
Acta Cybernetica 15 (2002) 669-682.

Platform Independent Tool for Local Event
Correlation

Risto Vaarandi*

Abstract
Event correlation plays a crucial role in network management systems,

helping to reduce the amount of event messages and making their meaning
clearer to a human operator. In early network management systems, events
were correlated only at network management servers. Most modern network
management systems also provide means for local event correlation at agents,
in order to increase the scalability of the system and to reduce network load.
Unfortunately all event correlation tools currently available axe commercial,
quite expensive, and highly platform dependent. The author presents a free
platform independent tool called sec for correlating network management
events locally at an agent's side.

1 Introduction
Network management systems were introduced in the middle of the 1980s, in order
to reduce the management costs of wide and local area networks, servers, computer
applications, and services1. One important goal that network management systems
were designed to achieve was the automation of system monitoring. A primitive
example of the monitoring automation is a shell script that executes once in every
5 minutes and uses the ping application to check the availability of some important
servers. If a server is not responding to the ping, the script sends an SMS-message
to the system administrator 's mobile phone.

Today's network management system consists of managed objects and manager
objects. A managed object is a device, a computer, or an application that requires
monitoring and management. A manager object is usually a dedicated manage-
ment server tha t runs specific software (such as HP Open View [7, 8] or Tivoli [2])
to perform monitoring and management tasks on managed objects. In order to
monitor or manage a particular managed object, the management server contacts
an agent tha t runs at the same physical node as the managed object and acts on
behalf of the management server (see Figure 1).

* Department of Computer Engineering, Tallinn Technical University, Ehitajate tee 5, Tallinn
19086, Estonia, e-mail: r i s to .vaarandif leyp.ee

xThe term network management has become rather generic in its nature, and it is very often
used to refer to a server, application, and service management as well.

705

706 Risto Vaarandi

Important status changes of managed objects that are observed by agents are
called events. Examples of events are a link loss on a router, a high load on a
server, or a broken TCP connection between two applications. The management
server discovers new events by polling agents or by receiving notifications from
them. Discovered events are presented as event messages to human operators at
the management server's console.

Figure 1: An example network management system (managed objects are depicted
as. bold circles).

If a network management system is a larger one with hundreds or thousands
of managed objects, the amount of event messages often becomes too large to be
handled effectively, by a human. Especially undesireable situation is an event mes-
sage storm - the flood of event messages triggered by a single hardware, software,
or network failure.

In order to reduce the amount of event messages seen by the operator and to
cope with various kinds of event message storms, event correlation is used. Event
correlation is a process where irrelevant events are filtered out from being presented
to a human operator and new events are derived from existing ones. For instance,
events "Internal temperature of a device is too high" and "Device is unreachable"
could be replaced by a single event "Device stopped working due to high internal
temperature".

Most modern network management platforms provide event correlation engines
for solving event correlation tasks [2, 6]. Since early network management systems,
the network management server has been a primary location for the event correla-
tion engine, that allows the engine to see the events of all managed objects and to
correlate events even if they come from different sources.

That location of a correlation engine poses a potential threat to the scalabil-

Platform Independent Tool for Local Event Correlation 707

ity of the system, since the engine processes the events of the whole system and
can therefore become a bottleneck. In particular, if agents do not analyze and
filter events locally and leave all that, work to the correlation engine, the network
management server and the engine itself could soon become overloaded. From the
point of view of scalability, it would be ideal to have intelligent agents that could
correlate as much events as possible locally, leaving only those events to the central
correlation engine at which the knowledge of global context is necessary in the cor-
relation process. Additional event correlation at an agent's side would shift load
from a single network management server to many agents, reducing the possibility
that the management server will become a bottleneck. Local event correlation at
agents would also reduce network load, since fewer events would be reported to the
network management server.

Most modern network management platforms (such as HP Open View and
Tivoli) address this problem and provide means for local event correlation [6, 7,
16].

There are two methods for correlating events locally (see Figure 2). The first
method is to redirect an agent event stream (all events that go from the agent
to a network management server) to a local event correlation engine, so that the
network management server receives output events of the correlation engine. The
other method is to correlate events at their source, whereby the correlation engine
receives its input events from a local event source (such as application's logfile),
directing its output events to the agent, while the agent event stream goes directly
to the management server and remains uncorrelated. In that case the correlation
engine is not located between the agent and the network management server, but
between the agent and the local event source.

Figure 2: The methods of local event correlation.

In this paper the author presents a platform independent tool for local event
correlation called sec (Simple Event Correlator), that implements a small set of
correlation operations essential in practice. Sec can be used as a correlation engine
for the whole agent event strearri, but also for individual event sources that are files
(or accessible through the file interface).

The rest of this paper is organized as follows: section 2 gives an overview of event

708 Risto Vaarandi

correlation techniques and operations; section 3 discusses related work; section 4
contains a short description of sec; section 5 discusses correlation rule types imple-
mented in sec; section 6 describes an experiment for measuring sec performance;
section 7 discusses the current status of sec and provides availability information;
and section 8 concludes the paper.

2 Event correlation
Over the past ten years, many event correlation techniques have been introduced.
Meira [14] provides a good overview of existing approaches.

One of the common approaches today is rule-based correlation. In the. rule-
based correlation, all knowledge necessary for event correlation is contained in a
rule base, where each rule has the form IF condition THEN action. The rule-based
correlation is suitable for cases where relations between events are well known and
can be clearly formulated. The main disadvantage of the rule-based correlation
is the lack of the learning process - past experience is not used for deriving new
knowledge. This disadvantage has motivated several event correlation approaches
that involve various other AI techniques, most notably neural networks. Although
these techniques are quite appealing, they often suffer from the fact that their rea-
soning process remains unclear for the end user. For instance, neural network based
computer- applications sometimes produce results that are entirely unexpected even
for the author of the application. However, it is. essential for an AI application to
reason in a manner that is clear and transparent for humans - if end users do
not understand why and how the application reached its output, they tend to ig-
nore the results computed by that application [15]. In the case of rule-based event
correlation engines, the event correlation process is fully determined by the user-
customizable rules. Since this allows the end users to fully control the work of the
event correlation engine, the rule-based approach is the most accepted approach
among network management engineers, and also most widely employed in today's
event correlation engines [2, 4, 6, 10, 13]. In order to address the knowledge acqui-
sition and learning problems of the rule-based approach, data mining techniques
have been successfully used [11].

Jakobson and Weissman [10] provide a classification of operations that can be
carried out on events during the correlation process (this classification has been
adopted in a number of research papers like [11, 14]):

• Compression - substitute repeated events A with a single event A.

• Suppression - suppress an event A, if a certain operational context is present.

• Filtering - suppress an event A, if one of its parameters has a certain value.

• Counting - count repeated events A and if their number exceeds a certain
threshold, replace them with a single event B.

• Scaling - in the presence of a certain operational context, replace an event A
with an event B, where one of the B's parameters takes a higher value.

Platform Independent Tool for Local Event Correlation 709

• Generalization - replace an event A with a more general event B, if a certain
operational context is present.

• Specialization - replace an event A with a more specific event B, if a certain
operational context is present.

• Temporal relationship - correlate events depending on the order of their arrival
and/or the time of their generation.

• Clustering - generate an event A, if more complex correlation patterns are
detected on received events. Clustering operation may take into account the
result of some external tests, or combine several correlation operations listed
above.

An important characteristic of an event correlation engine is its performance.
Although there is no formal definition for "good performance", the event correlation
engine is considered to perform well if it is able to process event floods (hundreds of
input events per few seconds) in a timely manner, and if it consumes little system
resources (most notably CPU time and memory). The latter condition is especially
important for the local event correlation, since the local hardware resources are
often quite limited (e.g., consider an event correlation task on a workstation with
weak CPU and small amount of memory).

In the following section related work on event correlation is discussed.

3 Related work
Commercial network management platforms like HP Open View and Tivoli provide
network management agents that usually have some support for event correlation
at event sources. The logfile monitoring module of the HP Open View ITO agent
supports compression and counting operations [7]. In the case of Tivoli Distributed
Monitoring, the customer has many predefined modules that support event corre-
lation at event sources and can develop his/her own module if desired [16].

In order to extend the capabilities of standard agents, some network manage-
ment platforms provide full-featured correlation engines for agents, designed for
correlating the event stream of an agent that goes to a management server. For ex-
ample, HP ECS correlation engine [6] that usually runs on a network management
server is also integrated into some versions of the HP Open View ITO agent [7].

There are some obstacles to using commercial correlation engines, however.
The first problem is that commercial engines are quite expensive; for instance,
the price of HP ECS is around US$30,000. Many of them work only with one
particular network management platform, so the customer is unable to use them
independently or with other platforms.

The second problem is that commercial correlation engines have a limited sup-
port for different operating systems. For example, HP ECS is currently integrated
only into HP-UX, Solaris, and Windows NT versions of the HP Open View ITO
agent. The support for different operating system platforms could be improved by

710 Risto Vaarandi

putting the source code of the correlation engine into a public domain (in order to
encourage porting to other platforms), but this is not acceptable for many vendors.

Since a lot of research has been done in the field of event correlation over the past
few years, some non-commercial correlation engine prototypes have been created
(experimental engines presented in [5], [13], and [17] are good examples of such
work). There is, however, no freeware correlation engine available yet which would
be mature enough for using in a production environment. OpenNMS team that is
working on the BlueBird project2 also plans to implement the MAJI correlation
engine after first versions of BlueBird have been released, but currently only the
code specification of MAJI is available.

Few event correlation operations are also implemented in some freeware log-
file monitoring tools. Swatch [9] supports event compression operations, allowing
one. to suppress repeated events in a given time frame. Logsurfer [12] is a more
sophisticated tool that also supports temporal relationship operations.

One feature that almost all logfile monitors lack of is the possibility to recognize
events which span over multiple logfile lines. In most logfiles each event is described
by a single line, but there are still cases where one event covers two or more physical
logfile lilies. For example, cron daemons of HP-UX and Solaris write the time and
the description of a single event to two consecutive lines. In addition to providing
event correlation facilities for logfiles, sec also addresses this problem.

In the following section design goals and a short description of sec are presented.

4 Design goals and description of sec
Sec is a rule-based event correlation tool that was designed for UNIX-like operating
systems. The rule-based approach was used because it is most clear and transparent
for the end user (see section 2). Sec receives its input events from a file stream,
reading new information line by line, and produces output events by executing
user-specified shell commands. Design goals of sec were as follows:

• It should be able to handle input events regardless of their format.

• It should not be tied to any particular operating system.

• It should not be tied to any particular network management platform, but
provide generic interface that makes integration with any platform possible.

• It should be possible to use it as a correlation engine for individual file-like
event sources (e.g., logfiles).

• It should implement a set of correlation operations that are essential in prac-
tice, covering all operation types listed in section 2.

• It should be able to handle input events even if they arrive at a high rate.
2BlueBird project is an attempt to create a freeware network management platform, in or-

der to provide a powerful and cost-effective alternative to expensive commercial platforms. See
http://www.opennms.org for the current status of BlueBird and MAJI.

http://www.opennms.org

Platform Independent Tool for Local Event Correlation 711

To be able to handle input events regardless of their, format, sec uses regular
expressions for recognizing them. Regular expressions are a natural choice because
they are able to match complex patterns in input data. Sec also supports the use
of regular expressions that match patterns spanning over multiple input lines, so
input events are not restricted to have a "single line" format.

To achieve the independence from operating system platforms, the author de-
cided to write sec in Perl. Perl is a widely used scripting language that runs on
almost every UNIX flavour and is a standard part of many UNIX distributons. This
means that applications written in Perl are able to run on a wide range of operat-
ing systems. In addition to these advantages, the support for regular expressions
is integrated directly into the Perl language core. Perl programs are also almost as
fast as programs written in C.

Perl 5.005 or higher is required to run sec, because it uses some Perl constructs
for compiling regular expressions that were introduced in version 5.005. Sec has
currently been tested on Linux, HP-UX, and Solaris, but it should run on most
modern UNIX flavours.

If a regular file or standard input is specified as an input file for sec, sec acts
as a correlation engine for that individual event source. In order to make the
integration with arbitrary network management platform possible, sec also supports
named pipes as input files. Specifying a named pipe as input is a convenient way
to achieve communication between sec and network management agents, since the
agent that supports external correlation engines can redirect its event stream from
network management server to the pipe3. Events that the agent writes to a named
pipe can have any format (and even span over multiple lines), as'long as they can
be matched by regular expressions.

At startup sec reads rules from its configuration file, opens the input and waits
for new bytes to arrive. When new data become available, sec reads the data and
updates its internal input buffer that holds N last input lines. Rules are processed
then (in the same order as they were specified in the configuration file), comparing
the condition part of every rule with the current content of the input buffer. After
a match has been found and the action part of the rule has been executed, sec
will optionally continue the search for new matches. The rules allow hot only shell
commands to be executed as actions, but they can also:

• create and delete contexts that decide whether a particular rule can be applied
at the moment, . • .

• generate new events that will serve as an input for other rules,

• reset correlation operations that are performed by other rules.

This makes, it possible to combine several rules and form more complex event
correlation schemes.

In the following section rule types implemented.in sec are discussed.
3 The author has successfully integrated sec with the HP Open View ITO agent, using a named

pipe for event passing.

712 Risto Vaarandi

5 Description of event correlation rule types im-
plemented in sec

In the design process of sec the following question had to be answered - what
rules should be implemented and why? Since sec was intended to be a tool that
implements rules essential in practice, a number of event correlation guides from
Cisco [1], IBM [3, 4], and HP [7, 8] were used for answering the question. Rules
were derived from suggestions and example cases that were presented in more than
one source document.

Rules that are currently implemented in sec support basic forms of compression,
suppression, filtering, counting, temporal relationship, and clustering operations (see
section 2). By combining several rules, many variants of every correlation operation
from section 2 can be configured.

Sec configuration file consists of rule definitions, one definition per line, with
whitespace-bar-whitespace string used as a field separator. Most rule definitions
have the following parts:

• Rule type - one of the Single, SingleWithScript, SingleWithSuppress, Pair,
PairWithWindow, SingleWithThreshold, SingleWith2Thresholds, Suppress,
and Calendar.

• Behaviour after match - specifies whether the search for matching rules
should continue after a match has been found between the current rule and
input line(s). One of TakeNext and DontCont strings must be specified as a
value.

• Pattern and its type - specifies the pattern that the input line(s) will be
compared with in order to discover an event. Both regular expressions (type
RegExp) and strings (type SubStr) can be used as patterns. If the type is
followed by a number, the number specifies how many input lines will be used
in comparison.

• Event description - textual description of the discovered event.

• Action - the action that will be executed when an event has been discovered.
Actions include executing a shell command, creating a context, deleting a con-
text, and resetting a correlation operation (e.g., reset the counting operation
that is currently performed by some other rule).

• Counting and timing constraints - optional constraints for implementing
correlation operations like counting and temporal relationship.

• Context - the optional context where the rule is considered valid at runtime.

In the following sections sec rule types are described.

Platform Independent Tool for Local Event Correlation 713

5.1 Single rule
This rule does not implement any of the correlation operations but takes immediate
action if certain line(s) appear in the input. It can be used as a building block
for creating more complex event correlation operations. Here are some example
definitions of this rule:

Single I DontCont I SubStr I start of maintenance I

maintenance I create

Single | DontCont I SubStr I end of maintenance |

maintenance | delete

Single | DontCont I RegExp2 I "database error:\n(.*) |

DB error: $1 | shellcmd event.sh '"/,s" I ¡maintenance

The first rule creates the context maintenance if a line containing the substring
"start of maintenance" appeared in the input. The second rule deletes that context
if a line containing the substring "end of maintenance" was observed. The third
rule generates an output event by executing

event.sh "DB error: <error description>"

(%s is replaced by the event description), if a database error occurs and the.
application is currently not maintained (this example assumes tha t two consecutive
lines appear in the input in the case of a database error - the line "database error:"
followed by a line with a detailed error description).

5.2 SingleWithScript rule
This rule was designed to integrate external programs with sec event flow, imple-
menting a form of the clustering operation. If a matching event appears in the
input, an external program given by the rule definition is executed, and if the pro-
gram returns zero for its exit value, then an action is executed. T h e definition of
this rule is identical to the definition of the Single rule, except of the additional
parameter that specifies an external program.

5.3 SingleWithSuppress rule
This rule was designed to implement one of the basic forms of the compression
operation. If an event A is observed, the rule executes an action immediately but
ignores all other instances of the event A that will appear during next t seconds.
This operation is commonly needed in practice - it is implemented, for example,
in HP Open View Network Node Manager as one of the basic correlation schemes
[8]. It is also provided as an example correlation scheme in Tivoli manuals [3]. In
addition, rules with the same semantics are supported by logfile monitoring tools
like Swatch [9] or the logfile encapsulator of HP OpenView ITO [7].

714 Risto Vaarandi

If a single hardware, software or network failure causes hundreds of events to
appear in the input, this rule is useful for acting on the first matching event and
ignoring all the other for a given time period. For example, if a file system becomes
full, then every a t tempt to write to a file in that file system causes "file system full"
message to be logged with syslog in many UNIX environments. If the file system
that was filled up is used extensively, thousands of identical lines may be written
to a logfile within few seconds, while only the first of them is important and all the
other redundant4 .

Here is an example rule for handling these messages in HP-UX, tha t compresses
all "file system full" events from a logfile into a single event (compression takes place
for 15 minutes), and notifies local agent by calling notify.sh script:

SingleWithSuppress | DontCont | RegExp |

(\S+) [fF]ile system full | File system $1 full I

shellcmd notify.sh '7.s" | 900

Note tha t sec considers events identical only if their descriptions are identical,
so the event "File system /home full" will not be suppressed if it appears after
"File system /usr full" event.

5.4 Pair rule

This rule was designed to implement one of the most common forms of the temporal
relationship operation. If an event A is observed, the rule executes an action but ig-
nores all other instances of the event A as long as an event B has not been observed.
When the event B is observed, the rule will complete its work by executing another
action. Like the previous operation, it is implemented in HP OpenView Network
Node Manager as one of the basic correlation schemes [8]. It is also provided as an
example in Tivoli manuals [3, 4].

This rule is useful for reducing two or more events into an event pair. A good ex-
ample of application of this rule is NFS monitoring. When the NFS server becomes
unreachable, the NFS client starts to log "NFS server not responding" messages.
When the NFS server becomes reachable again, a single "NFS server ok" message
is logged. Here is an example rule for events from a Solaris NFS client logfile tha t
ignores redundant error events for 1 hour, producing an event both for the s tar t
and for the end of an error condition:

Pair I DontCont I RegExp I NFS server (\S+) not responding I

$1 is not responding I shellcmd notify.sh '"/.s" I

SubStr I NFS server $1 ok I $1 OK I shellcmd notify. sh '"/.s" I 3600

4Some implementations of syslog daemon cope with this and similar situations by implementing
event compression internally.

Platform Independent Tool for Local Event Correlation 715

5.5 Pair With Window rule

This rule was designed to implement another variant of the temporal relationship
operation. If an event A is observed, the rule waits for t seconds to see if an event
B also appears (all subsequent instances of A are ignored during the waiting). If
the event B is not observed within t seconds, then the action corresponding to the
event A is executed; if the event B arrives on time, the action corresponding to the
event B is executed.

This rule is needed when an error event becomes relevant if the error is not
cleared after a certain amount of time. This is often the case for network events
- in Cisco event correlation guide several common network management scenarios
with Cisco devices are provided, where the presence of this rule is required for
event correlation [1]. It is also provided as an example correlation scheme in Tivoli
manuals [3].

Here is an example rule for events from a Cisco router logfile (the router must
have syslog message logging enabled) tha t detects situations where the router does
not come up within 5 minutes after an administrator has rebooted it with the reload
command:

PairWithWindow | DontCont I RegExp I

(\S+) \d+: 7.SYS-5-REL0AD I $1 did not come up after reboot I

shellcmd notify.sh '"/.s" I RegExp | ($1) \d+: '/.SYS-5-RESTART I

$1 successful reboot I shellcmd notify.sh '"/.s" I 300

5.6 SingleWithThreshold rule

This rule was designed to implement the counting operation. The rule counts
instances of an event A during t seconds,, and if the number of events becomes
equal to the threshold n before t seconds have elapsed, the rule executes an action.
All subsequent instances of the event will be ignored for the rest of the time window.
The time window is sliding - if less than n but more than 1 events were observed
during t seconds, the beginning of the window is moved to the time moment when
the second event took place.

Like the previous rule, this rule is often needed in correlating network events
[1]. A rule with similar semantics is also supported by the logfile encapsulator of
HP OpenView ITO [7].

This rule is useful when an event must occur repeatedly to become relevant,
and a single instance of that event can be ignored. Here is an example rule for
events from a Solaris bad logins logfile tha t execütes notify.sh script, if three login
failures for the same user on the same terminal were observed within 1 minute:

SingleWithThreshold | DontCont I RegExp | (\S+):(\S+): I

Repeated login failures for user $1 at tty $2 I

shellcmd notify.sh "7.s" | 60 I 3

716 Risto Vaarandi

5.7 SingleWith2Thresholds rule

This rule was designed to implement another variant of the counting operation.
The rule counts instances of an event A during t seconds and executes an action
if a given threshold n is exceeded (exactly like the previous rule does). Wha t is
different from the previous rule is that the counting continues after the action has
been executed - if no more than n' events A will be observed during t' seconds, the
rule will execute another action. Both time windows are sliding.

• This rule is useful when both the start and the end of the error condition can
be discovered by counting. Here is an example rule for events from a Cisco router
logfile that detects CPU overload conditions (two SYS-3-CPUH0G messages are
logged within 1 minute) and also generates an event when CPU load is normal
again (no SYS-3-CPUHOG messages are observed during 15 minutes):

SingleWith2Thresholds | DontCont | RegExp I

(\S+) \d+: '/.SYS-3-CPUH0G I $1 CPU overload I

shellcmd notify.sh '"/.s" I 60 I 2 I $1 CPU load normal |

shellcmd notify.sh '"/.s" I 900 I 0

5.8 Suppress rule

This rule was designed to implement suppression and filtering operations. Here
is an example of the suppression operation (if the context my context is present,
suppress all "file system full" events):

Suppress I RegExp | (\S+) [fF]ile system full I mycontext

Here is an example of the filtering operation (all file systems belonging to the
volume group vgOl are filtered out from being reported as full):

Suppress I RegExp I /dev/vgOl/(\S+) [fF]ile system full

5.9 Calendar rule

This rule was designed for executing actions at specific times. Unlike all other rules,
this rule reacts only to the system clock, ignoring other input. Time moments when
the rule must act are specified in crontab-style. This rule can be used as a building
block for creating more complex time-related event correlation operations, or for
other time-related purposes.

The following example rule creates the context NightContext every day at 11PM;
the context has a lifetime of 9 hours:

Calendar I 0 23 * * * I NightContext | create 32400 .'/.s

Platform Independent Tool for Local Event Correlation 717

5.10 Other variants of correlation operations
The rules that were described in the previous sections implemented some basic
forms of compression, suppression, filtering, counting, temporal relationship, and
clustering correlation operations. Other variants of correlation operations can be
configured by combining several rules with appropriate actions.

Here is an example of the specialization operation that generates an error event
if the application failed to process three subsequent incoming queries. If this was
caused by a high CPU load, a more specific error event is generated. . . .

Create the context "cpu_overload" if the CPU load is

too high, and delete it if the load is normal again

Pair I DontCont | SubStr | CPU load is too high I

cpu_overload | create I SubStr I CPU load is normal |

cpu_overload I delete | 86400

Count the number of failed queries, and generate an

event "3 subsequent failed queries" if the threshold

is exceeded

SingleWithThreshold | DontCont I SubStr I

query processing failed I 3 subsequent failed queries I

event I 600 I 3

Reset the counting done by the previous rule if some

query is processed successfully (event text "3

subsequent failed queries" is used to refer to the

pending counting operation)

Single 1 DontCont I SubStr I query processing successful I

3 subsequent failed queries I reset

Generate a more specific error event for output

Single I DontCont | SubStr |: 3 subsequent failed queries | •

Three subsequent queries have failed due to high CPU load I

shellcmd sendevent. sh "'/,s" I cpu_overload

Generate a general error event for output

Single | DontCont I SubStr I 3 subsequent failed queries I

Three subsequent queries have failed |

shellcmd sendevent. sh "'/.s"

The following section describes an experiment for measuring sec performance.

718 Risto Vaarandi

6 Performance of sec

This section describes an experiment for measuring sec performance that was con-
ducted in the Union Bank of Estonia. The experiment lasted for one week. Per-
formance measurements were obtained from the computer that was running sec to
monitor the banking card service.

The purpose of the card service is to offer the clients an opportunity to use
banking cards for payment and for cash withdrawal. Card service consists of the
following components - automatic teller machines (ATMs), point of sale terminals
(POS terminals), and a card server. An ATM is a device that is primarily used
for cash withdrawal by the clients. A POS terminal is a device that merchants
rent from the bank, so that their customers can use banking cards for payment.
The card server is a service process that receives requests from ATMs and POS
terminals and processes them if the client who issued the request is authorized for
it.

The card server keeps a detailed log about card service events (client requests,
card server answers, card server internal errors, etc.), that served as an input for
sec. During the experiment, new events arrived at a high rate - during daytime
non-peak hours, about 3000-4000 new events (ca 300-400 KB of new information)
were appended to the log every minute. At peak hours (between 4.00 and 6.00.
PM), the arrival rate was 5000-6000 events (ca 500-600 KB) per minute.

Due to the high arrival rate of events, it was decided to put sec between the event
source and the agent (and not between the agent and the network management
server), in order to. correlate events.as early as possible. For security reasons, it
was also decided that sec must not run on the card server machine, but on a separate
computer and receive the card server log through a named pipe (card server log
was sent over the network and written to the pipe by a separate shell script; see
Figure 3).

Figure 3: The experiment for measuring sec performance.

Platform Independent Tool for Local Event Correlation 719

A low-end desktop computer with 200MHz Intel Pentium processor5, 32Mb of
memory, and Linux as an operating system was used for running sec. Since HP
Open View is used as the network management platform in the Union Bank of Esto-
nia, the HP OpenView ITO agent was also installed on that machine. Sec was con-
figured to use opcmsg utility for producing output events (opcmsg is an HP Open-
View tool for generating events that are received by the local ITO agent). There
were 63 rules specified in the configuration file of sec: 29 Single rules, 9 Pair rules,
1 Pair With Window rule, 5 SingleWithThreshold rules, 17 Single With2Threshold
rules, and 2 Suppress rules.

Figures 4-7 display data about CPU utilization and 1-minute load average of
the computer that was running sec during the experiment6.

Figure 5: 1-minute load average (average values).

Graph data were gathered at 1 minute intervals. Since it was impossible to
accommodate all data points to the graphs (due to their limited size), every line

5 The processor did not have MMX support.
6Graphs were produced with RRDtool by Tobias Oetiker.

720 Risto Vaarandi

pixel represents the average value for 17 minute period in Figure 4 and 5, and the
maximum value for 17 minute period in Figure 6 and 7.

Figure 6: CPU utilization (maximum values).

Figure 7: 1-minute load average (maximum values).

About 2.5 million events were matched by the rules during the experiment (that
makes about 4 matched events per second as an average). Those input events were
reduced to 101 output events by sec.

Performance data that were gathered shows that sec performs well under heavy
event load. Though low-end hardware was used for conducting the experiment, sec
was able to process input events in a timely manner without imposing heavy load
on the local hardware resources. During the experiment, sec consumed only 4MB
of physical memory. Despite the high arrival rate of events, 1-minute load average
exceeded the level of 1.0 only at peak hours. Although the computer CPU was
relatively slow, it was completely utilized only occasionally - in Figure 6, there are
only 17 data points with the value of 100 per cent.

Platform Independent Tool for Local Event Correlation 721

7 Current status of sec and availability

One year of experience with sec has proved that it is an efficient tool for correlat-
ing massive event streams locally. Sec has been successfully applied for network
management in a number of companies in Europe and U.S., mainly in telecom and
financial institutions.

It is difficult to estimate the total number of companies and organizations which
are using sec, since no registration is required to download it. However, at the time
of writing this, the sec download web-page had been visited more than 3,000 times.
The author has received reports of successful use of sec on Solaris, HP-UX, Linux,
and Windows2000 platforms.

In October 2001, the first version of sec-2.0 was released, that implements a
number of new action types, augments the properties of a context, and supports
enchanced configuration file syntax.

Sec is distributed under the terms of GNU General Public License, and can be
downloaded from http://kodu.neti.ee/~"isto/sec/.

8 Conclusion

Although commercial network management platforms provide means for event cor-
relation, there are still some problems that hinder the use of commercial event
correlation engines - commercial engines are quite expensive, many of them do not
work independently or with other network management platforms, and they also
have a limited support for different operating system platforms. Since, a lot of re-
search has been done in the field of event correlation over the past few years, some
non-commercial correlation engine prototypes have been created. There is, how-
ever, no freeware correlation engine available yet which would be mature enough
for using in a production environment. > ..•

In this paper the author presented a free platform independent tool for local
event correlation called sec (Simple Event Correlator), that implements a set of
correlation operations essential in practice. Sec can be used as a correlation engine
for the whole agent event stream, but also for individual file-like event sources.

For a future work, the author plans to use sec in other research areas which
are similar to network management- and which could benefit from event correlation
techniques (e.g., intrusion detection).

Acknowledgments

Author wishes to thank the Union Bank of Estonia for supporting this work. Author
also thanks Prof. Ahto Kalja for providing remarks and suggestions that helped to
improve the quality of this paper.

http://kodu.neti.ee/~%22isto/sec/

722 Risto Vaarandi

References
[1] Cisco Systems. Cisco Network Monitoring and Event Correlation Guidelines.

Reference Guide, Cisco Systems Inc., 1999.

[2] Catherine Cook, Budi Darmawan, Mike Foster, Stephane Gillardo, Vasfi Gucer,
David Kong, Dinesh Kumar, Edson Manoel, Fred Plassman, Roger Reynolds,
Kenshoh Sugitani, Samson Yiu. An Introduction to Tivoli Enterprise. Tivoli
Redbook SG24-5494-00, IBM Corp., 1999.

[3] Paul F e a r n , Raj Chityal, Nancy Jarin, Elise Kushner, Gordon Lilly, Darren
Pike. TEC Implementation Examples. Tivoli Redbook SG24-5217-00, IBM

. Corp.,. 1998.

[4] Paul Fearn, Arne Olsson, Larry Bajuk, David Edwards, Peter Glasmacher,
Gareth Holl, Istvan Szarka. Integrated Network Management Solutions Using
NetView Version 5.1. Tivoli Redbook SG24-5285-00, IBM Corp., 1999.

[5] Boris Gruschke. Integrated Event Management: Event Correlation using De-
pendency Graphs. Proceedings of the 9th IFIP/IEEE International Workshop
on Distributed Systems: Operations and Management, 1998.

[6] Hewlett-Packard. Event Correlation Services - Designer's Guide. HP document
J1095-90304, Hewlett-Packard Company, 1998.

[7] Hewlett-Packard! HP OpenView IT/Operations Concepts Guide. HP document
B6941-90002, Hewlett-Packard Company, 1999.

[8] Hewlett-Packard. Managing Your Network with HP OpenView Network Node
Manager. HP document J1240-90021, Hewlett-Packard Company, 1999.

[9] Stephen E. Hansen and E. Todd Atkins. Automated System Monitoring and
Notification With Swatch. Proceedings of USENIX 7th System Administration
Conference, 1993.

[10] G. Jakobson and M. Weissman. Real-time telecommunication network man-
agement: Extending event correlation with temporal constraints. Integrated
Network Management IV, 1995.

[11] Mika Klemettinen. A Knowledge Discovery Methodology for Telecommunica-
tion Network Alarm Databases. PhD Thesis, University of Helsinki, Finland,
1999.

[12] Wolfgang Ley and Uwe Ellerman. logsurfer(l) and logsurfer.conf(4) manual
pages. See http://www.cert.dfn.de/eng/logsurf/

[13] G. Liu, A. K. Mok, E. J. Yang. Composite Events for Network Event Correla-
tion. Proceedings of the 6th IFIP/IEEE International Symposium on Integrated
Network Management, 1999.

http://www.cert.dfn.de/eng/logsurf/

Platform Independent Tool for Local Event Correlation 723

[14] Dilmar Malheiros Meira. A Model For Alarm, Correlation in Telecommunica-
tion Networks. PhD Thesis, Federal University of Minas Gerais, Brazil, 1997.

[15] Elaine Rich and Kevin Knight. Artificial Intelligence. 2nd ed., McGraw-Hill,
New York, 1991.

[16] Stefan Uelpenich, Robi Banerjee, Peter Holm, Alain Queffelec. Creating Cus-
tom Monitors for Tivoli Distributed Monitoring. Tivoli Redbook SG24-5211-00,
IBM Corp., 1998.

[17] Hermann Wietgrefe, Klaus-Dieter Tuchs, Klaus Jobmann, Guido Carls, Peter
Froehlich, Wolfgang Nejdl, Sebastian Steinfeld. Using Neural Networks for
Alarm Correlation in Cellular Phone Networks. International Workshop on
Applications of Neural Networks in Telecommunications, 1997.

