase above a given limit. It is an overloading 
phenomenon of the mill, and such grinding system is considered unstable. 

5 Conclusions 

Computer models and programs were elaborated for studying the stationary state 
processes of continuous grinding systems working with and without classification 
and partial recirculation of the product. The final form of the model was expressed 
as a set of recursive equations. The successive solution of the set of equations 
converges to the stationary state of the system. 

. The computer models developed are suitable for resolve a number of problems 
origin from the practice. For example, the problem of producing particulate prod-
uct having prescribed average particle size with given constrains on the dispersion 
of the particle size distribution is a common one in process and mineral industry. 
By means of the newly developed programs it is possible to simulate the process 
in order to find the main properties and parameters of the grinding system which 
produces products satisfying the requirements of the end-users by efficient working 
of the grinding mill. These programs can also be used for estimating the kinetic pa-
rameters of the breakage processes, as well as for identifying the process parameters 
and conditions of the grinding devices and systems. 

The efficiency of the grinding devices usually depends also on total mass flow 
and size distribution of the raw material fed into the system. The models and 
programs presented in the paper allow examining these effects, too. By simulating 
the transient processes caused by changes in the feed or recycled flows, the 
times required to reach the stationary states, as well as the conditions leading to 
overloading of the mill can be analysed and predicted, making possible to set the 
correct conditions of operation of the grinding systems in. 
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