
Acta Cybernetica 15 (2002) 547-565.

Implemeting a Component-Based Tool for
Interactive Synthesis of UML Statechart Diagrams

Johannes Koskinen* Erkki MakinenJ and Tarja Systa*

Abstract

The Unified Modeling Language (UML) has an indisputable role in object-
oriented software development. It provides several diagram types viewing á
system from different perspectives. Currently available systems have rela-
tively modest tool support for comparing, merging, synthesizing, and slicing
UML diagrams based on their semantical relationships. Minimally Adequate
Synthesizer (MAS) is a tool that synthesizes UML statechart diagrams from
sequence diagrams in an interactive manner. It follows Angluin's framework
of minimally adequate teacher to infer the desired statechart diagram with
the help of membership and equivalence queries. MAS can also synthesize
sequence diagrams into an edited or manually constructed statechart dia-
gram. In this paper we discuss problems related to a practical implemen-
tation of MAS and its integration with two existing tools (Nokia TED and
Rational Rose) supporting UML-based modeling. We also discuss informa-
tion exchange techniques that could be used to allow the usage of other CASE
tools supporting UML.

1 Introduction
The different diagram types provided by UML [23] have strong semantical depen-
dencies. These dependencies allow, among other operations, slicing, synthesizing,
and abstracting a UML diagram based on the information included in another dia-
gram. A lot of tool support is available for constructing syntactically correct UML
diagrams, but the present tools provide rather modest support for analyzing and
using the semantical relationships of these diagrams.

In UML-based behavioral modeling, examples of object interactions are usually
visualized as sequence diagrams or collaboration diagrams. The final specification
of an object is modeled as a statechart diagram. A statechart diagram can be used
as a protocol specification, showing the legal order in which the operations of an
object may be invoked.

'Software Systems Laboratory, Tampere University of Technology, P.O. Box 553, FIN-33101
Tampere, Finland, e-mail: jomppaScs . tut . f i , t s y s t a S c s . t u t . f i

^Department of Computer and Information Sciences, P.O. Box 607., FIN-33014 University of
Tampere, Finland, email: em8cs .uta . f i

547

548 Johannes Koskinen, Erkki Màkinen, and Tar ja Sys ta.

Automated support for constructing statechart diagrams from sequence dia-
grams provides considerable help for the designer. Automatic generation of state
machines from scenario diagrams, such as UML interaction diagrams, has been
studied extensively [7, 8, 12, 13, 25, 27].

MAS [10, 14, 15] is a tool that interactively synthesizes UML statecharts dia-
grams from sequence diagrams. Totally automatic synthesis algorithms, e.g., the
one used in SCED [8], may result in a state machine that contains undesired gen-
eralizations. Because MAS consults the user during the synthesis process, the user
can be confident that such "overgeneralizations" do not appear in the resulting
statechart diagram. The user consultancy is organized as membership and equiva-
lence queries posed by the algorithm: The user can help the synthesis process, for
example, by marking certain (sub)paths in the statechart diagram appearing in a
membership query as forbidden. This guarantees that the algorithm does not per-
form queries containing such a subpath more than once. We also consider various
ways to support the user when she is providing a counterexample after rejecting a
conjecture, i.e., after giving a negative answer to an equivalence query.

Tools like MAS, which support UML-based "model operations" [26], are desir-
able in all CASE tools. These techniques and tools can be integrated with CASE
tools or they can be provided as separate components interoperable with CASE
tools. One of our implementation platforms, the Nokia TED [28], is a multi-user
software development environment that has been implemented at the Nokia Re-
search Center. MAS interacts with TED through a COM interface. It imports the
source sequence diagrams from and exports the resulting statechart diagram to the
TED repository. The other implementation platform used is Rational Rose. In
principle, MAS can be implemented for any tool supporting UML and providing a
reasonable API for accessing the model repository. Moreover, commonly accepted
exchange formats like XMI provide even more flexible integration of MAS with
other CASE tools supporting UML. In addition to the diagram import and export
mechanisms, the interactive nature of MAS brings additional challenges for the
integration.

2 From Sequence Diagrams to Statechart Dia-
grams

In this section we briefly introduce the function of MAS (for further details, consult
[10,14,15]). MAS tackles the problem of statechart diagram synthesis as a language
inference task. The behavior of a selected participant described in a set of sequence
diagrams is first mapped to strings belonging to the language to be inferred. MAS
is then used to infer the language based on these strings. The resulting language
is given as a finite state automaton. Finally, the automaton is transformed into a
UML statechart diagram.

Before we discuss the actual synthesis algorithm, we briefly introduce a few
aspects in UML sequence and statechart diagrams considered during the synthesis.
The basic UML sequence diagrams to be considered in the rest of this paper consists

Implemeting a Component-Based Tool for Interactive Synthesis of UML ... 549

of participating objects and messages occurring between these objects. Objects are
shown as vertical lines called lifelines and messages as horizontal arrows extending
from a sender object to a receiver object. Let D be a sequence diagram describing
a scenario with an instance I of class C. The trace originating from D with respect
to I is obtained as follows. Consider the vertical line corresponding to I . Starting
from the top, for two successive messages labeled et and ej associated with I , where
d is a sent message and ej is a received message, add item (ej, ej) into the trace.
If e, or EJ is missing, then add NULL instead. If the explicit deletion of the object
is not shown at the end of the sequence diagram, let the right hand side of the last
pair be VOID. The traces read in the above fashion are used as strings during the
synthesis process.

In a UML statechart diagram, a transition from a state to another state can
also be a so called completion transition. A completion transition without a guard
is implicitly triggered by the completion of any internal activity in a state [23].
Therefore, in MAS, we do not allow a state to have both labeled and unlabeled
transitions (the latter corresponding to unguarded completion transitions) as out-
going transitions. In MAS we do not allow a completion transition and a labeled
transition to be the leaving transitions of the same state. Two leaving completion
transitions, in turn, would result in a nondeterministic state.

2.1 The Algorithm
Being a minimally adequate teacher requires that the designer can answer two kind
of simple questions:

1. she must decide whether a given behavior is possible in the system she is
implementing (the membership queries)

2. she must accept or reject the output statechart diagram, and moreover, if she
rejects, a counterexample from the the symmetric difference of the languages
related to the output statechart diagram and the desired statechart diagram
must be given (the equivalence queries).

In addition to definite Yes and No answers, MAS allows the user to answer
Maybe or Hardly (i.e., weak Yes and No answers). The information obtained from
these answers is considered less significant than that obtained from normal, definite
answers. Furthermore, the user can postpone answering by saying Later. These
inaccurate answers are discussed in greater detail in [10].

MAS maintains an observation table T containing the current information about
members and non-members of the desired language. The rows of T are labelled by
the elements of (S u S - A) where A is the input alphabet, and 5 is a prefix-closed set
of strings in A*. (Notice that the alphabet A of our inference algorithm consists of
pairs (ej,ej) and that "•" stands for the concatenation operator.) The columns of
T are labelled by the elements of a suffix-closed set R. MAS generates the columns
during the synthesis process. They contain possible continuations to strings in the
rows and are used to decide whether the rows represent paths that yield to the same
state. In other words, the columns are used to test if two states can be joined. The

550 Johannes Koskinen, Erkki Màkinen, and Tar ja Sys ta.

entry for row s and column r, is 1, if u = s • r is in the desired language, otherwise
the entry is 0. The bit string on the row labeled x in T is denoted by row(x). An
observation table is said to be closed if for each t in S • A, there is an s in S such
that row(s) = row(t). An observation table is consistent if whenever s j and s2 are
in S such that row(s 1) = row(s2), for all a in A, row(s 1 • a) = rou;(s2 • a).

The original inference algorithm [2] starts with 5 = R = 0 and first asks mem-
bership queries for A (the empty string) and for all symbols a in A. T is updated
by the answers of these queries. While T is not closed and consistent, new strings
are added to S and R, and the corresponding table entries are found out by mem-
bership queries. A closed and consistent observation table defines a deterministic
finite automaton in a natural way [2]. The algorithm forwards this automaton as a
conjecture to the teacher. The algorithm halts if the teacher accepts the conjecture.
Otherwise, the given counterexample updates T and the execution of the algorithm
continues.

In our application, where the designer plays the role of the teacher, the execution
of the algorithm begins so that the designer constructs a set of typical sequence
diagrams describing the behavior of the system. All traces from these sequence
diagrams and their prefixes are stored in S. No membership queries are needed
since the traces themselves are in the unknown language but all the proper prefixes
are not. Indeed, if a string ends with a symbol (EI,EJ) with EJ ^ VOID, the
membership query is not necessary since we know that the string in question cannot
belong to the unknown language.

There are also other application specific features in the synthesis process that
decrease the number of membership queries needed. Consider now a trace

e = (ei,e 2)(e 3,e 4)... (ei_2,ei_i)(ej,ei+i)... (e„_i,e n),

which is in the unknown language. Since e is in S, then so have its prefixes including
e = (e i ,e2) . . . (ei_2,ej_i). The left hand side ei of (e»,ei+i) defines the action in
the state reached by the subtrace e = (ei,e2) •. - (ei-2, Ci-i)- Hence, we do not
have to make membership queries for strings e = (ei, e-i). . . (ei-2, ei-i)w, where
w = (ej,ej+1)... (e m _ i , e m) and ej / e».

The algorithm outputs a finite automaton. Actually, we need a statechart dia-
gram which is obtained by fine tuning the output automaton as described in [15].
The output finite automaton is called the underlying finite automaton of the re-
sulting statechart diagram.

2.2 Data Structures Allowing Backtracking
MAS allows the user to give inaccurate answers to membership queries. Thus, we
need data structures that are able to manage the user's mind changes or accidentally
given incorrect answers.

MAS maintains a trie containing the strings known to be in the desired language.
(For the definition and basic properties of tries, see e.g., [16].) This trie is referred
to as W. Initially, W contains the information related to the input set. New

Implemeting a Component-Based Tool for Interactive Synthesis of UML . . . 551

information is inserted in W when the user gives a positive answer to a membership
query, or when she gives a counterexample not belonging to the language accepted
by the conjectured automaton. We need a trie structure in which we are able to
efficiently backtrack, and then update the observation table if necessary, i.e., we
use a structure that resembles so called persistent data structures (see [6]).

Suppose now that MAS is looking for the correct value for an entry in the
observation table T. It first checks that the string (say w) in question ends with
a symbol of the form (e , V O I D) . If so, it accesses W and compares the existing
links against w. There are three different possibilities:

1. the links can be traversed to a leaf, which means that the trie contains w; the
correct entry in T is 1,

2. w is of the form w = wi(ei, f)w2, where lu-j is the longest possible common
prefix of w and any string (say y) in W, and y continues with a symbol (ej,g) .
where et ^ ej-, now we know that w cannot belong to the desired language
and the correct entry in T is 0, and

3. w is of the form w = w\(ei, f)w2, where wi is the longest possible common
prefix of w and any string y in W, and y continues with a symbol (ej ,g)
where e» = ej (and hence, / ^ g); MAS cannot conclude the correct entry in
T, and a membership query is needed.

The algorithm tries to determine table entry values without consulting the user.
We prepare ourselves to possible backtrack operations by maintaining pointers in
order to reach the table entries whose value is determined by the algorithm. If a
trie node used in determining table entries is later deleted, these entries can be
easily found by following the pointers.

Inserting new elements to the trie is as straighforward as accessing. However,
problems arise when we have to delete a string from the structure because of a
found error or of a mind change of the user. The deletion itself is easy, but it is
possible that we have updated the observation table based on the existence of a
string, which now turns out to be erroneous. Hence, we have to check that the value
of all observation table entries are determined from existing trie elements also after
the deletion.

Consider now what happens when a string is deleted from the set of words known
to be in the desired language. First, the corresponding.element is deleted from W.
The algorithm might have concluded an affirmative answer to a membership query
based on the (now ceased) existence of the string in question. Now, this entry in the
observation table must be updated to be 0. The possible need for reconsidering the
value of a table entry can be concluded by checking the lists of coordinates along
the path presenting the element to be deleted from the trie structure. Notice,
however, that a change in the value of an observation table entry is not necessarily
needed. The string corresponding to the observation table entry in question may
contain other substrings, from which a negative answer can be concluded (or the
user can confirm by answering a membership query that the entry should be kept
unchanged).

552 Johannes Koskinen, Erkki Màkinen, and Tarja Sys ta.

2.3 Improving the Algorithm

Depending on the case tool MAS is integrated with, the performance of the syn-
thesis process varies. According to our studies, in the case of TED, importing and
exporting diagrams to and from the TED repository is the most time consuming
part with small and moderate size examples (excluding the time spend with user in-
teractions) [9]. With large examples, in turn, also the performance of the algorithm
becomes an issue.

An obvious direction for improving the performance of MAS is to further de-
crease the amount of user consultancy. There are two different lines to follow. First,
we can equip the user with methods to transfer her knowledge about the system to
the algorithm. These methods are introduced in Section 3. Second, we can try to
make use of the general improvements suggested to Angluin's original algorithm in
the literature.

In what follows, we shortly discuss the suggestions by Rivest and Schapire [24]
(see also a survey by Balcazar et al. [3]). The idea of Rivest and Schapire is to use a
"characteristic member" of each class of strings in S with an equal row. This means
that the observation table is always consistent. Clearly, the principle ako decreases
the size of the observation table, and as a consequence, the number of membership
queries is decreased too, at least in the worst case. The crux of the improvement
is the handling of counterexamples. Instead of inserting the counterexample and
its prefixes to S, the method of Rivest and Schapire finds out a new member for
R. This string is chosen so that it makes the observation table non-closed, and in
order to retain closeness, a prefix of the counterexample is inserted in S. Although
membership queries are needed to find the correct prefix of the counterexample, it
can be shown that this method indeed decreases the number of membership queries
in the worst case. However, it is still open whether this method actually decreases
the number of membership queries in our application. Namely, it is essential how
many membership queries the algorithm can answer without consulting the user.
The queries induced by the method of Rivest and Schapire may be difficult for the
algorithm.

If applied in its basic form, the method of Rivest and Schapire has the drawback
that the new conjecture does not necessarily classify the previous counterexample
correctly [3]. This feature is not acceptable since it would confuse the user by
making the user interface illogical. However, this problem can be settled by not
showing the new conjecture to the user and using the same counterexample as
long as the counterexample is not correctly classified. This would also decrease the
number of equivalence queries.

It is even known that membership queries are not necessary at all for a poly-
nomial time inference algorithm for regular Languages, provided that the teacher
always gives (lexicographically) smallest counterexamples (see e.g., Birkendorf et
al. [4]). However, this result does not help us, since it is unreasonable to expect
the user to provide smallest counterexamples to the algorithm. Still the choice of
the counterexamples does have its effect to the efficiency of MAS: short (positive)
counterexamples are, of course, desirable.

Implemeting a Component-Based Tool for Interactive Synthesis of UML ... 553

There are also various ways to streamline the data structures. For example, the
observation table is very sparse, i.e., a great majority of its entries are zeroes. This
fact can be utilized by storing only the entries containing ones.

3 Interaction Between the User and MAS
In this section we discuss the information exchange and visualization techniques be-
tween MAS and the user. We introduce various methods for transfering additional
information to the synthesis algorithm in order to further decrease the number of
membership queries. For the membership queries to be informative and interest-
ing enough, they need to vary from each other. Moreover, the amount of queries
should be considerable small not to cause the user to lose her interest. Ideally,
MAS should draw the user's attention to crucial and ill-defined parts of the cur-
rent design but not bother her with trivial questions. In what follows we sketch
techniques that allow the user to give "general guidelines" to MAS, thus decreasing
the amount of queries. Especially, the proposed techniques aim at decreasing the
amount of similar or closely related questions, answers to which depend on the
same key question.

3.1 Visualizing the Membership Queries
Choosing an appropriate information visualization technique is important in inter-
active systems. A membership query needs to be shown to the user in a way that is
easy to understand and answer. An intuitive way to visualize a membership query
would be highlighting the corresponding path in a statechart diagram. However,
since some of the membership queries are posed before a conjecture for a statechart
diagram can be represented, this is not possible for all membership queries.

Currently, MAS poses the membership queries in a form of a simple sequence
diagram with two participants: the object of interest and a participant (called
System) that represents all other participants (inside or outside the system border)
the object interacts with. A membership query often consists of subpaths that
have already been accepted by the user. In such a case, the membership query can
be translated to a question: "Can these subpaths occur in the presented order?".
To make it easier for the user to recognize such components. (subpaths) in the
membership query, MAS uses a different color for each one of them. Figure 1
shows a sample membership query. It consists of two subpaths already accepted
by the user. The equivalence queries, in turn, are visualized as statechart diagrams
by the CASE tool (currently TED or Rose) itself.

In order to give the user a flexible way to express her mind changes concerning
the status of a piece of inaccurate information, MAS provides a window in which
all the inaccurate information is presented. The user can browse the questions and
modify the answers simply by clicking the mouse button. If the user now gives an
accurate answer, the question disappears from the window. This window is opened
when the user gives an inaccurate answer (Maybe or Hardly) for the first time.

554 Johannes Koskinen, Erkki Màkinen, and Tarja Sys ta.

MMfflEWiflfS

display time

, register
flash alarm time

display time

start ringing *

stop ringing

display time

start ringing

stop ringing

System

set alarm time

alarm time reached

turn alarm off

H

alarm time reached •. 4
— J

turn alarm off

^ <9
.VmH J [pSto I jf~ Han»' Lata J f̂ Abort

Figure 1: A sample membership query

3.2 Forbidden Substrings

It is obvious to the user of MAS that certain sequences of messages cannot take
place, or equivalently, that certain substrings are not possible in the words belonging
to the desired language. It is, however, quite unreasonable to expect that the user
can list such invalid subpaths beforehand. A user-friendly way to transfer this
information to the algorithm is to give the user a possibility to mark any subpath
of a membership query as invalid. This guarantees that the algorithm does not
make membership queries with the same invalid subpath more than once. Such
a possibility increases the generality of the answers: instead of neglecting a single
word from the unknown language, we can neglect a whole sublanguage of words
containing the invalid pattern. For example, from the membership query in Figure
1 the user might want to select a block from the sixth message (alarm time reached)
to the 12th message (start ringing) as a forbidden subpath, indicating that an alarm
clock should not start ringing if the alarm is not set on (even though the alarm
time is reached).

We need another trie (referred to as F), which contains the forbidden substrings.
It is accessed if the correct answer cannot be concluded based on the information
stored in W. In the nodes of F , there are lists of pointers to the observation
table entries whose values are concluded from the trie element in question. Since

Implemeting a Component-Based Tool for Interactive Synthesis of UML ... 555

deletions should be possible also from F, it is maintained analogously to W, i.e., a
deletion may cause changes in the observation table entry values. Checking whether
a given string contains any of F's strings as its substring, is an instance of a string
matching problem where several patterns are searched from a single text.

3.3 Editing the Statechart Diagram
Answering equivalence queries and providing a sufficient set of sequence diagrams
as counterexamples can sometimes be quite tedious when defining the correct stat-
echart diagram. The user should have a more direct method to change the conjec-
ture. A typical object-oriented design tool allows the user to edit the statechart
diagram by adding new states and transitions, by deleting existing ones, and by
splitting and merging states.

So far, we have considered the construction of an automaton from a given con-
sistent and closed observation table. When the user is allowed to edit the statechart
diagram, we have to have a method for traversing also to the opposite direction
from the statechart diagram (or from the corresponding finite automaton) to an
observation table that defines the original finite automaton / statechart diagram.

Even a small editing operation in the statechart diagram may cause a major
change in the observation table. Furthermore, the whole statechart diagram might
have been constructed manually. Hence, we obey the policy to always build up the
observation table from scratch. This is possible by using the algorithm BuildUp
introduced in [14]. It is clear that the observation table can be filled up with-
out consulting the user. Moreover, the observation table obtained is closed and
consistent, and it defines the edited statechart diagram.

3.4 Providing Counterexamples
The task of providing counterexamples is the most difficult part of using MAS.
Hence, the user interface should support the user to find proper counterexamples
and to check their consistency with the other information available.

Suppose that MAS has output a statechart diagram with B as the underlying
finite automaton and that the user does not accept the conjecture. The user is
now expected to provide a counterexample. If she gives a positive counterexample
u>, i.e., a string not in the language L(B) accepted by B, MAS should change the
conjecture so that w is contained in L(B). Otherwise, the user gives a negative
counterexample (a string w in L(B)) and MAS should omit w from L(B).

The normal way to give a positive counterexample is to present an extra se-
quence diagram. When the user gives her counterexample, the interface should
confirm whether or not it is in L(B), so that she can be sure that the counterex-
ample is of the desired type. An instructive way of telling this is to animate the
function of the conjectured statechart diagram with the input w. This ensures
that the counterexample has the desired effect to the statechart diagram. In our
approach, the conjectured statechart diagram is visualized by the CASE tool. This
means that the API of the CASE tool in question should allow its extension with

556 Johannes Koskinen, Erkki Màkinen, and Tar ja Sys ta.

such animation property. Considering our current implementation environments,
the Rational Rose Extensibility Interface (REI) allows this while the TED API
does not.

The task of giving a negative counterexample is often more natural to replace
by editing the statechart diagram. For example, deleting a transition from the
statechart diagram is equivalent with giving a set of negative counterexamples,
which are now longer accepted by the statechart diagram when the transition is
missing.

An easy method to define a very general type of negative counterexamples is to
allow the user to select paths from the conjectured statechart diagram by clicking
its states on the screen. Suppose the user clicks a pair of states si and s2 one
after another. This can be interpreted so that all paths from state si to state s2

are forbidden. In other words, all the substrings of the form (a,x)y(b ,z) , where a
and b are the actions related to the states si and s2, respectively, x and z are any
messages, and y is any sequence of pairs, are forbidden. Hence, by clicking states
we can define even more general classes of strings as forbidden than by marking
substrings in membership queries. Again, the API of the CASE tool should allow
activation of the states.

4 Integrating MAS with CASE Tools
A variety of CASE tools supporting UML is available. These tools provide syntactic
support for UML-based software development. Moreover, code generation and/or
basic round-trip engineering facilities (typically limited to relations between a class
diagram and source code) are supported by many of these tools. A more interesting
and more challenging problem is to provide semantical support for applying oper-
ations among different UML diagrams. Selonen et al. [26] divide model operations
into two groups: (1) basic operations that apply set theoretical operations (union,
difference or intersection) for two diagrams of the same type and (2) transforma-
tion operations that take a UML diagram as an operand and produce a diagram
of another type as its result. Both basic and transformation operations involve the
semantics of the diagrams and need a case tool for providing the information con-
tent of the diagrams and for visualizing the resulting UML diagram. Thus, model
operations could be implemented as separate components that provide import and
export services for the tools (supporting UML) they are interoperating with.

For managing interoperability, the information exchange format should be
agreed on. In what follows we discuss the advantages and disadvantages of dif-
ferent integration techniques from the point of view of MAS.

4.1 Integrating MAS with TED
The TED version of MAS is implemented as a stand-alone program, which connects
to the TED's repository using a special TED COM server. This server is located
in a local computer and it establishes a connection to a remote TED . server. The

Implemeting a Component-Based Tool for Interactive Synthesis of UML ... 557

user needs to specify where the server and the repository are located and how the
traces to be synthesized can be found.

Additionally, the user needs two different tools, one for constructing a sequence
diagram and another for synthesizing the statechart diagram, and to switch be-
tween them during the synthesis process. This is not practical with interactive
synthesizers like MAS. When MAS asks for a counterexample, the user needs to
make a sequence diagram or to modify the existing statechart diagram. When she
is ready, MAS has to know the exact location of the diagram (ID or path to it)
before it can continue. There is no way the user can point an object in the editor
and tell MAS to continue synthesizing using that trace as a counterexample.

Figure 2: The TED implementation of MAS

4.2 Implementing a Software Component
Programming languages offer mechanisms to distribute and reuse software libraries,
but these techiques have been vendor and language specific and communication
between different libraries has been difficult. The object component model is a
language and vendor independent mechanism to reuse existing software.

In Microsoft Windows environment we can choose between two object compo-
nent technologies: The Common Object Request Broker Architecture (CORBA)
[22] and The Component Object Model (COM) [17]. Information about the dif-
ferences between these two technologies can be found in [5]. COM is designed
for Windows platform. Almost all CASE tools offer some kind of COM interface
for automating design. In addition, with COM Automation [18] we could use our
synthesizer tool from scripts and macros.

COM is a platform independent, distributed, object-oriented system for creating
binary software components that can interact. These components (objects) can
be within a single process, in different processes, or even on remote machines [19].
Every component has an unique identifier (called Globally Unique Identifier,. GUID)
and information about available components is stored in the system registry.

The main idea of the software components is that only interfaces are provided
for their users, their implementation is hidden. The COM components can be used

558 Johannes Koskinen, Erkki Màkinen, and Tarja Sys ta.

like normal C + + classes, but the code itself may be executed on a remote machine
- the client application does not have to worry about the components' location.
There are some guidelines to specify a COM component [20]:

• A COM interface is not the same as a C + + class. The pure virtual
definition carries no implementation. Unlike C + + classes (interfaces), the
COM interfaces cannot have any implementation.

• A COM interface is not an object. It is simply a related group of
functions. It is also the binary standard through which clients and objects
communicate.

• COM interfaces are strongly typed. Every interface has its own interface
identifier (a GUID), which eliminates the possibility of duplication that could
occur with any other naming scheme.

• COM interfaces are immutable. You cannot define a new version of an
old interface and give it the same identifier. Thus, each interface is a separate
contract, and systemwide objects need not know whether the version of the
interface they are calling is the one they expect. The interface ID (IID) defines
the interface contract explicitly and uniquely.

The COM components can communicate with the client software using events.

4.3 Integration Considerations
The most trivial and flexible way to manage interoperability is to change informa-
tion through files written in a predefined format. For an optimal interoperability,
a file format supported by several CASE tools should be chosen. A downside of
this approach is inefficiency: additional reading/writing information from/to files is
time consuming compared to the direct use of the information. Since the tool that
provides the information need not to be the same as that visualizing the results,
this approach allows, for instance, the source sequence diagrams to be constructed
with multiple tools.

XML-based Metadata Interchange (XMI) [21] is an interchange format for UML
supported by most of the case tools supporting UML. Since the Document Type
Definition (DTD) grammar that defines the XMI language is based on UML meta-
model (or more precisely, on MOF (Meta-Object Facility) specification [21]), it
can only express what is in the UML metamodel, thus lacking support for defining
presentation information (e.g., layouts). However, using the extension mechanism
of XMI, the tool vendors can define how to add that information to the XMI files.
Since there currently does not exist a global agreement on how this should be done,
the UML CASE tools can only exchange model information in practise. From the
point of view of MAS, this is not a crucial problem, since the imported statechart
diagrams are created by MAS and thus, they do not contain any history information
on the diagram layouts to be restored.

Integrating MAS more tightly with different CASE tools allows us to extend the
possibilities to communicate with the synthesizer. The user can start the synthe-

Implemeting a Component-Based Tool for Interactive Synthesis of UML ... 559

sizer from the menu and all interactions can be managed using one tool (although
in separate windows). While editing statecharts is a relatively easy way to express
the counterexamples, the editor can support this task by previewing the conjecture
and allowing the user to modify it before she continues the synthesis process.

Using repository via a server has a performance penalty as well. For example,
generating a statechart to the repository takes a long time (about one second per
state in our case). When the synthesizer and the editor both use the same internal
data format, the repository becomes obsolete as temporary storage for synthesized
conjectures. Only the final conjecture should be placed in the repository for future
use.

Our TED implementation of MAS allows semi-automatic synthesis using s tar tup
parameters. The initial sequence diagrams can be given parameters without any
interaction, but membership queries and counterexamples will still need user con-
sultation. The star tup parameters can also be given graphically using the visual
scripting mechanism in TED [11].

To integrate MAS with CASE tools we need to build MAS as a software compo-
nent. This component implements an interface offered by the CASE tool and either
uses a specific interchange format (e.g., XMI) or a special interface for exchanging
UML models between the component and the tool. Using an internal data format
is a simpler and faster solution, but it limits us to use the single specific CASE tool.
XMI is a universal format, but exporting and importing XMI files (even memory
mapped files) might slow down the performance drastically with large data struc-
tures, especially when chaining the components. In some cases, using pre-saved
XMI files allows us to speed up the synthesizing, but we have not made a speed
comparison between these two techniques.

A MAS COM component should provide a high-level synthesis interface to start
and control the synthesizer from CASE tools. The interface should have at least
the following methods:

• Synthesize(IDatalnterface* in, IDatalnterface* out)

A very high-level synthesis method to start a synthesizer. The input and
output interfaces (IDatalnterface) are used to get a sequence diagram and
to put a conjectured statechart diagram back to the editor. This interface
is similar to s tar tup parameters with the exception of events. Using this
interface method, the synthesizer can notify the editor in different synthesis
phases.

• InsertCounterExamples(DWORD count, IExamplelnterface**

examples)

Inserts a number of counterexamples (sequence diagrams or edited statechart
diagrams) for the synthesizer. This method is used after the synthesizer has
notified the editor to give a counterexample with an event.

• InsertForbiddenStrings(DWORD count, BSTR* strs)

Tells MAS not to accept traces (strings) by default. This is useful when
handling the forbidden strings considered in Section 3.2.

560 Johannes Koskinen, Erkki Màkinen, and Tarja Sys ta.

All input and output data is exchanged using interfaces. These interfaces provide
required methods to access internal data structures. The data itself could be in XMI
files, internal data format, or in server's repository. In addition to the methods,
we need several events to tell the editor (or more generally, the client) when the
synthesizer will need user action. This allows the client to set callbacks and to
modify the synthesizer's behavior and user interface.

4.4 First Rays of the New MAS

We have already made the first version of MAS for Rational Rose (later roseMAS)
using the techiques described in Section 4.2. The synthesizer is a COM component
which is connected to the modeling software using Rational Rose Extensibility In-
terface (REI). REI is a COM automation interface for various plugins. It contains
methods to manipulate Rose models (e.g., creating new elements) and to extend
the user interface (like additional menus). Although roseMAS has been designed to
be a Rose plugin, it can also be used with other tools because of its automation in-
terface. On the other hand, roseMAS component cannot be run without additional
command line utility.

When roseMAS has been installed using the setup program, it registers itself
to the Windows registry, so that CASE tools can use it. The registry contains
information on events that roseMAS is interested in, such as selecting a menu
item from Rose. When an event occurs, Rose calls a method in roseMAS interface
EventHandler (see Figure 3). The roseMAS installation package also includes a
menu file, allowing MAS options to be changed directly from the CASE tool.

Rose -o
RoseApplication

A

V a
EventHandler

•
•

MAS

Figure 3: The component diagram describing the implementation of MAS for Rose

Implemeting a Component-Based Tool for Interactive Synthesis of UML . . . 561

When the user selects the SED^SCD command from the pop-up menu, rose-
MAS looks up all selected and active items. One of them has to be an object. The
other selected items are sequence diagrams, which contain the same object (or at
least object with the same name). RoseMAS gets all the messages related to the
object of interest from diagrams and adds them to the trace list. After that, the
original MAS algorithm starts with these input traces.

All communication between roseMAS and Rose is managed via RoseApplication
interface. Since the interface supports automation, we can use a C + + wrapper class
to hide COM specific code and use the RoseApplication like a class library.

Comparing this Rose integration to the one with TED, the differences between
these two are remarkable. Instead of giving startup parameters and typing location
information to the dialogs, the user can select the sequence diagrams she would
like to include in the synthesizing. Starting roseMAS is easy because of the direct
menu support (see Figure 4). Furthermore, the conjecture is automatically created
under the base class of the traced object. The user can give a counterexample,
like starting the synthesis. This is accomplished by selecting sequence or statechart
diagrams and pushing the continue button.

In addition to all this, the performance of the new roseMAS is much better
than that of the old client-server system. On the other hand, Rose lacks a multi-
user collaboration and database system. This means that we are back with the
"one model per file" environment. Moreover, unlike TED, Rose tries to keep our
model and diagrams consistent. Normally, this is what the user wants, but when
the user synthesizes new diagrams, consistency checking makes some things a bit
unconfortable. For example, the states of the generated statechart diagrams can
no longer use the same name between diagrams, because they share the same state
machine.

2 ° o m t o Selection • Ctri+M

j| Fit in Window Ctrl+W -

j; Undo Piijip '•Viridcw-

i. Select In Browser' •

|! Print Diagram

i1 £lass Wizard...

1 Add T o Version Control

; Check In

:| Check Out

I SED->SCD

|i Fojmat

¡' Edit •

Figure 4: The MAS can be started from the menu

562 Johannes Koskinen, Erkki Màkinen, and Tarja Sys ta.

5 Future Work

Currently, we have integrated MAS with two different CASE tools. It would be use-
ful to separate a CASE tool and the synthesizer with a tool-independent platform,
so that we would need only one implementation of MAS for all the CASE tools
supported by the platform. Such a platform (xUMLi, executable UML interface)
has been introduced in [1]. When integrating MAS with xUMLi some problems
might appear because of the interactive nature of MAS.

The main problems with MAS are in the user interface. We should equip the
user with more efficient methods to transfer her knowledge to the algorithm, and the
algorithm should have better ways to support the user in making various decisions.
In addition to the topics discussed in the previous sections, at least the following
things call for our attention.

We introduced uncertain answers, which allow the user to change her mind later. .
After giving an inaccurate answer the user might be interested in what part of the
current membership query the uncertain portion is (i.e. if the user has given an
uncertain answer to query A and/or query B, the dialog should show the uncertain
part in query ABC). This could be indicated by using appropiate colors in the
queries. In addition, the conjecture generated by MAS could distinguish uncertain
and certain paths same way as in the situations mentioned above.

When synthesizing complex systems (e.g., a dialog with buttons and other con-
trol elements), it would be helpful, if all components were synthesized at the same
time. The resulting conjecture would have multiple statecharts with hyperlinks be-
tween different synthesized components allowing the user to switch between generic
(the statechart from the dialog) and more specific (the statechart from the button)
view. Some kind of 3D-model could also be used to visualize the conjecture.

In real world applications, giving only definite answers to the membership ques-
tions could sometimes be too limiting. Since MAS allows us to use exact data only,
we need to convert the user's indefinite answers to definite ones for the MAS algo-
rithm to be able to use them. This conversion can be done completely transparently,
but the user interface (especially a membership query dialog) needs to be modified
to support multiple paths. The result of the synthesis would be a single nonde-
terministic statechart or multiple separate deterministic statecharts (depending on
user's needs).

Currently, we have only limited experiences in using MAS. In fact, it has not
been applied in any large real world application. For correctly directing the future
development of MAS such experiences are essential. Therefore, case studies and
gathering experiences form an important part of our future work.

Acknowledgements. The authors wish to thank Prof. Kai Koskimies for
numerous useful discussions. This work was supported by TEKES, Nokia, Metso
Automation, Plenware, Sensor Software Consulting, Ebsolr.t, and the Academy of
Finland (Project 35025).

Implemeting a Component-Based Tool for Interactive Synthesis of UML ... 563

References
[1] Airaksinen J., Koskimies K., Koskinen J., Peltonen J., Selonen P., Siikarla

M., Systa T.: xUMLi: Towards a tool-independent UML processing platform.
The Nordic Workshop on Programming and Software Development Tools and
Techniques (NWPER), 2002, to appear.

[2] Angluin, D.: Learning regular sets from queries and counterexamples. Inf.
Comput. 75 (1987), 87-106.

[3] Balcazar, J.L., Diaz, J., Gavalda, R., Watanabe, 0. : Algorithms for learning
finite automata from queries: a unified view. In D.-Z. Du, K.-I. Ko (eds.),
Advances in Algorithms, Languages, and Complexity, Kluwer Academic Pub-
lishers, 1997, pp. 73-91.

[4] Birkendorf, A., Boker, A., Simon, H.U.: Learning deterministic finite automata
from smallest counterexamples. In Proc. 9th ACM/SIAM Symp. Discr. Alg.
(SODA), January 1999, pp. 599-608.

[5] Chung, P., Huang, Y., Yajnik, S.: DCOM and CORBA Side by Side, Step
by Step, and Layer by Layer, [www-csag.ucsd.edu/individual/achien/cs491-
f97/papers/dcom_corba.html]

[6] Driscoll, J.R., Sarnak, N., Sleator, D.D., Tarjan, R.E.: Making data structures
persistent. J. Comput. Syst. Sci. 38 (1989), 86-124.

[7] Harel, D., Kugler, H.: Synthesizing state-based object systems from LSC speci-
fications. International Journal of Foundations of Computer Science 13 (2002),
5-51. ' .

[8] Koskimies, K., Mannisto, T., Systa, T., Tuomi, J.: Automated support for
modeling OO software. IEEE Softw. 15 (1998), 87-94.

[9] Koskinen, J.: Implementing MAS on Windows NT (In Finnish). M.Sc. Thesis,
Software Systems Laboratory, Tampere University of Technology, 2000.

[10] Koskinen, J., Makinen, E., Systa, T.: Minimally adequate synthesizer tolerates
inaccurate information during behavioral modeling. In Proc. of SCASE'01,
February 2001.

[11] Koskinen, J., Peltonen, J., Selonen, P., Systa, T., Koskimies, K.: Towards tool
assisted UML development environments. In SPLST'01, Szeged, June 2001.

[12] Kriiger, I., Grosu, R., Scholz, P., Broy, M.: From MSCs to statecharts. In F.J.
Ramming (ed.), Distributed and Parallel Embedded Systems, Kluwer Academic
Publishers, 1999, pp. 61-71.

564 Johannes Koskinen, Erkki Màkinen, and Tarja Sys ta.

[13] Leue, S., Mehrmann, L., Rezai, M.: Synthesizing software architecture descrip-
tions from message sequence chart specification. In Proc. of the 13th IEEE In-
ternational Conference on Automated Software Engineering (ASE98), October
1998, pp. 192-195.

[14] Mäkinen, E., Systä, T.: MAS - an interactive synthesizer to support behavioral
modeling in UML. In Proc. of the 23rd International Conference on Software
Engineering (ICSE 2001), Toronto, Canada, 2001, pp. 15-24.

[15] Mäkinen, E., Systä, T.: Minimally adequate teacher synthesizes Statechart
diagrams. Acta Inform. 38 (2002), 235-259.

[16] Mehlhorn, K.: Data Structures and Algorithms 1: Sorting and Searching.
Springer, 1984.

[17] Microsoft Corporation: COM (Component Object Model). [http://msdn.micro-
soft. com/library/psdk/com/comportal-3qn9.htm], 2000.

[18] Microsoft Corporation: Automation Start Page. [http://msdn.micro-
soft.com/library/psdk/automat/autoportal-7145.htm], 2000.

[19] Microsoft Corporation: COM Clients and Servers. [http://msdn.micro-
soft. com/ library/psdk/com/comext _8p2r.htm], 2000.

[20] Microsoft Corporation: Interfaces and Pointers, [http://msdn.microsoft.com/
library/psdk/com/com.37w3.htm], 2000.

[21] OMG Corporation: OMG XML Metadata Interchange (XMI) Specification.
[http://www.omg.org], 2000.

[22] The Object Management Group. The Common Object Request Bro-
ker: Architecture and Specification, Revision 2.3.1. [http://www.omg.org/
technology/documents/formal/corba-2.htm], October 1999.

[23] Rational Software Corporation. OMG Unified Modeling Language Specification
v.1.3. [http://www.rational.com], 2000.

[24] Rivest, R.L., Schapire, R.E.: Inference of finite automata using homing se-
quences. Inf. Comput. 103, (1993), 299-347.

[25] Schönberger, S., Keller, R., Khriss, I.: Algorithmic support for transformations
in object-oriented software development. To appear in Theory and Practice of
Object Systems (TAPOS).

[26] Selonen P., Koskimies K., Sakkinen M.: How to make apples from oranges in
UML. In Proc. of HICSS-34, 2001.

[27] Whittle, J., Schumann, J.: Generating statechart designs from scenarios. In
Proc. of the 22nd International Conference on Software Engineering (ICSE
2000), Limerick, Ireland, 2000, pp. 314-323.

http://msdn.microsoft.com/
http://www.omg.org
http://www.omg.org/
http://www.rational.com

Implemeting a Component-Based Tool for Interactive Synthesis of UML ... 565

[28] Wikman, J.: Evolution of a distributed repository-based architecture. In Proc.
of the First Nordic Workshop on Software Architecture, Research Report
14/98, Dept. of Computer Science and Business Administration, University of
Karlskrona/Ronneby, Sweden, 1998. [http://www.hk-r.se/fou/forskinfo.nsf/]

http://www.hk-r.se/fou/forskinfo.nsf/

