
Acta Cybernetica 15 (2002) 601-620.

Resource-Conscious AI Planning with Conjunctions
and Disjunctions*

Peep Klingas*

Abstract

The aim of this work is to develop a resource-conscious Artificial Intel-
ligence (AI) planning system, which allows for nondeterminism in the envi-
ronment. Such planner has a potential in applications where actions in "real
world" are considered.

The planning process is based on proof search for a fragment of Lin-
ear Logic (LL) [10] sequents using a subset of LL rules. As LL is resource-
conscious and has additive disjunction connective (represents nondetermin-
ism), LL sequents Eire used to describe an application domain, whereby every
LL sequent represents pre- and postconditions of a particular action execu-
tion.

We present an idea to use Petri net reachability tree analysis for find-
ing proofs for propositional LL sequents. Game playing is used to solve LL
additive disjunctions. Prom LL proofs plans axe extracted which because of
underlying LL properties keep track of resources and handle both determin-
istic and nondeterministic actions.

Keywords: Linear Logic Theorem Proving, AI Planning, Petri Nets, Game Play-
ing.

1 Introduction
In mission critical situations the response of a system must be reactive. For a sys-
tem relying on a symbolic representation it means that a backup plan, describing
alternative actions to be carried out if the main plan is not applicable anymore,
should be available immediately. Therefore nondeterminism in results of actions
should be taken into account already in the planning phase and action representa-
tion must thus support describing nondeterministic actions.

The aim of this work is to develop a resource-conscious AI planning system,
which is able to manage nondeterminism in an environment. Such planner has a
potential in applications where actions in the "real world" are considered.

'This work was partially supported by the Estonian Science Foundation under grant no. 4155.
t Software Department, Institute of Cybernetics at Tallinn Technical University, Akadeemia tee

21, 12618 Tallinn, Estonia, e-mail: peep8cs . ioc .ee .

601

602 Peep Klingas

There exists a framework called Linear Logic [10] (LL) which allows handling
uncertainties while being also resource-conscious.

As LL is resource-conscious, we are using LL formulae to describe application
domain and LL theorem proving to construct a plan achieving a goal. We propose a
subset of LL connectives and operators sufficient for describing both deterministic
and nondeterministic actions in a resource-sensitive world.

For proving propositional LL sequents, we present a new approach by composing
Petri net reachability tree analysis and game playing. Plans are then extracted from
these proofs. Some extensions and improvements to our algorithm are described
in [19], where also the algorithm is compared to other systems and algorithms in
the AI planning field.

2 Linear Logic
LL is a refinement of classical logic introduced by J.-Y. Girard to provide a means
for keeping track of "resources"—two assumptions of propositional constant A are
distinguished from a single assumption of A. Although LL is not the first attempt
to develop resource-oriented logics (well-known examples are relevance logic and
Lambek calculus), it is by now the most investigated one.

Since its introduction LL has enjoyed increasing attention both from proof the-
orists and computer scientists. Therefore, because of its maturity, LL is useful as
formal representation of planning system kernel. Good tutorials to LL are [32]
and [21]. One of the first overviews of LL applications is presented in [1]. There
exist several efficient formal method tools for proving LL sequents [31].

From the complete set of LL connectives and operators we are using multi-
plicative conjunction (®), additive disjunction (ffi) and "of-course" (!). Whilst the
connectives 0 and © are needed to describe pre- and postconditions of actions, the
operator ! gives us control over resources.

In terms of resource acquisition the logical expression A®B b C®D means that
the resources C and D are obtainable only if both A and B. are obtainable. Thus
the connective ® defines deterministic relations between resources and actions.

The expression A I- B © C on the contrary means that if we have a resource
A] we can obtain either a B ov a C, but we do not know which one of those. It is
definitely clear that © is suitable to represent nondeterminism in results of actions.

The operator ! means that we can use or generate particular resource as much
as wé want—the resource is somehow unlimited for us.

To illustrate the above let us consider the following LL formula, adapted to
our set of LL connectives and operators, from [21]—(D g> D <S) D D <g> D) h
(H ® C®\F ® (P ffi /)), which encodes a fixed price menu in a fastfood restaurant:
for 5 dollars (D) you can get an hamburger (H), a coke (C), all the french fries (F)
you can eat plus a pie (P) or an ice cream (I) depending on availability.

To increase the expressiveness of formulae, we are using the a" = a<8) — • ® Q,
n

for n > 0, with the degenerate case o° = 1.

Resource-Conscious AI Planning with Conjunctions and Disjunctions 603

Since we do not use all LL connectives and operators for planning, only a subset
of LL rules listed below is needed for proof search.

Logical axiom and Cut rule:

r h 4̂, A r ' , I - A' .
H—— (Cut)

A\-A (Axiom) r , T h A, A

Rules for the propositional constants:

Th A
h i r . I H A

r , A b A r , B I - A , r . r I- A, A T h - B . A - WIX

r.AeBhA (L e) F h W »

r,A®BhA K r,T \-A®B,A,A

Rules for the exponential !:

VY > r I A U A ^ > IP 1-1 A ? A P M L A ' . ' ^ V r , ! 4 h A r ' r , L 4 K A ' !r,h!A, ?A v 7 r , W l - A '

3 Planning and LL
One merit of LL deductive planning is said [11] to consist in its ability to solve the
technical frame problem [24] without the need to state frame axioms explicitly and
is therefore especially good for representing causal relations between actions and
resources.

The multiplicative conjunction connective (<g>) and additive disjunction (©) have
been used in [23], where a demonstration of robot planning system has been given.
The usage of ? and !, whose importance to AI planning is emphasised [4], is discussed
there, but not demonstrated.

Influenced by [23], LL theorem proving has been used by Jacopin [14] as an
AI planning kernel. As only the multiplicative conjunction ® is used in formulae
there, the problem representation is equivalent to presentation in STRIPS [9]-like
planners—the left side of a LL sequent represents STRIPS delete-list and the right
side accordingly acid-list. Multiplicative conjunctions just separate propositions.

Unfortunately, the algorithm Jacopin proposes for proof search is very inefficient
and belongs to the class of brute force methods.

In [6] a formalism has been given for deductively generating recursive plans in
Linear Logic. This advancement is a step further to more general plans, which are
capable of solving instead of a single problem a class of problems.

604 Peep Klingas

To illustrate the usefulness of LL in resource-aware planning we give proofs for
the two following tasks. After that, according to the LL rules and axioms used,
plans from the proofs are extracted. Application domains are represented as sets
of extralogical axioms.

It should be mentioned that as the LL planning idea consists finding a proof
for a certain LL sequent, the goal for the planner is specified with a LL sequent:
initial conditions t- final conditions. In order to implement plan reuse, every
proved sequent (theorem) can be added to the set of extralogical axioms and other
previously proved sequents, describing a particular application domain. Thus the
next time it can be used to prove other sequents.

The'LL sequents we are going to use for describing application domains and
goals are given in form D b D whereas D ::— K \ K © D, K ::= 1 | A \ K ® A and
A is an atomic formula.

The first task for a robot is to mine a ton of gold and the second is to fill a box
with balls.

3.1 Gold-mining problem
Let us assume that in some particular case the application domain consists of three
actions: Excavate, Refine and Convert. We have also two predicates—KG and T
for inspecting whether we have a kilogram or a ton of gold respectively. At last
two. constants—Sand and Gold—axe used to indicate the resources we are mining.

The STRIPS-like add- and cie/eie-effects for the just mentioned actions are
specified with LL sequents as follows:
Excavate: b KG(Sand)
Refine: IKG(Sand) b KG (Gold)
Convert: KG(Gold)1000 b T(Gold)

It should be reminded that the delete-eftect of an action is defined before the b
symbol and acid-effect after that symbol.

The proof for the sequent b T(Gold) follows here1:

b KG(Sand)
HKG(Sand) (' \KG(Sand) b KG(Gold)

b KG (Gold) " ~~ (Ut> : i— ggg x (R6t))
b KG(Gold)1000 KG(Gold)1000 b T(Gold) ,

tnGM)

The plan V = {1000* {n * Excavate,Refine}, Convert} extracted from the
previous proof could be stated in the natural language as: excavate sand by one
kilogram and extract gold from it until you have a kilogram of gold. Repeat in such
a way thousand times.

'Literally speaking—how to get a ton of gold from nothing.

Resource-Conscious AI Planning with Conjunctions and Disjunctions 605

3.2 Box filling problem
In the second example task a robot has to fill a box with balls. The robot can move
around and pick up balls it encounters on its way. Every ball is then stored in a
box. The box is said to be full if it holds seven balls. The robot starts moving with
empty hands (propositional constant EMPTY). The goal in LL sequent'form is
EMPTY h EMPTY ® FULL.

The expression system consists of five propositions. The specification of actions
available for the second task is listed here:

Take: EMPTY ® NEAR h HOLD
Store: HOLD h EMPTY ® IN
Move: h NEAR
Fill: IN7 b FULL

First we prove that the sequent EMPTY h EMPTY ® IN is derivable:

EMPTY h EMPTY ^ NEAR
EMPTY h EMPTY ® NEAR (R ®) EMPTY ® NEAR h

EMPTY h HOLD
(Cut)

HOLD 1- EMPTY ® IN

EMPTY h EMPTY ® IN
(Cut)

The plan extracted from the proof is V\ = {Move, Take, Store}. The preced-
ing proof was used to construct a plan for finding and storing a ball. The following
generates a plan to fill a box with balls found:

EMPTY I- EMPTY IN h IN

EMPTY h EMPTY (

EMPTY I-
EMPTY ® IN

EMPTY, IN I- EMPTY ®

EMPTY ® IN I- EMPTY (

R ®

EMPTY h EMPTY ® IN'

(t®)
(Cut)

EMPTY h EMPTY
IN7 I- FULL

EMPTY, IN' I-
EMPTY ®"FULL

EMPTY (
EMPTY <

EMPTY I- EMPTY ® FULL

(R®)

(L 0)

(C u t)

The plan V2 = {7 * P i ,Fi l l } presents another plan, which uses a previously
canned plan V\. In this way a modular plan representation is achieved and plan
reuse is implemented.

In plans using deterministic actions it is always clear which actions must be
executed to achieve a goal. The situation is more complex, if we include nondeter-
ministic actions to an application domain specification. In that case the plan must
cover all cases possibly occurring because of nondeterministic actions. A plan is
valid if execution of every action in its sequence leads to a goal.

Although LL has been demonstrated to be useful for AI planning [23, 14, 11,
4, 6], there has been little discussion about which algorithms to use for proving LL
sequents.

606 Peep Klingas

It is intuitively clear that for a smaller set of logic connectives, operators and
rules simpler proving techniques are applicable. Thus it makes sense to look for
new proving methods.

4 Petri nets and LL
It has been shown [7, 3] that Petri nets can be presented in the form of LL sequents.
Thus at least a part of a set of LL sequents can be translated into Petri nets. One
of the first surveys on Petri nets is [28], where an overview of basic concepts and
extensions and subclasses of Petri nets may be found.

4.1 Petri nets
A Petri net is a formal tool which is particularly well suited for representing true
parallelism, concurrency and causal relations in discrete event dynamic systems.
In this section we define the concept of Petri net and give the main notation and
definitions to be used in the sequel.

A Petri net is a 5-tuple N = (P , T , Pre, Post, Mo), where P = {pi,p2, • • • ,Pn}
is a finite set of places, T — {¿i, ¿2> • • • ,tm} is a finite set of transitions, Pre :
P x T J V is the input incidence function, Post : T x P J\f is the output
incidence function and Mo : P —> N is the initial marking.' A Petri net with a
given initial marking is denoted by (N, M0).

In the graphical representation, circles denote places and vertical bars denote
transitions, tokens are represented as dots inside places. The Pre incidence function
describes the oriented arcs connecting places to transitions. It represents for each
transition t the fragment of the state in which the system has to be before the
state change corresponding to i occurs. Pre(p,t) is the weight of the arc (p,t),
Pre(p, t) = 0 denotes that the place p is not connected to transition t.

The Post incidence function describes arcs from transitions to places. Analo-
gously to Pre, Post(t,p) is the weight of the arc (t,p).

The vectors Pre(.,t) and Post(t,.) denote all input and output arcs respectively
of transition t with their weights.

The Petri net dynamics is given by firing enabled transitions, whose occurrence
corresponds to a state change of the system modeled by the net. A transition t is
enabled for a marking M, if M > Pre(.,t). This enabling condition is equivalent
to Vp 6 P, M(p) > Pre(p, t). Only enabled transitions can be fired.

If M is a marking of N enabling a transition t, and M' is the marking derived
by the firing of a transition t from M, then M' = (M - Pre(., t)) + Post(t,.). The
firing is denoted as M A M' .

In a Petri net N it is said that a marking Mg is reachable from a marking M iff
there exists a sequence of transitions s such that M A MgWe call the reachability
problem for Petri nets the problem of finding a firing sequence s to reach a given
marking Mg from Mo-

Resource-Conscious AI Planning with Conjunctions and Disjunctions 607

Figure 1: The Petri net representation of LL sequent A ® B b C.

The coverability problem (sometimes also called the submarking reachability
problem), given a marking Mg, is defined as the problem of finding a firing sequence
s to reach a marking Ms from Mo such that Mg C Ms.

4.2 Mapping LL sequents to Petri nets
LL sequents involving only <g>, like A®B b C®D, can be presented directly in form
of Petri nets. Then the set of places P of a Petri net N is augmented with places A,
B, C and D. The set of transitions T is augmented with a new transition U. Pre
and Post are augmented respectively with Pre(A,ti), Pre(B,ti) and Post(U,C)
plus Post(ti, D).

Using LL rule Lffi the sequent A ffi B b C is splitted into sequents A b C and
B C. Constructions like \A may be used only in the left hand side of an sequent,
which has to be proved (a goal sequent).

The semantics of the connective ffi on the right hand side of a sequent should
be implemented explicitly using other techniques. The Petri net representation of
a LL sequents containing multiplicative conjunctions is demonstrated in Figure 1.

It must be noted that the left hand side of a goal sequent forms the initial state
Mo (marking) of a Petri net and the right hand side forms the final Petri net state
Mg (goal in AI planning terminology) which must be achieved as a result of proof
search. Thus a proof is found if there exists a way to fire Petri net transitions so
that from the initial state the final state is reached.

4.3 Rewriting "of-course" in formulae
To fit into the Petri net framework, formulae containing the "of-course" operator
must be rewritten. The following rules should be kept in mind, when doing that:

1. there may be no ! in extralogical axioms

2. there may be no ! in the right hand side of a sequent for which a proof has
to be generated

3. for every \X in the left hand side of that sequent generate a new extralogical
axiom b X and remove \X from left hand side of the initial sequent

4. if there are several instances of \X, then only one axiom b X is generated
and all instances are removed from the left side of the sequent

608 Peep Klingas

For instance the LL sequent IA <g> C 1- B to be proved is translated to sequents
h A and C h B, whereas h A is a new extralogical axiom and C h B the new
sequent to be proved.

5 Solving LL multiplicative conjunctions with
Petri nets

Petri nets have been used in AI planning for example in [26, 5, 30, 25] thanks to
their clear and well-defined semantics, as well the formal analysis techniques and
tools available.

There exist several other works considering AI planning with graphs—quite
similar by ideology to Petri nets. For example in [12] colouring of bipartite graphs
is used in goal search.

Another AI planner using graph as a planning structure is Graphplan [2], where
the application domain, initial conditions and goals are presented as nodes and
arcs between nodes. Graphplan uses breadth-first search for finding a solution for
achieving a goal. A plan in Graphplan is represented in partial order.

Kanovich [16, 17] proved that the derivability problem of the LL subset consist-
ing only of tensor (g>, modal storage operator !, and linear implication —° is directly
equivalent to Petri net reachability problem and thus is decidable.

While using Petri net reachability tree analysis for theorem proving, many ir-
relevant choices in proof search are eliminated, making proof search tractable by:

• avoiding useless loops, which are generated for instance by applications of the
Cut rule .

• reducing the set of permutations of inference as applications of some inference
rules like L® and R® are ignored

Useless loops in a proof are characterised by the following situation, where one
sequent a inside a proof is identical to the root of the proof:

a

a

Hence, the sub-proof starting from that internal sequent could replace the overall
proof. '

5.1 Petri net reachability tree analysis
For analysing properties of Petri nets, the basic technique used involves finding a
finite representation for the reachability set of a Petri net. The representation used
is known as the reachability tree, which consists of a tree whose nodes represent

Resource-Conscious AI Planning with Conjunctions and Disjunctions 609

markings (states) of a Petri net and whose arcs represent the possible changes in
Petri net state resulting the firing of transitions.

Thus a reachability tree represents all Petri net states reachable from an initial
Petri net state using all of its transitions.

However, the reachability set of a marked Petri net is often infinite. Thus to
form a finite representation of an infinite set we must map many markings into the
same node of the tree. This mapping is accomplished by collapsing a set of states
into a state by ignoring the number of tokens in a place of the net when this number
becomes "too large". This is represented by using special symbol w. The symbol
U represents a value which can be arbitrarily large (infinite), whereby UJ + a = UJ,
LJ — a = UJ and a < UJ, where a is an arbitrary positive integer.

Each node in the reachability tree is labelled with a marking, arcs are labelled
with transitions. The initial (root) node is labelled with the initial marking. Given
a node x in the tree, additional nodes are added to the tree for all markings that
are directly reachable from the marking of the node x. For each transition tj which
is enabled in the marking for node x, a new node with marking2 6(x, t j) is created
and an arc labelled tj is directed from the node x to this new node. This process
is repeated for all new nodes.

Continuing this process will obviously create the entire reachable state space.
A path from the initial marking to a node in the tree corresponds to an execution
sequence. Since the state space may be infinite, two special steps [18] are taken to
define a finite reachability tree.

First, if a new marking is generated, which is equal to an existing marking on
the path from the root node to the new marking, the new (duplicate) marking
becomes a terminal node. Since the new marking is equal to the previous marking,
all markings reachable from it have already been added to the reachability tree by
the earlier identical marking. Detecting a new duplicate marking is used later in
this article also under the term cycle detection.

Second, if any new marking x is generated, which is greater than a marking y on
the path from the root node to the marking x, then these components of marking x,
which are greater than the corresponding components of marking y are replaced by
the symbol UJ (this action is further called collapsing). Since marking x is greater
than marking y, any sequence of transition firings which is possible from marking
y, is also possible from marking x. In particular, the sequence that transformed
marking y into marking x can be repeated indefinitely, each time increasing the
number of tokens in those places, which have a UJ. Thus the number of tokens in
these places can be made arbitrarily large. A sequence of labels of arcs from the
node y to the node x, would be referred later with term subplan.

As an example of this construction, consider the marked Petri net in Figure 4.
T h e P e t r i n e t c o n s i s t s of 6 p l a c e s — (E M P T Y , NEAR, HOLD, I N , MOVE JDK,
FULL) and 4 transitions—(Take, Store, Move, Fill). Initially we assume that
places EMPTY and MOVE JDK both hold one token.

2 <5 is a transition function from one Petri net state to another.

610 Peep Klingas

Thus, the initial state of that Petri net is coded as {1,0,0,0,1,0}, where the
number at the first position is the number of tokens at place EMPTY, the second
position corresponds to the number of tokens at place NEAR, the third at HOLD,
the fourth at IN, the fifth at MOVE-OK and the sixth at FULL.

We begin with {1,0,0,0,1,0} as the root node of the tree. In this marking we
have only one enabled transition—Move. Thus we have a new node corresponding
to firing Move, {1,1,0,0,0,0} and an arc from {1,0,0,0,1,0} to {1,1,0,0,0,0}.
From this marking we can fire Take and from that newly created node then Store
resulting in {1,0,0,1,1,0}. Now, since {1,0,0,1,1,0} > {1,0,0,0,1,0}, we re-
place the forth component by ui. This reflects the fact that we can fire sequence
{Move, Take, Store} arbitrary number of times and make the number of tokens
in the place IN as large as desired.

From the marking. {1,0,0, w, 1,0} we can fire transitions Fill and Move. After
firing Fill again collapsing takes place because {1,0,0,w, 1,0} < {1,0,0, w, 1,1}.
It can be seen that after firing sequentially Move, Take and Store from marking
{1,0,0,a;, 1,0} we reach again marking {1,0,0,u>, 1,0}, which is a duplicate and
therefore is set to terminal node. The partial Petri net reachability tree is as shown
in Figure 5.

Although the Karp-Miller algorithm is useful for the analysis of Petri net reach-
ability tree, due to the loss of information caused by w, it cannot detect all possible
firing sequences needed. A workaround for that problem and several interesting
examples about Karp-Miller algorithm may be found at [33].

5.2 Representation of application domain, valid plans and
goals

An application domain specified with LL sequents is translated to a Petri net using
previously defined transformations. For disjunctions special nodes are added, where
splitting to different Petri net places is done.

A valid plan and a subplan is represented by a sequence of the Petri net tran-
sitions to be fired for achieving a goal. Every transition may refer to a subplan,
which has to be applied after that transition zero or more times. The number of
repetitions is computed while checking the correctness of the plan. Note that sub-
plan in our case is not a plan for achieving subgoals—it is just a reusable sequence
of transitions.

Every transition in the plan and subplan is enriched with its precondition, which
is presented by a Petri net state where that transition was fired. None of transi-
tions in subplan can refer to another subplan. Every subplan is enriched with its
precondition. Goal is presented by a Petri net state.

5.3 The PNSolver algorithm
The depth-first algorithm for using Petri net reachability tree analysis for generating
plans, where only deterministic actions are considered, is presented in Figure 2.

Resource-Conscious AI Planning with Conjunctions and Disjunctions 611

Naturally other search methods can be easily adapted to that algorithm.
Initially the list of passed states consists of just the initial Petri net state. Initial

plan plan is empty, goal is the state which must be achieved while firing transitions
("executing" actions).

The main idea of the algorithm is to test all transitions in the set T whether
they are fireable from a certain Petri net state or not. If a transition is fireable,
a new state is computed and it is checked whether the state already exists in the

Algorithm PNSolver (init, proof, H, goal)
inputs: init //initial state of a Petri net

proof //an initial proof

H //a set of states visited during the proof search so far

goal //a final state of a Petri net

output: P //a set of valid proofs

begin

for V t 6 T
state init
if fireable(t, state) then

state fire(t, state)
if state 6 H then //that state has been visited

continue //do not proceed (Karp-Miller)

end if

proof .push(t)
state <— collapse(st'ate, H) //collapse state space (Karp-Miller)

H .push(state)
if state = goal then //a proof is found

announce(proof) ' .
proof ,pop()
H.popQ
continue

end if

proof .pop()
H.pop ()

end if

end for

for V p G announcedProofsQ
p <— CheckCorrectness(init, p, goal)
P <- P U p

end for

return P
end PNSolver '

Figure 2: A pseudocode for finding sequences of transitions from the initial state
of a Petri net to the final state.

612 Peep Klingas

sequence of visited states H . If the state happens to exist in H , a cycle is detected
and search from that Petri net reachability tree node is terminated. As the cycle
was detected, it is clear tha t if the goal state was not found in previous round of
tha t cycle, it would not be found on the next round either.

Else, if the state was not discovered in H, state is added to H, plan is augmented
with a transition, and Petri net possibly infinite s tate space is collapsed, if possible.
Collapsing generates a subplan, which is added to a list of subplans and a reference
from the last transition in the plan to tha t subplan is inserted. Also information
about how many resources that subplan generated, consumed and its precondition
is remembered. For more information about Petri net reachability tree analysis
see [28].

The usage of subplans reduces dramatically the time needed to construct a plan
if used wisely [29]. In our case subplans are generated as a side-effect using Petri
net state space collapsing.

If the achieved state is equivalent to goal, search is terminated at that particular
reachability tree node, plan is added to a list of plans P, and the inspection of next
transitions begins.

In the case goal is not achieved after firing particular transition, search from the
new state is recursively proceeded until whole available search space is explored.
The possibly infinite search-space is reduced by cycle detection and collapsing.

Checking the correctness of a plan (see algorithm in Figure 3) in the end of
algorithm is started to solve ambiguities generated through collapsing. Correctness
checking computes how many times certain subplans must be executed sequentially
to achieve needed amount of resources. During the correctness checking it may tu rn
out tha t some goals are not valid at all and the exact number of some resources
cannot be achieved. It may turn out for example that only even number of units
of a resource may be generated instead of needed odd number defined by the goal.

Correctness checking starts from the goal state and moves towards the initial
state, while undoing effects of fired transitions. If a transition referring to a subplan
is detected, the number of subplan execution cycles is computed according to needed
resources. If finally Petri net state init is achieved, the plan is considered to be
valid and is returned.

To illustrate this algorithm, let us take a look again at the box filling problem
(see Sect. 3.2) we solved previously and modify3 the application domain specifica-
tion to be more "real":

T a k e : EMPTY ® NEAR b HOLD
S t o r e : HOLD b EMPTY ®IN® MOVE.OK
M o v e : MOVE.OK b NEAR
Fill: IN7 b FULL

The Petri net representing the same specification consists of 6 places (EMPTY,
NEAR, HOLD, IN, MOVE.OK, FULL) and 4 t r ans i t ions (T a k e , S t o r e , M o v e ,
Fill). Initially we assume that places EMPTY and MOVE.OK both have one

3In the previous version of the specification a robot was able to run from one place to another
and then pick up balls it encountered from one final place.

Resource-Conscious AI Planning with Conjunctions and Disjunctions 613

Algorithm CheckCorrectness(init, proof, goal)

inputs: init //initial state of a Petri net

proof //an initial proof

goal

output: p //a complete proof

begin

state goal
for Vi € p

if referenceToSubsolution(t) then

t addSubsolutionRepetitions(t, state, init)
state undo Sub solution(t, state)

else

state undo(t, state)
end if

end for

if state = init then

return p
else

return nil
end CheckCorrectness

Figure 3: A pseudocode for checking the validity of a proof.

token and the goal would be to get one token to each of EMPTY, MOVE.OK
and FULL. In LL terms it means finding a proof for a sequent MOVE-OK ®
EMPTY b FULL ® MOVE.OK <g> EMPTY. See also Figure 4 for graphical
representation of that Petri net and its initial state.

Figure 4: The Petri net with an initial marking for the box filling example.

Move

614 Peep Klingas

So, the initial state of that Petri net is coded as {1,0,0,0,1,0}, where the
number at the first position is number of tokens at place EMPTY, the second
position corresponds to the number of tokens at place NEAR, the third at HOLD,
the fourth at IN, the fifth at MOVE.OK and the sixth at FULL. The goal state
is accordingly {1,0,0,0,1,1}. Petri net reachability tree for our application domain
and goal specification is in Figure 5.

Figure 5: A fragment of reachability tree of Petri net in Figure 4. Arcs without
ending node show that the tree follows.

Petri net transitions can be presented with STRIPS-like add- and deZeie-lists,
see Table 1. The precondition in STRIPS sense for every transition is that there is
enough of tokens to fire particular transition.

Transition deZeie-list odd-list
Move 000010 010000
Take 110000 001000
Store 001000 100110
Fill 000700 000001

Table 1: Petri net transitions as add- and deZefe-lists.

It can be seen from the reachability tree that after firing transitions Move,
Take and Store, we reach a state where compared to the initial state the number
of tokens at place IN has increased: {1,0,0,1,1,0} > {1,0,0,0,1,0}. Therefore
this component is replaced by u , meaning that using that sequence again we can
generate infinite number of resources IN—this is called Petri net state space col-
lapsing. After collapsing we apply Fill and reach the state which is a possible goal
state and resulting plan is V = {n* {Move,Take, S tore} ,m * Fill}.

It is evident that through Petri net state-space collapsing we reduce the search
space, but we lose information about how many times a subplan must be executed.
Therefore we have to start with correctness checking to compute the number of
times we have to execute generated subplans. In that particular case the final plan
is V = {7 * {Move, Take, Store}, 1 * Fill}.

Resource-Conscious AI Planning with Conjunctions and Disjunctions 615

Empirically estimating, a valid plan with our algorithm (even when using
breadth-first search) may be found with smaller number of steps than Graphplan
planner could, because in our case subplans are used and cycles are detected while
planning.

Unfortunately finding the shortest plan requires searching the whole available
search space—all valid plans are computed^ subplans are unfolded and then the
shortest plan is selected. It is due to the fact that we do not know how many times
a subplan must be executed—it may be 0 as well as 1000 times. As the previous
example illustrated, a plan with length 22 was found from the Petri net reachability
tree at depth 4. Thus there is no strong connection between a search depth and a
plan length if the Karp-Miller algorithm is used.

6 Using game playing for solving LL additive dis-
junctions

In respect to planning, having a LL sequent A I- B © C, we do not know which one
of the resources B or C would become the result of execution of particular action.
Therefore a way to handle sequents like A I- B © C within Petri nets we may
choose between stochastic Petri nets [27] and coloured Petri nets [15], sometimes
misleadingly called high-level nets. In such a way the model can be specified within
one net. The colour of tokens depends on which disjunct was selected as a result
of applying particular transition.

As stochastic Petri nets alter in some way the firing rule of Petri nets and make
it so the main part of net theory no longer applicable [27], they should be avoided
as long as possible.

Instead of using previously mentioned Petri net derivations we start game play-
ing on a Petri net reachability tree. The advantage of game playing on a tree is
pruning of search space by using AND nodes. Thus transition selection represents
OR and disjunct selection represents AND level of a game.

An advanced PNSolver algorithm, PNGameSolver, for solving disjunctions on
the right hand side of LL sequents is presented in Figure 6. The only difference with
algorithm in Figure 2 is that here reachability of the goal state from all disjuncts
is considered. If at least from one disjunct the goal is unachievable, search with
particular transition is terminated, backtracking is performed and search at other
OR node proceeds.

If the goal at least from one disjunct is not achievable, plans for other disjuncts
at the same AND node are discarded. In addition, it must be noted that at the
current moment the effect of subplans including nondeterministic actions is not
quite clear and therefore Petri net state space collapsing is not applied if at least one
action in resulting subplan would represent a nondeterministic action. Therefore
generating plans including disjunctions is quite exhaustive.

616 Peep Klingas

Algorithm PNGameSolver (init, proof, H, goal)
output: P //a set of valid proofs

begin

upper-cycle: for Vt 6 T //OR node

for Vdisj 6 i //AND node

if notAchievable(disj) then

continue upper.cycle

end if

end for

end for

return P
end PNGameSolver

Figure 6: A pseudocode for handling nondeterminism within Petri nets.

7 Computational complexity of the PNSolver and
the PNGameSolver algorithm

Lipton proved [22] an exponential space lower bound for Petri net reachability
problem, while the known algorithms require nonprimitive recursive space. As
PNSolver algorithm uses Petri net reachability tree analysis for finding solutions,
its minimal complexity is EXPSPACE-hard.

PNGameSolver uses additionally games in Petri net reachability tree analysis,
which makes its complexity comparable to reachability problem of nondeterministic
Petri nets, whose complexity is proved [16] to be undecidable.

However, tight complexity bounds of the reachability problem are known for
many Petri net classes [8]. For example, If we would limit expressive power of used
LL sequents so that sinkless or normal Petri nets may be used, we would achieve
NP-complete complexity [13] for reachability analysis.

As we are using Petri net reachability tree analysis on the fly, meaning that we
build Petri net and analyse it simultaneously, it is possible to bypass difficulties
arised from complexities of algoritms by using heuristics at search. If powerful
heuristics is used only a fragment of reachability tree would be generated before a
solution is found.

Another constraint, we may set, is to fix a bound on the number of tokens at
places—algorithms for bounded Petri nets are less expensive in complexity.

In [20] an abstraction technique for LL theorem proving is proposed which
in the best case reduces the exponential problem solving complexity of PNSolver
algorithm to linear. '

Resource-Conscious AI Planning with Conjunctions and Disjunctions 617

8 Conclusions
In this article we proposed a new way of resource-conscious AI planning using
propositional LL sequents as a knowledge representation form. These sequents are
translated into Petri nets and then a plan achieving a certain goal is computed.

A fusion of Petri net reachability tree analysis and game playing is used to
solve problems described with LL sequents. Whilst game playing allows handling
LL additive disjunctions, Petri net analysis handles LL multiplicative conjunctions
and preserves resource-consciousness.

By Petri net state space collapsing subplans are generated and thereby plan
generation time is reduced.

Experimental results with PNSolver algorithm are presented in [19], where a
comparison between depth-first and breadth-first search algorithms with and with-
out certain extensions is given.

Acknowledgements
I would like to express my gratitude to Tarmo Uustalu from Software Department,
Institute of Cybernetics at Tallinn Technical University for his assistance in LL.

Also I would like to thank Keijo Heljanko from Theoretical Computer Science
Laboratory, Helsinki University of Technology for introducing me to the computa-
tional complexity of Petri net problems and pointing to some weaknesses and faults
in my algorithms.

References
[1] V. Alexiev. Applications of Linear Logic to Computation: An Overview. Bul-

letin of the IGPL, Vol. 2, No. 1, March 1994.

[2] A. L. Blum, M. L. Furst. Fast Planning Through Planning Graph Analysis.
Artificial Intelligence, Vol. 90, pp. 281-300, 1997.

[3] C. T. Brown. Linear Logic and Petri Nets: Categories, Algebra and Proof. PhD
thesis, Department of Computer Science, University of Edinburgh, Scotland,
1991.

[4] S. Briining, S. Holldobler, J. Schneeberger, U. Sigmund, M. Thielscher. Dis-
junction in Resource-Oriented Deductive Planning. Technical Report AIDA-
93-03, Technische Hochschule Darmstadt, Germany, 1994.

[5] S. Caselli, F. Zanichelli. On assembly sequence planning using Petri nets. Pro-
ceedings of IEEE International Symposium on Assembly and Task Planning,
Pittsburgh, Pennsylvania, August 1995, pp. 239-244, 1995.

618 Peep Klingas

[6] S. Cresswell, A. Smaill, J. Richardson. Deductive Synthesis of Recursive Plans
in Linear Logic. In Proceedings of the Fifth European Conference on Planning,
pp. 252-264, 1999.

[7] U. Engberg, G. Winskel. Petri nets as models of Linear Logic. In: A.
Arnold (ed). Proceedings of Colloquium on Trees in Algebra and Program-
ming (CAAP'90), Copenhagen, Denmark, May 15-18, 1990, Lecture Notes in
Computer Science, Vol. 431, Springer-Verlag, pp. 147-161, 1990.

[8] J. Esparza, M. Nielsen. Decidability Issues for Petri Nets—a Survey. Journal
of Information Processing and Cybernetics, Vol. 30, No. 3, pp. 143-160, 1995.

[9] R. Fikes, N. Nilsson. STRIPS: A new approach to the application of theorem
proving to problem solving. Artificial Intelligence, Vol. 2, pp. 189-208, 1971.

[10] J.-Y. Girard. Linear Logic. Theoretical Computer Science, Vol. 50, pp. 1-102,
1987.

[11] G. Grosse, S. Hôlldobler, J. Schneeberger. Linear Deductive Planning. Journal
of Logic and Computation, Vol. 6, pp. 232-262, 1996.

[12] M. Harf, E. Tyugu. Algorithms of structured synthesis of programs. Program-
ming and Computer Software, Vol. 6, pp. 165-175, 1980.

[13] R. Howell, L. Rosier, H. Yen. Normal and Sinkless Petri Nets. Journal of
Computer and System Sciences, Vol. 46, pp. 1-26, 1993.

[14] E. Jacopin. Classical AI planning as theorem proving: The case of a frag-
ment of Linear Logic. In: AAAI Fall Symposium on Automated Deduction in
Nonstandard Logics, Palo Alto, California, AAAI Press, pp. 62-66, 1993.

[15] K. Jensen. Coloured Petri Nets. In: W. Brauer, W. Reisig, G. Rozenberg (eds).
Petri Nets: Central Models and Their Properties. Proceedings of Advances in
Petri Nets 1986, Part I, Bad Honnef, September 8-19, 1986, Lecture Notes in
Computer Science, Vol. 254, Springer-Verlag, pp. 248-299, 1987.

[16] M. I. Kanovich. Petri Nets, Horn Programs, Linear Logic, and Vector Games.
In: M. Hagiya, J. C. Mitchell (eds). Theoretical Aspects of Computer Software,
International Symposium TACS'94, Sendai, Japan, Lecture Notes in Computer
Science, Vol: 789, Springer-Verlag, pp. 642-666, 1994.

[17] M. I. Kanovich. The complexity of Horn fragments of Linear Logic. Annals of
Pure and Applied Logic, Vol. 69, No. 2-3, pp. 195-241, 1994.

[18] R. M. Karp, R. E. Miller. Parallel program schemata. Journal of Computer
and Systems Sciences, Vol. 3, No. 2, pp 147-195, May 1969.

[19] P. Kiingas. Linear Logic Programming for AI Planning. Master thesis, Tallinn
Technical University, Estonia, Research Report CS 103/02, Institute of Cyber-
netics at Tallinn Technical University, May 2002.

Resource-Conscious AI Planning with Conjunctions and Disjunctions 619

[20] P. Kiingas. Linear Logic Theorem Proving with Abstraction. To appear in
Proceedings of 14th European Summer School in Logic, Language and Infor-
mation, ESSLLF2002, Trento, Italy, 5-16 August, 2002.

[21] P. Lincoln. Linear Logic. ACM SIGACT Notices, Vol. 23, No. 2, pp. 29-37,
Spring 1992.

[22] R. J. Lipton. The Reachability Problem Requires Exponential Space. Depart-
ment of Computer Science, Research Report 62, Yale University, 1976.

[23] M. Masseron, C. Tollu, J. Vauzeilles. Generating plans in Linear Logic I—II.
Theoretical Computer Science, Vol. 113, pp, 349-375, 1993.

[24] J. McCarthy, P. J. Hayes. Some Philosophical Problems from the Standpoint
of Artificial Intelligence. In B. Meltzer, D. Michie, M. Swann (eds). Machine
Intelligence, Vol. 4, Edinburgh University Press, pp. 463-502, 1969.

[25] Y. Meiller, P. Fabiani. Planning with Petri nets. Proceedings of RJCIA'2000,
2000.

[26] K. E. Moore, A. Gungor, S. M. Gupta. Disassembly process planning using
Petri nets. Proceedings of IEEE International Symposium on Electronics and
the Environment, Oak Brook, IL, pp. 88-93, 1998.

[27] A. Pagnoni. Stochastic Nets and Performance Evaluation. In: W. Brauer,
W. Reisig, G. Rozenberg (eds). Petri Nets: Central Models and Their Proper-
ties. Proceedings of Advances in Petri Nets 1986, Part I, Bad Honnef, Septem-
ber 8-19, 1986. Lecture Notes in Computer Science, Vol. 254, Springer-Verlag,
pp. 460-478, 1987.

[28] J. L. Peterson. Petri nets. ACM Computing Surveys, Vol. 9, pp. 223-252,1977.

[29] D. Ruby, D. Kibler. Learning Subgoal Sequences for Planning. Proceedings of
IJCAI'89, Detroit, Michigan USA, 20-25 August 1989, Vol. 1, pp. 609-614,
1989.

[30] F. Silva, M. Castilho, L. A. Kiinzle. Petriplan: a new algorithm for plan gener-
ation (Preliminary report). In M. C. Monard, J. S. Sichman (eds). Advances in
Artificial Intelligence. Proceedings of International Joint Conference 7th Ibero-
American Conference on AI 15th Brazilian Symposium on AI, IBERAMIA-
SBIA 2000, Atibaia, SP, Brazil, November 19-22, 2000, Lecture Notes in Com-
puter Science, Vol. 1952, Springer-Verlag, 2000.

[31] T. Tammet. Proof Strategies in Linear Logic. Journal of Automated Reasoning,
Vol. 12, pp. 273-304, 1994.

[32] A. S. Troelstra. Tutorial on Linear Logic. In: P. Schroeder-Heister, K. Dosen
(eds). Substructural Logics, Oxford University Press, pp. 327-355, 1993.

620 Peep Klingas

[33] F.-Y. Wang. A Modified Reachability Tree for Petri Nets. Proceedings of 1991
IEEE International Conference on Systems, Man, and Cybernetics, Blackburg,
VA, pp. 329-334, 1991.

