
Acta Cybernetica 15 (2002) 601-620.

A Framework for Studying Substitution*

Hârmel Nestra*

Abstrac t
This paper describes a framework for handling bound variable renaming

and substitution mathematically rigorously with the aim at the same time to
stay as close as possible to human intuitive preconception about the phenom-
ena, so that proofs could be deduced from intuitive motivations more directly
than in the case of standard approaches.

The theory is developed for general multi-sorted term algebras with vari-
able binding. Therefore, the results hold for a wide class of term calculi such
as the A-calculus, first-order predicate logic, the abstract syntax of program-
ming languages etc.

1 Introduction
1.1 About the Matter
In the area of formal logic, one can detect some kind of discrepancy between human
intuition and the standard treatment of the underlying notions like substitution and
bound variable renaming. Namely, these concepts are defined inductively on the
structure of a term and therefore also the proofs of theorems concerning them re-
quire structural induction. But when we are thinking of substitution or variable
renaming intuitively, we imagine direct replacement of subterm occurrences at some
places instead. As a consequence, our primary intuitive reasoning of claims con-
cerning substitution and variable renaming turns often out to be useless when a
mathematically rigorous proof is needed.

In this paper, we introduce a method for overcoming the discrepancy described.
In our algebraic framework, substitution is defined via subterm replacement at
arbitrary positions not using induction explicitly. Therefore, the notions of subterm
occurrence positions and replacement become underlying in the theory and matters
of particular examining. These notions are often used by authors but quite seldom
investigated in themselves. Nevertheless, many methods have been developed for
handling substitution. In the following, some possible approaches are listed.

• The direct definition by induction on term structure. Bound variable renam-
ing is performed only if this is inevitable. For a typical instance, see [6].

'Partially supported by Estonian Science Foundation under grant no 4155.
^Institute of Computer Science, University of Tartu, J. Liivi 2, 50409 Tartu, Estonia; e-mail:

nes tra®cs .u t . ee

633

634 Harmel Nestra

• The direct definition by induction on term structure assuming the variable
convention. The latter simplifies the definition essentially because it excludes
the cases where variable capturing arise. For an instance, see [3].

• The direct definition by induction on term structure, but always making
bound variable renaming. Despite the increased amount of work in perform-
ing substitution, the formal definition is quite short. See [11].

• Defining substitutions as a part of object language^ not as a family of meta-
level operations. This method is suitable especially for computerizing. See
[1] for instance.

1.2 More about This Paper
Substitution is a very general concept in itself, occurring as a matter of investigation
whenever one deals with some kind of term system. One aim of this work is to
develop all the theory uniformly for a large class of calculi.

In Sect. 2, the concept of term algebras being our setting of reasoning is speci-
fied. We give a definition of term algebras which captures the concept of absolutely
free first-order multi-sorted algebra. The only formal difference from standard is
our use of so-called indices in signature. For treating variable binding, we then
add some elements to the signature and refine the term forming rules. Variable
binding is encoded into terms standardly using place-holding variables because of
our pursuit to stay as close to standard practice as possible.

So we reduce studying variable binding to almost standard universal algebra
framework with some restrictions. This is possible when dealing with the formal
side of the matter only. Evaluation of the terms cannot go standardly any more,
because homomorphisms—the evaluation maps in universal algebra—do not work
correctly in the binding case. In this paper, semantics is not considered. For ways
to define algebra homomorphisms and its related concepts (subalgebras, quotient
algebras etc) in cases where binding is involved, see [12].

Section 3 presents a rigorous treatment of subterm occurrence locations using
positions. Our treatment of positions in principle is standard.

In Sect.. 4, replacement operators are defined and some of their basic properties
are considered. A replacement operator is a mapping from terms to terms whose
task is to replace the subterms at some (maybe no) positions simultaneously with
some other terms. It is determined by a rule establishing which terms have to be
placed at which positions. ^

There is no need in our treatment for the argument term of a replacement oper-
ator to possess all the positions at which replacing should be performed according
to the formal rule. The redundant part of the rule is ignored by the operator.

Replacement operators can be defined inductively as in [2]. An example for
pure A-calculus is found also in [6] (Sect. 9A). Inductive definition of replacement
is rather troublesome, particularly in the light of the simplicity of the idea behind.
Intuitively, if we replace some subterms of a term with some other terms, then in
the result term, the new terms occur at positions where the replacing was done

A Framework for Studying Substitution 635

and the rest is as in the original term. We use a definition which is almost direct
translation of this intuitive idea to mathematically rigorous form.

In some works on term rewriting, e.g. [10], terms are treated as functions from
so-called tree domains to a ranked alphabet. Replacement operation becomes quite
elementary in this approach.' The price of it is relatively non-traditional, com-
plicated and being far from human intuition treatment of terms. We succeed in
maintaining an almost completely standard definition of terms together with easy
and intuitive handling of replacement.

The proofs of the theorems about positions and replacement are omitted in this
paper (a few theorems are equipped with proof sketches) because replacement is
not the main topic of this paper and the claims are mostly intuitively credible.

The purpose of the remaining sections is to exhibit how the theory of variable
binding looks in context of our framework. Section 5 gives the definitions, as
well as some basic facts. Section 6 develops the theory for a-congruence. Some
of the proved facts are common, some are not. Among other things, we express
a-congruence as the reflexive transitive closure of a simple relation. In Sect. 7,
we define substitution as an operation on o-classes and prove a couple of its nice
properties from this aspect.

We have introduced our method earlier in [7, 8] which are preliminary reports
of this paper.

1.3 Related Work
Several methods have been developed for describing uniformly all binding situations
arising in computer science. Bring up the following.

• The higher-order abstract syntax where all possible binding constructs are
expressed via A-terms. This seems to be the most famous and used method
of treating arbitrary binding. For example, see [9].

• The term algebras of binding signature of [12, 13, 4]. In these papers, also
some categorical viewpoints of the area are provided.

• A theory of binding in Fraenkel-Mostowski set theory is presented in [5].

• The binding structures of [14]. This work provides a notion of binding algebras
which generalize the de Bruijn A-calculus.

2 Term Algebras
Defining terms in principle requires fixing a signature and some rules for building
new terms from given ones. All terms built under the same rules in the same
signature form a term algebra with respect to the rules as algebraic operations.

Take the following system for signature.

Si. A set r of types (or sorts).

636 Harmel Nestra

52. A set fi of term-builders.

53. A set I u of indices of u for every w £ fi. Assume thereby that all the sets I,
are finite and pairwise disjoint. Take L = LLen •

54. A type n£T for each i £ L, and a type tu £ F for each ui £ fi.

T l . For each 7 £ T, all the variables from the set X1 are terms of type 7.

T2. Let u) be any term-builder. For every i £ let ui be any term of type T{.
Then OJ(U) is a term of type Tw, where u denotes the vector which has all the
terms Ui as its components, i.e. u= (ui : i £ I«,).

T3. All terms are constructed by T l and T2.

T4. Terms constructed in different ways are different.

These rules suggest that, for any w € fi, the n,i £lu, could naturally be called
the argument types of ui and Tu the result type of w. Roughly speaking, u> has the
function type (n : i 6 Iw) rw .

The indices play the same role here as numbers 1 , . . . ,n in indexing function
arguments usually, |IW| being the axity of symbol CJ. Pairwise disjointness of the
index sets is essentially used in proofs of some underlying theorems of the theory,
e.g. of Theorem 4.3. Hence using the index sets instead of numbers is substantial.

On the other hand, term construction does not depend on what the elements
of actually are, since rule T2 uses Ui in building a new term, not i. Therefore
renaming the indices does not change the terms essentially.

Denote our term algebra by T, i.e. T = (Ty : 7 £ T) where Ty is the set of all
the terms of type 7. The term constructing rules imply that any term which is not
a variable has exactly one type. Variables may have several types.

For accommodating variable binding into the framework, a partitioning

is determined for each w £ fi by the signature (both unions must be disjoint). Call
the indices of set Au the argument indices of u>; the others are binding indices.
Each binding index belongs to exactly one set B a , being thus associated to a fixed
argument index. This is for determining the scope of binding.

The idea is that, in any term of shape UJ(U), the arguments u/, of OJ for binding
indices b stand for binding occurrences of variables. This is achieved by treating
the variables of each type as they were forming a separate type.

To be precise, we have a partitioning T = T U T where the elements of T axe
the basic types and the elements of f = { 7 : 7 £ T} are the corresponding variable
types. Thereby, T^ is restricted to be a variable type whenever b is a binding
index, while r a and TU are restricted to be basic types for every argument index

For. each type 7 £ T, let be a given set of variables.

(1)
o € A ,

A Framework for Studying Substitution 637

a and term-builder u>. So each variable has simultaneously its basic type and the
corresponding variable type. Assume in the rest for simplicity that each variable
has exactly one basic type.

Assume additionally that a term w(u), u = (Ui : i £ I u) , can be constructed
only if Uf,j = ii&2 implies &i = 62 for any a £ Au and 61,62 € B a . That means, it is
allowed to bind one variable only once with the same scope.

For a simple characterizing example, take pure A-calculus. It has two term-
builders—juxtaposition denoting application and the binding symbol A. As there
are no restrictions imposed on the construction of terms except that the first ar-
gument of A must be a variable, pure A-calculus has one basic type TERM and its
subtype VARIABLE. One may take index sets as in [6] (Sect. 9A): I. = {1,2} (•
denoting juxtaposition) and Ia = {*,0}, whereby * is the only binding index. So
Tl = t2 = T0 = TERM and r , = VARIABLE.

For a concrete example, take the A-term M = (Xx.y)x (x and y being variables).
Use index 1 for the left-hand argument of juxtaposition and 2 for the other. Then
we get M = -(u) where u = (ui,u2) with u\ = Ax.y and 1x2 = x. Further, ui = \(v)
where v = (VQ, vt) with vo = y and V«• = x.

For a bit more complicated example, take untyped first-order predicate logic in
some signature. There are two binders V and 3. For term-builders, take all the
individual, function and predicate symbols of the signature, as well as the preposi-
tional connectives. In predicate logic, one distinguishes between so-called "terms"
and "formulas". Hence take TERM and FORMULA to be the two basic types. A
variable type VARIABLE is corresponding to TERM (no propositional variables
are used in predicate logic usually, so one can manage without a variable type cor-
responding to FORMULA). One can take the argument index sets arbitrarily in
a way that the condition S3 from Sect. 2 holds and the arities match (individual
symbols must be taken as 0-ary function symbols). For all function symbols, the
argument types equal to TERM and also the result type; for all predicate sym-
bols, the argument types equal to TERM, but the result type is FORMULA. For
propositional connectives, the argument types, as well as the result type, equal to
FORMULA. For quantifiers, the type of the binding argument is VARIABLE and
the type of the other argument, as well as the result type, is FORMULA.

3 Positions and Occurrences
Think of L as a (possibly infinite) alphabet (recall from Sect. 2 that L = | J w e n Iw).

Defini t ion 3.1. Positions are strings over the alphabet L, i.e. elements of L*.

Defini t ion 3.2. Define the notion term t occurs in term s at position p inductively
as follows:

• t occurs in s at e (the empty string) iff s = t\

• if p = p'i with p' e L*, i 6 L, then t occurs in s at p iff a term of shape u(u)
occurs in s at p', such that i € and Ui = t.

638 Harmel Nestra

Say that t is a subterm of s iff t occurs in s at some position. For intuitive
understanding of positions, consider term trees. For each i £ Iu, label the edge
connecting the root of the tree of OJ(U) with the root of the tree of Ui by I. The
position where a subterm occurs in a term is found by writing down in order the
labels of edges appearing on the path which connects the root of the term with the
root of the subterm. So the only difference from standard treatment of positions
is that we use the indices given by signature instead of integers for constructing
them.

According to Definition 3.2, only terms of type Ti can occur in term s at .position
p'i. Therefore define l y , = n for any p' £ L* and i £ L.

Definition 3.2 implies also that, in any term, at most one term can occur at a
given position. Denote by s.p the term occurring in s at p, if any. For each p £ L*,
(.p) is a partial function working on terms. However, we treat it as a total function
with a special value _L for denoting undefinedness. So an equality like s.p = t.p is
valid if neither s.p nor t.p exists, but if exactly one of s.p and t.p exists, then it
is not valid. Assume additionally J. ,p = J_ for every p. Then s. e = s for all terms
s and s . pq = s . p. q for all terms s and positions p, q.

Say that p is a position of s iff something occurs in term s at position p, i.e.
s .p^t -L. For all terms s, denote poss — {p : s.p ^ _L}, i.e. poss is the set of all
positions of s. Clearly pos a; = {e} for any variable x.

Definition 3.3. (i) Let p,q £ L*. Say that q is a refinement of p iff p is a prefix
of q, i.e. q = pr for some r G L*. If this holds, we write p < q (or q > p).

(ii) If p,q,r £ L* with q = pr, then write q| for r.

(iii) For arbitrary Q C L* and p £ L*, define pQ = {pq : q £ Q} and Q| =

{r : pr. £ Q} = j g | p : q £ Q,p < g j .
(iv) Let p,q £ L*. If neither p is a prefix of q nor q is a prefix of p, then p and

q are called divergent and denoted p^-q.
(v) Let P C L* and q £ L*. If q x p for each p £ P, then call q divergent from

P and write q >c P.

For a concrete example, take the A-term M = (Ax.y)x studied in Sect. 2. Choose
the argument indices as above. Then the term (Ax.y) occurs in M at position 1
and the term x occurs in M at position 2. Analogously, y occurs in A x.y at position
0 and x occurs in Xx.y at position *. So the term y occurs in M at position 10
and the term x occurs in M also at position 1*. Moreover, M itself occurs in M
at position e. As the variables are not constructed terms but primitive, no terms
occur in variables at non-empty positions. Thus we can find no other occurrences
of terms in M, so pos M — {e, 1,2,10,1*}. Among the positions of M, 1 and 2 are
divergent, 10 and 1* are divergent, and 2 is divergent from both 10 and 1*.

The relation < is a partial order on L*. So one can speak about maximality
and minimality with respect to the relation <. If P C L*, then any two positions
both maximal in P are divergent. The same holds for positions minimal in P. If
p and q axe divergent, then any refinements of these are, too. Any set Q C L*

A Framework for Studying Substitution 639

whose elements are pairwise divergent is called antichain, whereby Q is said to be
an antichain of P whenever Q C P ,

The following is one of the theorems underlying our theory. The proof uses
essentially the pairwise disjointness of the index sets. Note that we write E r , E4

and £ c for reflexive, transitive and compatible, respectively, closure of relation E.
Recall from universal algebra that a binary relation E is called compatible iff, for
any w 6 fi and vectors (uj : i £ Iw) and (vi : i £ Iw), (Ui,v,) £ E for all i £ Iu

implies (CJ(U),UJ(V)) £ E.

Theorem 3.4. Let E be a binary relation on T and s,t be terms. Then (s , t) £ Ec

i f f there exists a common maximal w.r.t. set inclusion antichain P of both poss
and pos t such that (s .p,t .p) £ E for all p £ P.

Proof. (=>) Build the compatible closure of E iteratively. Argue by induction on
the number of steps it takes to get (s,t).

(•£=) Let ||.Pj| be the sum of the lengths of positions of P. The claim follows by
induction on ||P||. •

As a corollary, we get the following theorem which provides a method for proving
that terms are congruent if we know that some corresponding subterms of them
are congruent. Note that equality is just a particular congruence relation.

Theorem 3.5. Let = be any congruence relation on the term algebra T. Let s,t
be terms and P C poss n posi an antichain. If s .p = t .p for each p £ P and
s.q = t.q for each ?x P, then s = t.

4 Replacement Operators
Definition 4.1. Call a function / a placing rule iff its domain d o m / is an antichain
of L* and f(p) £ TTp for every non-empty p £ d o m / .

Definition 4.2. If / is a function with domain P and q £ L*, then / | denotes
the function with domain P | and f\Q(r) = f(qr) for each r £ P | - -

Note that / | is a placing rule whenever f is.
Our treatment of replacement is grounded on the following theorem. .

Theorem 4.3. Let s be a term and f be a placing rule with domain P C poss.
Then there exists a unique term t such that t.p = f(p) for each p £ P and t.q = s.q
for each <7 x P. Thereby, if e ^ P then t is of the same type as s.

Proof. Argue by induction on ||P|| as in Theorem 3.4. An alternative way is to
prove the claim for singleton sets P at first, using induction on the only element
of P , and generalize to any P by induction on |P|. The uniqueness part of this
theorem can be deduced also from Theorem 3.5. •

Theorem 4.3 justifies the following definition.

640 Härme1 Nestra

Definition 4.4. Let s be a term. Let / be a placing rule.
(i) If d o m / = P C poss, then define [/](s), the result of simultaneous replace-

ment of the subterms of s at positions p £ P by corresponding terms f(p), to be
the unique term whose existence is claimed by Theorem 4.3.

(ii) If dom / 2 P°s s, then define [/] (s) = [/ | p 0 S J (s) where / | p o s s is the function
with domain dom / D poss behaving like / on it.

Hence replacement operators are defined for cases only for which the positions
where the replacement must be performed simultaneously are pairwise divergent.

The replacement operator [/] will frequently be denoted similarly to set com-
prehension syntax by [f(p) : p £ dom/] (with some concreté expressions at place
of f(p) and d o m / of course; we often practise even writings like [z : r £ P]—
this means that the placing rule is constantly z with domain R). Assuming
dom / = {p i , . . . ,pn} and Ui = f(pi) for each i = 1 , . . . , n , one can write also
[pi t - K u i , . . . ,pn i tn] ins tead of [/] .

Theorem 4.5. Let s be a term. Let f be a placing rule. Denoting P = d o m / f l
poss, we have

pos[/](s) = | J {jppos f(p) U {r : r < p}) U {q £ poss : q x P) .
p€ P

If we replace variables with variables only, then P is a subset of all positions
maximal in poss and, for each p £ P , pos f(p) = {e}. Hence Theorem 4.5 implies
that replacing variables with variables does not change the set of positions.

The following theorems state some basic properties of replacement. Theorem
4.7 is for computing expressions of form [/](s) .<?. Theorem 4.8 states that if the re-
placement operators do not "disturb" each other, then the order of their application
is' unimportant. Theorem 4.9 states some conditions under which one replacement
operator absorbs another in consecutive application. Note that if function compo-
sition is denoted by ;, then the left function is applied first.

Theorem 4.6. Let s be a term and f a placing rule such that f(p) = s.p for each
p £ d o m / n p o s s . Then [/](s) = s. .

Theorem 4.7. Let s be a term, f be a placing rule and q £ L*.
(0 If P < Q for some p £ dom / n pos s, then [/] (s) . q = f (p) . .
(ii) If p < q for no p £ dom / H pos s, then [/] (s) . q = [/ |?](s . q).

Note that the conditions of Theorem 4.7 (ii) hold whenever q < p for some
p £ dom / fi pos s because dom / is an antichain.'

Theorem 4.8. Let f\,..., /„ be placing rules. Assume that the positions of dom fl

are divergent from the positions of dom f j whenever i ^ j. Then [f\] ; ... ; [/„] =
[h] where dom h = dom fx U . . . U dom / „ and h(p) = fi(p) whenever p £ dom /¿.
So the composition does not depend on the order of application.

A Framework for Studying Substitution 641

Theorem 4.9. Let f,g be placing rules such that each element of d o m / has a
prefix in domg. Then [/] ; [g] = [5].

Theorems 4.9, 4.7 (ii) and 4.6 together give the following.

Theorem 4.10. Let s be a term and f a placing rule. Let Q be an antichain of
pos s such that every p £ dom / f l pos s has a prefix in Q. Then [/](s) = [[/|](s.g) :
<7 e <?](«)•

These properties of replacement are intuitively rather clear, therefore we will
often use them in the rest without explicit mentioning.

We now discuss briefly the so-called replacement property. This is one of the
main properties assumed about rewrite relations in term rewriting theory.

Definition 4.11. A binary relation E on algebra T is said to have the replacement
property iff, for any terms s, u and position p £ pos s, (s . p,u) £ £ implies
(s,[ph-H(s)) e s.

In other words, a relation S has the replacement property iff replacing any
subterm of s with a term related to it gives a term related to s.

The following theorem shows the connections between the replacement property
and compatibility.

Theorem 4.12. (i) Any reflexive compatible relation S onT has the replacement
property.

(ii) Any transitive relation having the replacement property is compatible.
(iii) The reflexive closure of any relation having the replacement property has

the replacement property.
(iv) The transitive closure of any relation having the replacement property both

is compatible and has the replacement property.

5 Variable Binding in Terms
Our treatment of binding uses positions essentially: binding of positions is the
primary, binding of variable occurrence the secondary notion.

Definition 5.1. Call a position q binding iff q = pb for some p £ L*, b £ B a ,
a £ Au and OJ £ il . Thereby call position pa the root of binding corresponding to pb.

If either a binding position pb or its root of binding pa, where b £ BQ and
a £ Au, belongs to pos s, then s .p = LJ(U) for some vector u = (ui : i £lu) which
gives s .pb = Ub and s . pa — ua. Hence a binding position belongs to pos s iff its
root of binding does.

Definition 5.2. Let i be a variable and s a term.
(i) Let p be a position. If s .pb = x for b £ BQ, a £ Aw and w 6 il , then say

that the occurrence of x at pb in s is binding, or equivalently, x occurs binding at
pb in s. We may say additionally that position pà is the root of binding of x.

642 Harmel Nestra

(ii) Let p, r be positions of s. Take u G fi , a G Au and b G B a such that x
occurs binding at pb in s. We say that the occurrence of x at pb in s binds position
r iff r is not a binding position and pa is the longest prefix of r being a root of
binding of x in s. If additionally s .r = x, then say that the occurrence of x at pb
binds the occurrence of x at r.

(iii) Let r be a position of s. Say that x is bound at r in s iff there exists an
occurrence of x in s which binds it at r. If additionally s.r = x, then say that the
occurrence of x at r in s is bound, or equivalently, x occurs bound at r in s.

(iv) Let r be a position of s. Say that x is free at r in s iff r is not binding and
x is not bound in r. If additionally s .r = x, then say that the occurrence of x at
r in s is free, or equivalently, x occurs free at r in s.

Note that an occurrence of x can be binding even if there are no occurrences of
x bound by that occurrence. Moreover, note that x can be bound or free at r even
if it does not occur at r .

In the paper [7] of ours, binding was defined in a slightly simpler way. This was
possible because of some more restrictions imposed on terms there.

Proposition 5.3. Let s be a term, x a variable and r a non-binding position of s.
(i) x is bound atr in s i f f some prefix of r is a root of binding of x in s.
(ii) x is free atr in s iff no prefix of r is a root of binding of x in s.

Proof. Straightforward by Definition 5.2. •

Definition 5.4. (i) Let q G poss be any binding position and s . q — x. The
set consisting of position q, as well as all positions r such that s . r = x and the
occurrence of x at q binds the occurrence of x at r, is called the binding unit (of x)
corresponding to q in s and denoted' by bu(<j, s).

(ii) Let s be a term. For any variable x, let fpoSj. s denote the set of all positions
where x occurs free in s, and bposx s denote the set of all positions where x occurs
non-free (i.e. binding or bound) in s. Define

fposs = I^JfpoSj. s,. bposs = (J bpoSj. s. (2)
X X

(iii) For term s, let fv s denote the set of all variables having a free occurrence
in a, and bv s denote the set of all variables having a binding occurrence in s.

Proposition 5.5. Lets be a term and p its position. Then fpos(s.p) —fposs|pUi2
where R is the set consisting of all positions where some variable not being free at
p in s occurs free in s .p.

Proof. If a variable occurs free at pr in s, then it clearly occurs free at r in s .p. A
variable occurring free at r in s .p but non-free at pr in s means that the root of
binding pr at s is a prefix of p, i.e. the variable is not free at p in s. •

A Framework for Studying Substitution 643

Definition 5.6. (i) Let Q be any type-preserving mapping of variables to variables.
Define the naive renaming [p] on arbitrary term s by [g] (s) = [p(s . p) : p G
bposs](s).

(ii) Let a be any type-preserving mapping of variables to terms. Define the
naive substitution \a\ on arbitrary term s by [a\ (s) = [<r(s .p) : p G fposs](s).

(iii) For any mapping a of variables to terms, define supper = {x : o(x) ^ a;}
(the support of a). The application of [a\ to s is called sound iff bvs is disjoint
with fv a(x) whenever x G fv s fl supp a.

Naive renaming and substitution are not entirely satisfactory because variable
capturing has not been taken into account. They provide a starting point for defin-
ing and studying correct capture-avoiding substitution. Correct bound variable
renaming is the matter of the next definition.

Definition 5.7. (i) Let s be a term and q a binding position of s. Let z be a
variable of type rq. Define ren?_>2(s) = [z : p G bu(ç, s)](s).

(ii) Say that terms s,t are in relation A (the renaming-step relation) iff t =
renP6_>z(s) for some binding position pb, b G BQ, of s and a fresh variable z, i.e. z
not occurring in s . pa.

(iii) The least congruence relation containing A is denoted by a.

Proposition 5.8. Let s be any term.
(i) For any type-preserving mapping g of variables to variables, pos [g] (s) =

poss.
(ii) If t is a term such that (s,t) G A, then poss = post.

Proof. By the remark made after Theorem 4.5. •

The following three lemmas are rather straightforward corollaries of the defini-
tions presented above. Their proofs however require quite technical and uninter-
esting study of details, so we omit them as the aim of this paper is to exhibit the
proofs of more complicated theorems in the framework developed.

Lemma 5.9. Let s be a term, r G poss and q a binding position of s . r. Then
bu(ç, s . r) = bu(rq,s) | r .

Lemma 5.10. Let s be a term andpb, b G B a , a binding position of s with s.pb =
x. Let f be a placing rule such that dom / contains neither binding positions nor
prefixes of p, and x occurs free in f(r) for nor G d o m / . Then bu(pb, [/](s)) =
bn(pb,s)\\Jr€domf{q:r<q}.

Lemma 5.11. Let s, t be terms such that (s, t) G A.
(i) Terms s and t have same binding units.

(ii) For every variable x, fposx s = fpoSj. t.

We end the section with proving three propositions using the facts stated so far.

Proposition 5.12. Relation A has the replacement property.

644 Harmel Nestra

Proof. Take a term s and a position r G poss. Assume (s . r, u) g A, i.e. u =
renp6-»z(s . r) for some binding position pb, b G B a , of s . r and 2 not occurring in
s . r ..pa = s . rpa. Now

[r H-fc tt](s) = [r ren p 6^ z (s . r)](s)
= [r h> [z : q G bu(p&, s. r)](s.. r)](s) (by 5.7 (i))
= [r ^ [z : q G.bu(rp6,s)| r](s .r)](s) (by 5.9)
= [z : q. G bu (rpb, s)](s) (by 4.10)
= r e n ^ ^ s) (by 5.7 (i))

gives the desired result. •

Proposition 5.13. Let s be a term and q its binding position. Let a be a type-
preserving mapping of variables to terms such that applying [a\ to s is sound. Then
M g , LcrJ (s)) = bu(ç,s).

Proof. Theorem-4.5 implies poss Ç pos [crj (s). Thus \a\ (s) has the same binding
positions arid the same roots of bindings as s plus maybe some more which do
not belong to poss. For any r x fposs, among the rest for each r G bposs, we
have [a\ (s) . r = s . r. Consequently bu(q,s) Ç bu(ç, [crj (s)) for every binding
position q G pos s, and any position being divergent from fpos s belongs to bu(ç, s)
iff it belongs to bu(ç, [ctJ (S)). Consider the case r yi fpos s now. Take p G fposs
such that r ji p. If r < p, then r g bu(ç, s), as well as r £ bu(g, [a\ (s)), since
binding units contain maximal positions only. If r > p, then r £ bu(ç, s), but
r bu(g, \a\ (s)) either because otherwise the variable s . q would occur free at r |
in, a(s . p) contradicting the soundness. Hence the claim follows. •

Proposition 5.14. Let s be a term and p G poss. Let a be a type-preserving
mapping of variables to terms. Then \p\ (s) .p = [c'J (s.p) where

a'(x) = { tf x ^ supper and x is free at p in s,
l x otherwise.

Proof. Proposition 5.3 (ii) implies that a set of positions where a certain variable
is free is closed w.r.t. taking prefixes. This gives that a'(s.pr) — a(s .pr) for each
r G fposs | p . Denote by R the set consisting of all positions where some variable
not being free at p in s occurs.free in s .p. Then a'(s .pr) = s .pr for each r G R.
We have

LcrJ (s) .p= [a (s . r) : r G fposs](s) .p (by 5.6 (ii))
= [c(s -pr) : r € fposs|p](s .p) (by 4.7 (ii))
= [CT(S .pr) : r G fposs
= [<r'(s. pr) : r G fpos s
= [cr'(s • P1") '• r 6 fp°s s

| ([s . p r : r e f l] (a . p)) (by 4.6)

UR](s.p) (by 4.8)
= [a'(s .pr) : r G fpos(s .p)](s .p) (by 5.5)
= I/t'J (s .p) . (by 5.6(h))

•

A Framework for Studying Substitution 645

6 Investigating ^-congruence
6.1 Expressing a as reflexive transitive closure
L e m m a 6.1. Let s be a term andpibi,... ,pnbn, n > 0, different binding positions
in s, bi £ B a i for each i = l , . . . , n . Let g be a type-preserving injective on its
support mapping of variables to variables such that s . pibi £ supp g and g(s . Pibi)
does not occur in s . piai for any i = 1 ,...,n. Let f be the placing rule with
dom / = Ur=i bu(Pit>i,s) and f(r) = g(s.r) for allr £ dom / . Then (s, [/](s)) € AÉ.

Proof. Without loss of generality, assume the ordering Pi,... ,pn being such that,
for all i, j = 1 , . . . , n, piai < pjaj implies i < j. Denote ah = s.pibi and Zi = g(xi).
Define so = s and Sj+i = r e n p ^ ^ - ^ . ^ (s,) for all i = 0 , . . . ,n - 1.

Prove now that (sj, S J + I) 6 A for all i = 0 , . . . , n — 1, i.e. Zj+i does not occur in
Si ,pi+iai+i. Suppose the contrary, i.e. s, .pi+iût+i • r = Zj+i for some r. Assume
thereby that i is the least number for which such situation arises. This ensures that
terms s0,. • • ,Si have same binding units by Lemma 5.11 (i). Since s .pi+iai+ir ±
Zi+1 by conditions, we can find the biggest k such that sk . p i+ \a l + i r ^ Zi+\.
Therefore p i + \ a i + \ r belongs to the binding unit corresponding to pk+ibk+i. This
implies zi+1 = Zfc+i giving Xj+i = Zfc+i by the injectivity of g.

If p i + \ a i + \ r is a binding position, then p i + i a i + i r = pk+ibk+i is the only
possibility. Since pi+\al+i is not binding, it must be r = p'bk+i for some
p'. So pi+iai+i < pi+iai+ip' = pk+i < Pk+idk+i giving i < k, a contra-
diction. If p i + \ a i + \ r is not binding, then it is bound by the occurrence at
Pk+ibk+i, so pk+iak+i is the longest prefix of pi+\ai+\r being a root of binding
of £¿-1-1. Thus pi+iai+i < pk+iak+i- Strict inequality is impossible as earlier, so
P i + i a i + i = pfc+iajfc+i. But this implies 6j+i and bk+i both belonging to BQ for
a = Oj+i = ak+1- By the restriction imposed on term construction rules in Sect. 2,
these positions cannot bind the same variable, a contradiction.

It remains to prove sn = [/](s). We have

Si+1 = renp,-+i6;+i-+2i + i (si) =
= [Zi+i : r £ bu(pi+ibi+i, si)](si) =
= [zi+1 : r e bu(p i + 16 i + i ,s)](s i) .

So sn is expressed as an application of a composition of replacement operators to
so = s. This composition equals to [/] by Theorem 4.8 which applies since positions
of different binding units of the same term are divergent. •

Corol lary 6.2. Let s be a term. Let g be a type-preserving injective on its. support
mapping of variables to variables such that g(x) does not occur in s for any x S
supp g. Then {s,\g](s)) £ Art.

Proof. If the variables of supp g do not occur binding in s, then [p] (s) = s and we
have done. Otherwise let pib\,... ,pnbn be the binding positions where .variables
of supp g occur in s. Define / as in the formulation of Lemma 6.1. Then Lemma
6.1 applies and also the result follows since [g] (s) = [/](s). •

646 Harmel Nestra

Lemma 6.3. Let s be a term and pb its binding position, b £ B a . Let z be a
variable having the same type as x and not occurring in s.pa. Let f be the placing
rule with dom / = {pb} U {paq : s .paq = 'z} and f(r) = z for all r £ d o m / . Let
g be the placing rule with domg = dom / and g(r) = x for all r £ dom g. Denote
u = [/](*) and t = renpb^z(s).

(i) dom £ = {pb} U {paq : u .paq = z} and s = [<?](«), whereby x does not occur
in u. pa.

(ii) (s,t) £ A, (t,u) £ A f.
(iii) (u,s) £ A4.

Proof, (i) We must show that s .paq = x u .paq — z. It suffices to consider
positions paq maximal in s (hence also in u). If s . paq = x, then paq £ d o m / ,
therefore u.paq = [/](s) .paq = f(paq) = z. If s.paq / x, then paq £ d o m / which
implies paq x dom / because paq and the positions of dom / are all maximal. Thus
u. paq = [f](s). paq = s . paq ^ {x, zj. This proves also that x does not occur in
u.pa. Now [g](u) = [5]([/](s)) = [<7](s) = s by Theorems 4.9 and 4.6.

(ii) Any occurrence of x at a position of dom / neither is free nor is bound by an
occurrence at a position outside d o m / . Hence d o m / partitions into binding units
of x, whereby all the roots of binding of them are refinements of pa, so pa is the
least among them. Since 2 does not occur in s . pa, it does not occur in s . par for
any root of binding par. Defining g with supp g = {x}, g(x) — z, Lemma 6.1 gives
(s, u) £ A1, whereby the proof of it gives more precisely (s, t) € A and (t, u) £ A'.

(iii) Part (i) of this lemma proves the assumptions of this lemma for the case
of taking u, s, z and g at place of s, u, x and / , respectively. Part (ii) gives then
(u , s) £ A1. •

Claim 6.4. Let s,t be terms. If (s,t) € A, then (t , s) £ A4.

Proof. If (s,t) 6 A, then t = reng6_>2(s) for some binding position qb, b £ B a , of s
and variable z not occurring in s.pa. Denote x = s .pb and let / be the placing
rule with dom / = {pb} U {paq : s . paq = x} and f(r) = z for all r £ dom / . If we
take u = [/](s), then Lemma 6.3 gives (i, u) £ A1 and (u, s) € A'. Hence (i, s) £ A1

by transitivity. •

Theorem 6.5. a = Art.

Proof. We have A r t C a by definition of a. For the opposite inclusion, we must
show that ATt is a congruence. As it is reflexive and transitive, it suffices to show
symmetry and compatibility. Compatibility follows from Theorems 5.12 and 4.12
(iii), (iv). For symmetry, apply Claim 6.4 iteratively. •

Using this theorem, we can simply generalize some facts about relation A to
a-congruence as in the following corollary.

Corollary 6.6. Let s,t be a-congruent terms. Then:
(i) pos s = pos t;
(ii) s and t have same binding units;
(iii) for any variable x, fpoSj. s ' fposx t;
(iv) fv s = fv i .

A Framework for Studying Substitution 647

Corollary 6.6 can be proved also without using the theory of this subsection.
For (i), construct an algebra in our signature such that pos appears to be a homo-
morphism from T to it. Then the kernel relation of pos is a congruence containing
A. Now use the definition of a . The other equalities can be proved analogously.

Theorem 6.5 helps also to prove the following fact.

Cla im 6.7. Let s, t be a-congruent terms. Then s.q = t.q for all binding positions
q implies s = t.

Proof. Let P be the set of positions maximal in s (so also in t), and take p £ P.
If p £ bu(<7, s) for some q (so also p £ bu(g, t)), then s .p = s . q =,t. q = t .p.
Otherwise, no renaming steps of the sequence transforming s to t influence position
p, so s . p = t. p. By Theorem 3.5, s = t. •

6.2 Substitutivity
At this point, it is inevitable to make one more assumption about our algebra.
Namely, assume in the rest that there is infinitely many, variables of each type 77,
where b is any binding index. This is a standard restriction which guarantees that
we can rename a bound variable with a fresh one whenever necessary. The following
proposition states this in more detail.

P ropos i t i on 6.8. (i) Let y be any finite subsystem of X (i.e. = (3̂ 7 : 7 G T)
where y7 C X1 for each j £ T). Then each term is a-congruent to some term, in
which no variables of y occur binding.

(ii) Whenever we have a finite family of terms, there exists a family of a-
congruent to them, respectively, terms such that no variable occurs both free and
binding in these terms.

(iii) Let a be any type-preserving mapping of variables to terms. Then each term
s is a-congruent to some term t such that applying [crj to t is sound.

Proof, (i) Let s be any term. As y is finite, we can find a type-preserving injective
on its support mapping g of variables to variables with supp g = y such that g(y)
neither belongs to y nor occurs in s for each y £y. Now apply Corollary 6.2.

(ii) Take y to be the system of all variables which occur free in some of the
given terms. Then apply (i) for each of the terms.

(iii) Take y to be the system of all variables which occur free in a(x) for some
x £ fv s fl supp a. Then apply (i) for s. , •

L e m m a 6.9. Let s be a term and pb, b £ BQ, its binding position. Denote x =
s. pb and take a variable z of the same type as x not occurring in s. pa. Denote
t = renp(,_>z(s). Let f be any placing rule such that dom / does not contain binding
positions and, for each r £ d o m / , x does not occur free in f(r).

(i) If z does not occur in f(r) for any r £ d o m / , then ([/](s), [/](£)) £ A r .
(ii) If z does not occur free in f(r) for any r £ dom / , then ([/](s), [/](i)) £

648 Harmel Nestra

Proof. If d o m / contains a prefix of p, then Theorem 4.9 gives [/](i) = [/] (s) from
which both parts follow. Assume further no prefixes of p belonging to d o m / .

(i) It suffices to prove [/](£) = renP6_>z([/](s)) since 2 is fresh by conditions.
Take arbitrary q 6 dom / fl pos s and r G bu(p6, [/](«))- If r < q, then r is not a
maximal position of [f](s) (since also q G pos[/](s)) and hence cannot belong to
bu(pb, [/](s)), a contradiction. Consider the case q <r. Taking into account that
q is not a prefix of p, we have that q = r = pb or pa < q. The former case cannot
arise because of dom / not containing binding positions. The case pa < q leads to
f(q).r| = [/](s).r = x, whereby this occurrence of x is free in f(q) since otherwise
r could not belong to the binding unit of pb in [/](s). As this is also excluded by
the conditions, we have as the only possibility that q~xr. We conclude from all this
that any position of dom / fl poss is divergent from any position of bu(pfc, [/](s)).

Denote by P(r) the assertion "dom / fl poss contains a prefix of r". Implicitly
using [/](*) = [/ |](«) and pos[z : r 6 b u (p b , s) , i P (r)] (s) = poss, we have

(ii) Find a placing rule / ' with d o m / = d o m / ' such that, for any r G d o m / ,
(f(r),f'(r)) G a and 2 does.not occur in f'(r). Theorem 3.5 gives ([/](s), [/'](s)) £
a and ([/](*), [/'](*)) e a . By (i), ([/'](*), [/'](*)) G A, so ([/](*), [/](i)) G a . •

Lemma 6.10. Let s,t be terms, (s,t) G A. Let g be any type-preserving injective
on its support mapping of variables to variables such that, for any variable x G
supp g, g(x) occurs in neither s nor t. Then (|~£>~| (s), [0] (t)) G A.

Proof. Let t = r e n p j - ^ s) for binding position pb, b G B a , of s, and 2 not occurring
in s .pa. By Corollary 6.2, we have (s, [p] (s)) G a, as well as (t , [p] (t)) G a. This
gives (|"0~| '(s), |"£>~| (t)) G a.

Prove now that g(z) does not occur in (s) .pa. Suppose the contrary, i.e.
[pi (s) .par = g(z) for some r. Denote y = s .par, then 2 ^ y. Dependently on
whether this occurrence of y is free or not in s, we have either g(z) = s . par = y
or g(z) = g(s .par) = g(y). Observe that neither g(y) = 2 nor g(z) = y is possible
because of the condition about g in the formulation. So the former case cannot
arise. The latteir leads to exactly one of y,z belonging to supp p. But this gives
either g{y) = g(z) = 2 or g(z) = g(y) = y, contradicting anyway.

Hence (|Y| (i),renpi)_>e(z)(|"f>| (s))) G a. We show actually that |Y| (t) =
renpi,_>e(2)([^] (s)). By Claim 6.7, it remains to prove that these terms have same
variables at binding positions. For position pb, we have renpi,_>e(2)(|"^] (s)) . pb =
g(z) = g(t.pb) = [f)] (t).pb. For arbitrary binding position q / pb, q does not belong

[f}(t) = [f](venpb^z(s))
= [f}([z:rebu(pb,s)}(s))
= [/] ([2 : r G bu (job, s), P(r)} ([2 : r G bu (pb, s),-^P(r))(s)))
= [f]([z:rebn(pb,s)^P(r)](s))

. =[f]([z:rebu(pb,[f}(s))}(s))
= [2 : r G bu(pfc, [/](s))]([/](s))
= r e n p 6 ^ 2 ([/] (s)) .

(by 4.8)
(by 4.9)
(by 5.10)
(by 4.8)
(by 5.7 (i))

(by 5.7 (0)

A Framework for Studying Substitution 649

to the binding unit corresponding to pb. So renpi,_ye(2)([^] (s)) . q = (s) . q =
e{a . q) = e(t. q) = tel (i) . q. •

Lemma 6.11. Let (s,t) € a. Let y be any finite subsystem of X such that
any variable of y occurs binding in neither s nor t. Then there exist terms
s = uo,u\,...,un = t such that, for each i = 0, ,n — 1, (ui, itj+i) € A and
any variable of y does not occur binding in Ui.

Proof. Since a = ATt, we can find terms vo,... ,vn such that vo = s, vn = t and
(vi,vi+1) € A for all i = 0 , . . . ,n — 1. Define a type-preserving injective on its
support mapping g of variables to variables such that
(1) x € supp g iff x is in y and x occurs binding in some Vi,
(2) x € supp g implies g(x) not being in y and not occurring in terms v0,. ..,vn.
Define Ui = [~£>] (v^ for all i = 0 , . . . ,n — 1. Consider arbitrary variable y from y ,
suppose it occurring binding in Uj. If y occurs at the same position also in v^ then
g(y) = y which contradicts with the choice of g (item (1)). Otherwise y = g(x) for
some x ^ y which also contradicts to the choice of g (item (2)). Thus variables
of y do not occur binding in terms iij. Lemma 6.10 gives (ui,ui+1) E A for each
i = 0 , . . . , n — 1, so we have done. •

Theorem 6.12. Let s, t be any a-congruent terms. Let f be any placing rule such
that dom / contains no binding positions and, for any p G d o m / fl poss, variables
occurring free in f(p) occur binding in neither s nor t. Then Q/](s), [/](£)) € a.

Proof. Let y be the system of variables occurring free in terms f(p), p € d o m / fl
poss. By conditions, variables of y occur binding in neither s nor t. Take
uo,...,un whose existence is claimed by Lemma 6.11. By Lemma 6.9, we have
([/](«<). [/](«i+i)) e " for each i = 0 , . . . ,n - 1. Thus ([/](«), [f](t)) e a. •

Theorem 6.13. Let s,t be any a-congruent terms. Let a be any type-preserving
mapping of variables to terms such that applying \o\ to both s and t is sound. Then
(L a j (s) , L a j (i)) e a .

Proof. We can express [a\ (s) = [f](s) and [a\ (t) = [/](£) for some / since
fposx(s) = fpos^^) for all variables x. Now apply Theorem 6.12. •

Theorem 6.13 states that different instances of an a-class are equivalent w.r.t.
sound application of substitution to them. (This property is called substitutivity
of Q-congruence.) This means that the frequent practice to identify a-congruent
terms is mathematically justified indeed. On the other hand, it enables to define
substitution as an operation on a-classes. We go this way in the next section. The
following theorem is inevitable for this.

Theorem 6.14. Let s,t be terms, (s,t) € a. Let <71,02 be type-preserving map-
pings of variables to terms such that (u\(x),(T2{x)) € a for any variable x. If
applying [<7iJ to both s and t is sound, then ([<TiJ (s), Lcr2J (t)) £ a.

650 Harmel Nestra

Proof. For any variable x, we have fv o\ (x) = f v a ? (x) since (<7i(X),02(X)) G a . As
no renaming steps can be made in a pure variable, each variable is a-congruent to
no other term. This leads to suppcri = suppo^. Thus applying [02] to both s
and t is sound, too. Now ([ctiJ (s), [0*2] (s)) 6 a by Theorem 3.5 (for the proof,
take P = fposs in the formulation of Theorem 3.5). By Theorem 6.13, we have
(L<72J (s), L02J (í)) G ct- Transitivity gives the required claim. •

7 Substitution on a-classes
We denote s/a for the a-class of term s. Note that Corollary 6.6 allows us to
extend the functions pos, fposx and fv naturally to a-classes. It is also reasonable
to speak about binding units of a-classes although the variable which occurs in the
positions of a binding unit is not determined.

As each variable form a separate a-class, we make no difference between vari-
ables and their a-classes.

Definition 7.1. Let s be any a-class of terms. Let cr be any type-preserving
mapping of variables to a-classes of terms. Then define [a\ (s) = |oJ (s)/a where
s G s and a, a(x) G <r(x) for any variable x, are chosen in such a way that applying
[crj to s is sound.

The value of [a\ (s)/a does not depend on the choices made in the definition
due to Theorem 6.14. A strong point of this "substitution modulo a" is that substi-
tutions apply legally to any a-class, no worrying about variable captures is needed.

Definition 7.2. Let s be a congruence class of terms and q a position.
(i) Say that q is significant for s iff s . q belongs to the same congruence class

independently on the choice of s G s.
(ii) If q is significant for s, then write s. q for the only class which contains the

terms s .q, s G s.
(iii) Denote by sigpos s the set of all positions significant for s.

Lemma 7.3. Let s be an a-class and p G pos s. Then p ^ sigpos s i f f there exists
a binding position q G pos s such that p is not a proper prefix of q and p is a prefix
of some r ebu(q,s).

Proof. (=i>) Assume p £ sigpos s. Take s,t G s such that (s .p,t. p) £ a. By
Theorem 6.5, find s = ... ,un = t such that (u i ,u j + 1) G A for each i =
0 , . . . , n — 1. There must exist i such that (u , . p, Ui+1 . p) ^ a . Take q and z such
that Uj+i = reni_>2 (uj). As Ui. p ^ Uj+i . p, an r G bu(g, s) must exist such that
p 5Í bu(g, s). It cannot be r < p since r is maximal in U{. Thus p < r. It remains
to show that p is not a proper prefix of q. If it were, then g|p would be a binding
position in both m . p and Ui+1 .p. We would get

ui+i .p=[z:r G bu(g, uj)](uj) . p (by 5.7 (i))
= [2 : r G bu(<7,Ui)Ip](uj .p) (by 4.7 (ii))
= [z : r G bu(g|p , itj .p)](uj .p) (by 5.9)
= ren9 |p_> z(u i .p) (by 5.7 (i))

A Framework for Studying Substitution 651

contradicting (ui. p, Ui+\ . p) ^ A.
(<=) Take s 6 s and denote x — s .q. Define t — ren9_^(s) where 0 is fresh,

so also t 6 s. Then in terms s . p and t . p, variables x and z, respectively, occur
at position r | . These occurrences are free because the position q binding r in s
would otherwise be a proper refinement of p contradicting the assumption. Hence
(s .p,t.p) $ a giving p ^ sigpos s. •

Lemma 7.3 implies that sigpos s can actually be determined by any s £ s. As
another implication, we have fposs C sigpos s for any s.

Propos i t i on 7.4. Let a be a type-preserving mapping of variables to a-classes of
terms, and s be an a-class. Assume q £ sigpos s. Then q £ sigpos [crj (s) whereby
\cr\ (s). q = [a\ (s . q).

Proof. Take s £ s and <7, a(x) £ cr(x) for each variable x, such that applying [a\
to s is sound. Then [crj (s) 6 L°"J (s)-

Suppose q £ sigpos [crj (s). Lemma 7.3 states that there exists a binding posi-
tion q' £ pos [crj (s) such that q ft q' and q is a prefix of some r £ bu(<7', [<rj (s)).
If q' pos s, then p < q' for some p £ fpos s by Theorem 4.5 and thus also p < r.
Now q < p since q < r and q £ poss, contradicting q ft q'. Hence q' £ poss which
gives r £ bu(g',a) by Proposition 5.13. But then Lemma 7.3 gives q £ sigpos s,
contradicting the assumption. Hence we have proved that q £ sigpos [crj (s).

By Proposition 5.14, [oj (s). q = [cr'J (s . q) where a' works differently from a
on variables x £ supper only which are not free at q in s. Suppose z being such a
variable. Let pb and pa be the binding occurrence and root of binding, respectively,
which bind z at q in s. Suppose moreover that z occurs free at some position r
in s . q. Then pa is the longest prefix of qr being a root of binding of z in s, so
qr £ bu(pb,s) . For a fresh variable z', define t = renpf,_,.z< (,s). We have clearly
qr £ bu (pb, t) and therefore z' occurs free at r in t. q. On one hand, (s, t) 6 a by
the choice of t. On the other hand, (s . q,t .q) £ a since the terms have different
free variables. This contradicts the significance of q for s.

So [a'J (s . q) = | crj (s . q) as no variable on which a and a' work differently
occurs free in s. q. Hence \aJ (s) . q £ [crj (s . q)/a = [crj (s .q), we have done. •

T h e o r e m 7.5. Let <Ti,cr2 be any type-preserving mappings of variables to a-
classes of terms. Then [trij ; [cr2J = [cri ; Lcr2jJ •

Proof. We show for any a-class s that [o ^ J (L<TiJ (s)) = [a-1 ; L°"2JJ (s) .

Take p £ fposs. Then p £ sigposs whereby x ~ s .p is a variable.
Thus Proposition 7.4 gives [c r i j (s) . p = [c i j (s . p) = [c r i j (a;) = o~i(x) and
'L*2J(L<T1J(*))-P - k 2 j (k i j (a) - p) = M (*i(x)) = ; L^JX*) =
[»•l; L^JJ (x) = L ; W^W (s.p) = L^i; L°"2jj (s) .p.

Take now q x fposs. Take s £ s and 01, <t2, cr3, cr1(a;) £ cri(x), <72(2;) £ a2(x),
a3(x) 6 (cri ; l<T2])(x) for every variable x, such that applying [f i j and |_cr3J
to s, as well as [a2] to [^ l j (s), is sound. So [cr2J ([<TiJ (s)) = [a2\ (Lfi j (s))/a
and [<ri ; [er2JJ (s) = [ct3J (s) /a . Clearly _o\\ and Lcr3J do not replace at q when

652 Harmel Nestra

applied to s. Also [02] does not replace at q when applied to [a~ij (s) since even if
[c t i J (s) . q = s .q were a variable, it would not be free in s and the same root of
binding would bind it also in [ctJ (s). Hence [02J (L^iJ (s)) •q = s .q = [0-3 J . q.

Now theorem 3.5 applies and gives the needed result. •

References
[1] Abadi, M., Cardelli, L., Curien, P.-L., Levy, J.-J.: Explicit substitutions. Jour-

nal of Functional Programming 1 (1991) 375-416

[2] Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University
Press (1998)

[3] Barendregt, H. P.: The Lambda Calculus. North-Holland (1984)

[4] Fiore, M., Plotkin, G., Turi, D.: Abstract Syntax and Variable Binding. Pro-
ceedings of the 14th Ann. IEEE Symp. in Logic in Computer Science. IEEE CS
Press (1999) 193-202

[5] Gabbay, M., Pitts, A.: A New Approach to Abstract Syntax Involving Binders.
Proceedings of the 14th Ann. IEEE Symp. in Logic in Computer Science. IEEE
CS Press (1999) 214-224

[6] Hindley, J. R.: Basic Simple Type Theory. Cambridge University Press (1997)

[7] Nestra, H.: Handling Substitution without Induction. In: Piliere, C. (ed.): Pro-
ceedings of the ESSLLI-2000 Student Session. University of Birmingham (2000)
178-188.

[8] Nestra, H.: A Framework for Studying Substitution. In: Gyimothy, T. (ed.):
Seventh Symposium on Programming Languages and Software Tools. University
of Szeged (2001) 184-198

[9] Pfenning, F., Elliott, C.: Higher-Order Abstract Syntax. The ACM SIGPLAN
'88 Conference on Programming Language Design and Implementation (1988)

[10] Rosen, B. K.: Tree-Manipulating Systems and Church-Rosser Theorems. Jour-
nal of the Association for Computing Machinery 20 (1973) 160-197

[11] Stoughton, A.: Substitution Revisited. Theoretical Computer Science 59
(1988) 317-325

[12] Sun Y.: A Framework for Binding Operators. PhD thesis, LFCS, Edinburgh
(1992)

[13] Sun Y.: An algebraic generalization of Frege structures—binding algebras.
Theoretical Computer Science 211 (1999) 189-232

[14] Talcott, C.: A theory of binding structures and applications to rewriting.
Theoretical Computer Science 112 (1993) 99-143

