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Temporal Logic with Cyclic Counting and the 
Degree of Aperiodicity of Finite Automata* 

Z. Esik* and M. Ito* 

Abstract 

We define the degree of aperiodicity of finite automata and show that for 
every set M of positive integers, the class Q A M of finite automata whose 
degree of aperiodicity belongs to the division ideal generated by M is closed 
with respect to direct products, disjoint unions, subautomata, homomorphic 
images and renamings. These closure conditions define q-varieties of finite au-
tomata. We show that q-varieties are in a one-to-one correspondence with lit-
eral varieties of regular languages. We also characterize Q A M as the cascade 
product of a variety of counters with the variety of aperiodic (or counter-free) 
automata. We then use the notion of degree of aperiodicity to characterize the 
expressive power of first-order logic and temporal logic with cyclic counting 
with respect to any given set M of moduli. It follows that when M is finite, 
then it is decidable whether a regular language is definable in first-order or 
temporal logic with cyclic counting with respect to moduli in M. 

1 Introduction 
The richness of the theory of regular languages is due to the many different char-
acterizations of (subclasses of) regular languages. By the theorem of Biichi and 
Elgot, a language is regular iff it is definable in monadic second-order logic over 
words [3, 6] involving the predicate < and a predicate corresponding to each let-
ter of the alphabet. Moreover, by classic results of Schiitzenberger [14] and Mc 
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Naughton and Papert [11], a language is star-free iff it is definable in first-order 
logic iff it is accepted by an aperiodic (or counter-free) finite automaton. Thus, it is 
decidable for a regular language whether or not it is definable in first-order logic, or 
has a star-free expression. Moreover, by a classic result of Kamp [10] and Gabbay 
et al. [8], the logic LTL of Linear (Propositional) Temporal Logic over words has 
the same expressive power as first-order logic. 

The above results have been extended in several directions involving, in addition 
to words, also w-words, trees and other structures, see [18, 19] for overviews. In 
order to increase the expressive power of first-order logic on words, two kinds of 
cyclic counting have been studied: the extension of first-order logic with numerical 
predicates Cfn(x) that holds for a position a: in a word iff x is congruent to r modulo 
m, see [1, 16], and the extension with modular quantifiers, cf. [17, 16]. In this paper 
our concern is the first type of counting. In [1], Barrington, Compton, Straubing 
and Therien gave a decidable characterization of the languages definable in first-
order logic with counting with respect to the predicates Cfn(x), where the modulus 
m ranges over all positive integers and r is any nonnegative integer < m. However, 
this characterization does not answer the question that, given a finite set M of 
moduli, what languages are definable by using only predicates involving moduli in 
M. Our aim in this paper is to provide an analysis of the above mentioned result 
of Barrington, Compton, Straubing and Therien that will provide an answer to the 
previous question. Moreover, we also study an extension of temporal logic yielding 
the same expressive power. 

We define the degree of aperiodicity of finite automata and show that for every 
set M of positive integers, the class Q A M of automata whose degree of aperiodicity 
belongs to the division ideal generated by M is closed with respect to direct prod-
ucts, disjoint unions, subautomata, homomorphic images and renamings. These 
closure conditions define q-varieties. We show that q-varieties are in a one-to-one 
correspondence with literal varieties of regular languages. We also characterize 
QA M as the cascade product of a variety of counters with the variety of aperi-
odic (or counter-free) automata. We then use the notion of degree of aperiodicity 
to characterize the expressive power of first-order logic and temporal logic with 
cyclic counting with respect to any given set M of moduli. When M is finite, this 
characterization is effective. 

The paper is organized as follows. In Section 2 we define literal varieties of 
regular languages, q-varieties of finite automata, and establish an Eilenberg-type 
correspondence between them. In Section 3, we recall the notion of cascade product 
of finite automata together with a few basic facts regarding regular languages ac-
cepted by cascade products. We also define cascade products V * W of q-varieties. 
Then, in Section 4, we study q-varieties of finite automata of the form Cm * V , 
where M is a given subset of the positive integers and CM is the q-variety generated 
by all counters whose length belongs to M. Then, in Section 5, we define the degree 
of aperiodicity of finite automata and show that for every set M as above, the finite 
automata whose degree of aperiodicity belongs to the division ideal generated by 
M form a q-variety QA M which is the cascade product of CM with the q-variety 
of aperiodic (counter-free) automata. Moreover, we show that the degree of ape-



Temporal Logic with Cyclic Counting and the Degree of Aperiodicity of... 3 

riodicity of a finite automaton is computable. We also show that a language can 
be recognized by an automaton in QA M iff it can be constructed from the finite 
languages and the languages consisting of all words over the underlying alphabet 
whose length is a multiple of some integer in M by the boolean operations and 
concatenation. Then, in Section 6 we prove that the very same condition charac-
terizes the languages definable in first-order logic with cyclic counting with respect 
to moduli in M. When M is empty or M is the set of all positive integers, these 
results correspond to those of Schiitzenberger [14], Mc Naughton and Papert [11], 
and Barrington et al. [1] mentioned above. In Section 7, we provide several exten-
sions of propositional temporal logic with cyclic counting and show that all these 
are equivalent. Moreover, we show that temporal logic with cyclic counting with 
respect to any given set M of moduli has the same expressive power as first-order 
logic with counting with respect to moduli in M. When M is empty, this fact 
corresponds to the result of Kamp [10] and Gabbay et al. [8]. Section 8 contains a 
summary of the results obtained and outlines some future results. 

We have tried to make the paper accessible for a wider audience. 

2 An Eilenberg correspondence 
A finite alphabet, or just alphabet, for short, is any finite nonempty set whose 
elements are called letters. When £ is an alphabet, we let £* denote the free 
monoid of words over £ including the empty word e equipped with the operation of 
concatenation as product. For any word u = aq ... a n _i , where the a,i are letters, 
we call the integer n the length of u and denote it by |u|. We let £™ denote the set of 
all words in £* of length n. The prefix order < on words is defined by u < v iff there 
is a word 2 with uz = v, i.e., when u is a prefix of v. Suppose that h is a (monoid) 
homomorphism £* A*, where E, A are finite alphabets. We call h nonerasing if 
ah ^ e holds for all a G E. Moreover, we call h a literal homomorphism. if ah 6 A 
holds for all a G E. 

A language (over E) is any subset of £*. Languages over E are equipped with 
several operations including the boolean operations U, fl and 0 (complement), prod-
uct (or concatenation), Kleene star (*), left and right quotients, homomorphisms, 
inverse homomorphisms, etc. These are defined in the standard way. When L C E* 
and u G £*, we let u~1L and Lu~l denote the left and right quotients of L with 
respect to u, respectively: 

u_1L = {v G £* : uv G L] 
L u = {v G E* : vu G L} 

We will sometimes identify a word w with the singleton set {w} and write w* for 
the Kleene star {w}* of the language {w}. 

Recall that a language L C E* is called regular if it can be constructed from the 
finite subsets of £* by the regular operations of union, product and Kleene star. It 
is well-known that the class of regular languages is closed with respect to all of the 
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operations mentioned above. Moreover, by Kleene's classic theorem, the regular 
languages are exactly those languages that can be recognized by finite automata. 

In this paper, by a finite automaton, or just automaton, we mean a system 
Q = (Q, E, •) consisting of a finite nonempty set Q of states, a finite input alphabet 
E and a right action of E on Q, i.e., a function •: Q x E -¥ Q, which is extended to 
an action of E* on Q in the usual way. Below we will usually write just qu for q • u, 
for all q £ Q and u £ E*. The function q 1-4 qu is called the function induced by u, 
denoted u®. When we want to emphasize that the input alphabet of an automaton 
is some alphabet E, we call it a E-automaton. Suppose that L C E* and that 
Q = (Q, E, •) is a E-automaton. We say that L is recognizable in Q, or that L can 
be recognized by Q, if there are a state qo £ Q, the initial state, and a set F C Q 
of final states such that L = {u € E* : q0u £ F}. Moreover, a language is called 
recognizable if it can be recognized by some finite automaton. The aforementioned 
theorem of Kleene equates the recognizable languages with the regular languages. 

Recall [5, 12] that a stream (or class) V of regular languages is a nonempty 
collection E*V of regular languages over E, for each finite alphabet E. Streams of 
regular languages are ordered by set inclusion: we write V C V if £*V C E*V, for 
all finite alphabets E. 

Definition 2.1. A literal variety (of languages), or l-variety, for short, is a stream 
V of regular languages closed with respect to the boolean operations, left and right 
quotients and inverse literal homomorphisms. Thus, if Li,L,2 £ £*V and a £ E, 
then Li U L2, L\ fl L2, a~lL\ and L^a-1 are all in E*V. Moreover, if h is a 
literal homomorphism A* -» E*, so that Ah C £, then L i / i - 1 £ A*V. 

A *-variety (-(--variety, respectively) of languages is a literal variety which is 
closed with respect to all (nonerasing, respectively) inverse homomorphisms. 

Example 2.2. It is clear that 1-varieties form a complete lattice, in fact, an alge-
braic lattice. The largest l-variety contains, for each E, all the regular languages 
in £*, and the smallest only the empty language and the language E*. When 
{Vi : i £ 1} is a directed set of 1-varieties, the least upper bound V = Vie/ ^ is 
just the union | J i e J Vi, so that E*V = | J i e / E * V i , for each E. 

Example 2.3. Of course, every *-variety or +-variety is a literal variety. For each 
E, let £*£ consist of all regular languages L in E* such that for all words u,v £ E*, 
if u € L and |u| = |i>|, then v £ L. Then £ is a literal variety which is not a +-variety 
or a *-variety. 

The 1-varieties contained in C correspond to those boolean algebras of regular 
languages over the one-letter alphabet closed with respect to quotients. We give 
some examples of such varieties. 

Suppose that d > 1 is an integer. The l-variety Cd is that generated by the 
one-letter regular language (ad)*, considered as a subset of a*. It is not hard to 
see that each language in T,*Cd is a finite union of languages of the form (Ed)*E i , 
where i is an integer in [d\ = {0 ,1 , . . . , d — 1}. 

Suppose that M is a subset of the set Nat of positive integers. Then let CM 
denote the smallest l-variety containing all of the Cm with m £ M. It is clear that 
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CM is the union of those CD where d is contained in the division ideal (M] generated 
by M. (Of course, (M] consists of all divisors of least common multiples of finite 
families of elements of M.) Thus, CM Ç CW iff [M] Ç (M']. We write C for C№T. 

Further examples of literal varieties that are not ^-varieties or +-varieties will 
be given later. 

Remark 2.4. The *-varieties defined above are the same as the *-varieties of 
Eilenberg [5], see also [12]. However, Eilenberg's +-varieties [5] are streams of 
regular languages containing only nonempty words closed with respect to the boolean 
operations, left and right quotients, and nonerasing inverse homomorphisms. If V 
is a + -variety as defined in Definition 2.1, and i / £ + W = { L f l £ + : L £ £*V}; for 
each £, where £+ denotes the free semigroup of all nonempty words over £, then 
W is an Eilenberg +-variety. This mapping V > VV is surjective but not injective. 

Suppose that W is an Eilenberg +-variety. For each alphabet £, define 

£*V = {L,LUe:L<=Z+W}. 

Then V is a +-variety, as defined in Definition 2.1, which is mapped to W. If for 
some £, there is a finite nonempty set in £+W, then this is in fact the unique 
+-variety mapped to W. However, ¿/£*V = {0,£*} and £*V = {0,e, £+,£*}, for 
each alphabet £, then the same Eilenberg +-variety W corresponds to both V and 

V: 

£+W = {0,£+}, 

for each £. 
A stream (or class) V of finite automata is a nonempty collection £ V of finite 

£-automata, for each finite alphabet £. Streams of finite automata are ordered by 
set inclusion in the same way as streams of regular languages. 

The notions of subautomaton and quotient (or homomorphic image) of an au-
tomaton are defined as usual. When Q = (Q, £, •) and Q' = (Q', S, •) are automata 
with the same set of input letters, the direct product Q x Q' = (Q x Q',Y,,-) is 
equipped with the pointwise action, so that (q, q') • a = (qa,q'a), for all q € Q, 
q' G Q' and a £ £. The disjoint sum (or disjoint union) of Q and Q' is also defined 
in the standard way: Q © Q' = (Q x {0} U Q x {1}, £, •), where (q, 0)a = (qa, 0) 
and (q\ l)a = (q'a, 1), for all q £ Q and q' £ Q'. Suppose now that Q = (Q, £, •) 
and Q' = (Q',A, •), where £ and A are any alphabets. We say that Q can be 
constructed from Q' by renaming, or that Q is a renaming of Q', if Q = Q' and 
there is a function h : £ -» A such that qa = q{ah), for all q £ Q and a £ £. 

Definition 2.5. A q-variety of finite automata is any stream of finite automata 
closed with respect to the operations of taking subautomata, quotients, direct prod-
ucts, disjoint sums and renamings. 

We use the prefix to distinguish q-varieties from varieties (or pseudo-varieties) 
that are nonempty classes of automata with thé same input alphabet closed with 
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respect to the operations of taking subautomata, quotients, and direct products, 
and to express that q-varieties are also closed with respect to the quasi-direct product 
[9]. 

Since a q-variety V is nonempty and closed with respect to subautomata, quo-
tients, direct product and renaming, closure under disjoint sum is clearly equivalent 
to the requirement that the two-element discrete automaton with a single input let-
ter belongs to V. (A E-automaton is called discrete if it is a disjoint sum of trivial, 
i.e., one-state E-automata.) 

A *-variety (+-variety) of finite automata is a q-variety that is also closed with 
respect to the operation Q >-> Q* (Q Q+). Here, the operation Q 1-4 Q* is 
defined as follows. Let Q = (Q, E, •), say, and let M(Q) denote the monoid of 
Q. Thus, the elements of M(Q) are the functions u® : Q Q induced by the 
words u G £*, and the product operation in M(Q) is function composition written 
left-to-right. Now Q* is (Q, M(Q), •), where for each q E Q and u £ £*, q • uQ is 
just qu = q-u, the image of q under i f i . The automaton Q+ is defined in the same 
way except that its alphabet is S(Q) = {u® : u £ E + }, the semigroup of Q. 

Remark 2.6. It is clear that *-varieties of finite automata correspond in a bijective 
manner to varieties of finite monoids as defined in [5, 12]. Given a *-variety V of 
finite automata, the corresponding variety of finite monoids consists of all monoids 
that are isomorphic to the monoid of some automaton in V. However, a similar 
function mapping +-varieties of finite automata to varieties of finite monoids is 
only surjective, but not injective. See also Remark 2.4-

Example 2.7. The set of all q-varieties equipped with set inclusion is an algebraic 
lattice. The largest q-variety contains, for each E, all E-automata, and the smallest 
one only the discrete E-automata. When {Vi : i £ 1} is a directed set of q-varieties, 
the least upper bound \ / i e I Vj is just the union Uie/ 

Example 2.8. For each E, the q-variety L consists of all autonomous E-automata, 
i.e., all the automata Q = (Q, E, •) such that qa — qb, for all q £ Q and a,b € E. 

Given an integer d > 1, the q-variety C^ has, as its members in EC,*, all the 
E-automata that are disjoint sums of E-counters of length a divisor of d. A £-
counter is an automaton (Q, E, •) such that each letter in E induces the same cyclic 
permutation Q —» Q. The length of the counter is \Q\, the number of states in Q. 
Note that Cd is contained in L. 

When M is a set of positive integers, then we define CM = VmeM ^m, so 
that Cm is the least q-variety containing all of the C m with m £ M. Note that 
Cm is just the union of the Cd with d any integer in (M]. Thus, Cm C Cm ' iff 
(M] C (M'\. We denote CNat by C. 

Suppose that V is a q-variety. The corresponding stream V of regular languages 
contains those languages in E*V that can be recognized by an automaton in EV 
(by a suitable initial state and a set of final states). Thus, a language L C E* 
belongs to £*V if and only if there is an automaton Q = (Q, E, •) in V, a state 
qo £ Q and a set F C Q such that the language recognized by Q with initial state 
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qo and final states F is L. Alternatively, a (regular) language L C £* belongs to 
£*V if and only if the minimal automaton recognizing L is in SV. 

The following variant of Eilenberg's variety theorem [5, 12] follows by standard 
arguments. 

Theorem 2.9. The correspondence V i V is an order isomorphism from the 
lattice of q-varieties of finite automata onto the lattice of l-varieties of regular lan-
guages. The same correspondence establishes an order isomorphism between *-
varieties (+-varieties) of finite automata and *-varieties (+-varieties) of regular 
languages. 

Proof. We briefly sketch the proof of the first statement. If L is in £* V, then L is 
accepted by an automaton in V by a suitable initial state and a set of final states. 
By taking the same initial state and the complement of the set of final states, the 
same automaton accepts Lc. It is also known that any quotient of L can be accepted 
by the same automaton with suitable initial and final states. Closure with respect 
to set union follows from the fact that the union of languages accepted by Q\ and 
Q2 can be accepted by the direct product of Q1 and Q2. It is clear that Vj C V2 
implies Vi C V2. Suppose now that Vi C V2. Assume that Q = (Q,E,-) £ Vi 
is generated by a single state qo, so that each state q £ Q is of the form qo'u, for 
some u £ £*. For each state q £ Q, let Lq denote the language accepted by Q with 
initial state qo and single final state q. Since Lq £ Vi and Vi C V2, there exists an 
automaton Qq £ V2 accepting Lq with some initial state iq and some set of final 
states Fq. Now the direct product of the Qq contains a subautomaton that can be 
mapped homomorphically onto Q : take those tuples of the direct product accessible 
by a word from that tuple whose components are the respective initial states i,r It 
follows that each state s = (sq)q^Q has a unique component sq with sq £ Fq, and 
that the map taking s to this component sq is a homomorphism onto Q. Since V2 
is closed with respect to direct product, subautomata and homomorphic images, 
it follows that Q is in V2. If Q £ Vi is not generated by a single state, then Q is 
a quotient of the disjoint sum of its (maximal) one-generated subautomata. Since 
q-varieties are closed with respect to disjoint sum, it follows by the above argument 
that Q £ V2. Finally, the fact that the assignment V V is surjective can be 
seen as follows. Given an 1-variety V, consider the stream V of automata that only 
accept languages in V, so that Q = (Q, £, •) £ V iff for each qo £ Q and F C Q it 
holds that the language accepted by Q with initial state qo and set of final states 
F is in V. Then V is a q-variety mapped to V. Indeed, the closure properties 
of V guarantee that V is a q-variety. Moreover, every language L £ £*V can be 
accepted by an automaton in V, namely the minimal automaton QL corresponding 
to L, since any language accepted by this automaton is a boolean combination of 
quotients of L. • 

Example 2.10. The 1-variety corresponding to L is the variety £ defined in Ex-
ample 2.3. For each M, the 1-variety corresponding to Cm is CM-
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Example 2.11. We call a finite automaton Q = (Q, E, •) nil-potent if there is an 
integer n such that qu = qv holds for all words u, v £ E* of length > n. (Note that 
the usual definition of nilpotent automata [9] requires that qu = q'v holds for all 
states q,q' and words u,v £ £* of length at least n.) Nilpotent automata form a 
-(--variety denoted N. The corresponding +-variety M of languages consists of all 
finite and cofinite languages in £*, for each alphabet E. 

Example 2.12. A finite automaton Q = (<3,E, ) is called definite if there exits 
some n > 0 such that for all q £ Q and u, v £ £*, if the suffixes of u and v of length 
at most n agree, then qu = qv. (Again, the usual definition of definite automata [9] 
requires more.) For example, any shift register (£", E, •) with u • a being the length 
n suffix of ua, for each u £ E n and a £ A, is definite. 

Definite automata form a +-variety D with corresponding +-variety of lan-
guages denoted V. We call T> the +-variety of definite languages. For each E and 
L C £*, we have L £ E* iff there is an integer n > 0 such that for all words 
u,v £ E* such that u and v have the same suffixes of length at most n, it holds 
that u £ L iff v £ L. (See [5].) 

Example 2.13. A finite automaton Q is called aperiodic, or counter-free [5], if 
M(Q) (or S(Q)) contains only trivial subgroups. Aperiodic automata form a *-
variety A with corresponding language variety A. We have that N C D C A and 
M CD C A. 

3 Cascade product 
We call a function r : E* -> A* sequential if r preserves prefixes, i.e., for all words 
u and v in £*, if u < v in the prefix order then T(U) < T(V). It then follows that 
for each word u £ E* there is a (unique) function, in fact a sequential function 
TU : £* A* with R(uv) = T(U)TU(V). If in addition r preserves the length of the 
words, then we call r a literal sequential function. 

Sequential functions are known to be the functions inducible by sequential trans-
ducers, and literal sequential functions by Mealy automata [9], which are a re-
stricted type of transducers. The (literal) sequential functions r : E* —> A* that 
can be induced by finite transducers obey the condition that the functions ru , 
u £ E* form a finite set. Such (literal) sequential functions are said to be of finite 
state. Note that any (literal) homomorphism is a finite state (literal) sequential 
function. 

Suppose that Q = (Q, E, •) is a finite automaton. A Mealy automaton [9] over Q 
is the extension of Q by an output alphabet A and an output function ¡JL : Q x E —> 
A. We let Q(A,n) denote this extension. Clearly, each state q £ Q may be used to 
induce a finite state literal sequential function ¡j,q : E* —• A* defined by /ig(e) = e 
and fxq(ua) = ¡j,q(u)fi(qu, a). We use Mealy automata extensions to define cascade 
products. 

Suppose that Q = (Q, E, •) and R = (R, A, •) are finite automata and suppose 
that we are given a Mealy automaton extension Q(A,n) of Q. Then the cascade 
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product of Q with R determined by /x is defined to be the automaton Q xM R = 
(iQ x R, E, •), where (q,r)-a = (qa,rfi(q,a)) = (qa,rnq(a)), for all q £ Q and r € R. 
Note that it follows by induction that (q,r) •u = (qu,rnq(u)), for all u £ E*. 

The semigroup theoretic concepts corresponding to the cascade product are the 
semidirect product and the wreath product, cf. [5, 12]. The following fundamen-
tal fact is a variant of Straubing's "wreath product principle" [4] to the cascade 
product. 

Proposition 3.1. A language is recognized by a cascade product Q x^R with initial 
state (qo,fo) iff it is a finite union of languages of the form K fl /x"1 (L), where K 
is a language recognized by Q with initial state qo and L is a language recognized 
by R with initial state ro • 

The cascade product may be extended to q-varieties. 

Definition 3.2. Suppose that V and W are q-varieties. The q-variety V * W ¿5 
that generated by all cascade products Q xM R with Q an automaton in EV, R an 
automaton in AW, and Q(A,n) a Mealy automaton extension of Q. 

It is immediate to prove that when both V and W are -I—varieties (*-varieties, 
respectively), then so is V * W. 

The 1-variety corresponding to V*W has the following description. The result is 
an adaptation of a similar characterization of languages recognizable by semigroups 
in the wreath product of two semigroup varieties, see [12]. 

Theorem 3.3. Suppose thatV and W are q-varieties with corresponding l-varieties 
V and W. Then for each E, the l-variety V * W corresponding to V * W contains 
exactly those languages in E* that are finite unions of languages of the form K fl 
/u-1(I<), where K £ E*V, L £ A*W and where n : £* —> A* is a sequential function 
induced by some state of a Mealy automaton extension of an automaton in V. 

We may as well require that the same finite state literal sequential function \i 
appears in all terms of the finite union. Theorem 3.3 relies on Proposition 3.1 and 
the following fact. 

Theorem 3.4. For any q-varieties V and W and any E, an automaton Q is in 
£ ( V * W ) iff Q is a quotient of a subautomaton of a cascade product Rx^S, where 
R £ EV and S £ AW such that i?(A,/x) is a Mealy automaton extension of R. 

Proof. Let K denote the stream determined by those automata Q that can be 
constructed as quotients of subautomata of cascade products of automata R £ V 
and 5 € W. It is clear that K C V * W . Also, K is easily shown to be closed with 
respect to subautomata, quotients, direct products and renaming. Moreover, K 
clearly contains all discrete automata. Hence, K is closed with respect to disjoint 
sum. It follows that V * W C K. • 

We say that a q-variety V is closed with respect to the cascade product if for any 
cascade product Q x^R with Q,R £ V, it holds that Q xM R £ V. For example, 
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N ,D , A are all closed with respect to the cascade product, cf. [5]. Moreover, for 
any set M of positive integers, Cm is closed with respect to the cascade product, 
as is any q-variety of autonomous automata. 

We omit the straightforward proofs of the following facts. 

Proposition 3.5. Any q-variety contained in L is closed with respect to the cascade 
product. If V and W are q-varieties such that V is contained in L and W is closed 
with respect to the cascade product, then V * W is also closed with respect to the 
cascade product. 

Proposition 3.6. Suppose that {Vj : i £ 1} is a directed set of q-varieties and 
V = Uie / V t - Then for any q-variety W, we have V-kW — \Ji€lVi*:W. Suppose 
that Vi denotes the l-variety corresponding to Vj, for each i £ I, and suppose that 
V denotes the l-variety corresponding to V. Then for any l-variety W, it holds that 
V*W = U i6/(Vi*W). 

Thus, the * operation is continuous in its first argument. In a similar way, it is 
continuous in its second argument. 

As an immediate application of Proposition 3.6 we have that 

Cm * V = (J C d * V 
d€(M] 

and 

CM * V = ( J Cd*V, 
de(M] 

for all q-varieties V and 1-varieties V, and for all M C Nat. 

4 Varieties CM * V 
In this section, we study q-varieties of the form Cd * V and Cm * V, and the 
corresponding 1-varieties CD*V and CM * V. 

Definition 4.1. For any automaton Q = (<3,£,-) and integer d > 0, let Q^ 
denote the automaton (Q,Y,(d\ •), where T,^ consists of all letters (u), where u is 
any word of length d in £*, i.e., any element o}Hd, and where 

q-(u) = qu, 

for all q £ Q and u £ £d. 

Thus, Q^ arises from Q by letting the words in £* of length d be the input 
letters. For each u £ £ d , the function induced by (u) in Q^ is the same as the 
function induced by u in the automaton Q. Besides we will also use the 
automaton Q[d\ which is the extension of Q^ by a letter ao inducing the identity 
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function Q-+Q. Thus, Q(d) = (Q, £ ( d ) U {a0}, •), where q • a0 = q, for all q £ Q, 
and where for all q £ Q and u £ q • (u) is defined as above. Note that the 
monoids M(QW) and M{Q[d)) are both isomorphic to the submonoid Md{Q) of 
the monoid M(Q) of automaton Q consisting of all functions Q Q induced by 
those words in S* whose length is a multiple of d. 

Proposition 4.2. Each, automaton Q is a homomorphic image of a cascade product 
of an automaton which is a direct product of a counter of length d with a shift 
register, and the automaton Q^. 

Proof. Suppose that Q = (Q, £ , •), so that Q[d) is (Q, £<d> U {<z0}, •) defined above. 
Let Cd denote the counter of length d whose input alphabet is £ and whose 

states are the integers in [d\, so that i • a = i + 1 mod d, for all i £ [d\ and a £ E. 
Let Dd-i denote the shift register of length d - 1 over £. Thus the states of Dd-i 
are the words in E d _ 1 , and the transition is defined so that for each u € E d _ 1 and 
a £ £, state u • a is the suffix of ua of length d— 1. Define 

/»:([(flx £ d _ 1 ) x E £ (d) U {a0} 

by 

(U u) a) = I a° i ^ d ~ 1 
" ' '' ' {ua) otherwise. 

We thus obtain the cascade product Q' = {Cd x Dd-1) xM Q[d\ We claim that 
there is a surjective homomorphism h : Q' —» Q. Indeed, for each state (( i ,u),q) of 
Q', define 

((i,u),q)h = qv, 

where v denotes the suffix of u of length i. In particular, ((0, u)yq)h = q, for all 
u £ E d _ 1 and q £ Q, so that h is surjective. We show that h is a homomorphism. 
Assume that ((¿, u),q) is a state of Q' and a £ E . li i ^ d — 1 then 

((i,u),q)ah = ((i + 1, u'a), q)h 
= qva 

= (((i,u),q)h)a, 

where v denotes the suffix of u of length i and u' the suffix of u of length d — 1. 
When i = d — 1, we have 

((d — l,u),q)ah = ((0 ,u'a),qua)h 
= qua 

= (((d-l,u),q)h)a, 

where u' is the same as above. • 
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Remark 4.3. The same argument proves the following stronger version of Propo-
sition 4-2. Suppose that R is a subautomaton ofQsuch that for each q £ Q there 
exists a state r £ R and a word u 6 E* with |«| < d such that ru = q holds in Q. 
Then automaton Q is a homomorphic image of a cascade product of an automaton 
which is the direct product of a counter of length d with a shift register, and the 
automaton R. Indeed, if we replace Qwith R in the above proof, the same ar-
gument works. The assumption that each q £ Q be of the form ru with r £ R and 
|it| < d is needed to show that h is surjective. 

Recall that D denotes the -t—variety of definite automata, and that V denotes 
the corresponding -(--variety of definite languages. Note that for any *-variety V 
of automata and for any automaton Q and d > 1, we have Q^ € V iff Q^f1 £ V. 
Corollary 4.4. Suppose that V is a q-variety such that D * V C V. Then for any 
integer d> 1 and automaton Q, if Q^ £ V then Q £ Cd * V. 

We now want to prove a certain converse of the above result. 

Proposition 4.5. Suppose that V is a *-variety of automata and d > 1. If Q £ 
Cd * V, then Q(d\ and thus Q[d\ is inV. 

Proof. First assume that Q is 1-generated, i.e., there exists a state qo in Q such 
that each state is accessible from go by an input word. If Q £ Cd * V then, by 
Theorem 3.4, Q is a quotient of a subautomaton R' of a cascade product of an 
automaton C in Cd and an automaton R in V. Since Q is 1-generated, without 
loss of generality we may assume that so is R'. But in that case C may be chosen 
to be 1-generated as well, so that C is a counter in Cd and is thus a quotient of a 
counter of length d. We conclude that Q is a homomorphic image, with respect to a 
homomorphism h, of a subautomaton R' = (R', E, •) of a cascade product Cd xM i?, 
where Cd = ([d], E, •) is the counter of length d with ia = i + 1 mod d, for all i 6 [d\ 
and a 6 E, and R = (R, A, •) is an automaton in V. For each i € [d\, let Rz denote 
the set of all states r £ R such that G R'. It is clear that Ri / 0. Moreover, 
let hi : Ri ^ Q be defined by r K> h((i,r)), for all r € Ri. We turn each Ri into an 
automaton Ri = (Rn, •) with input letters in the set £(d). For each r € Ri and 
u £ Ed , let r • (u) = rm(u), the image of r with respect to the word which is the 
image of u with respect to the sequential function induced by state i of the Mealy 
extension Cd(A, ¡i). Since V is a *-variety and R £ V, it follows that each Ri is in 
V. Indeed, Ri can be constructed from R* by renaming and taking subautomata. 
Also, each hi is a homomorphism Ri —> and since h is surjective, each state 
in Q appears as the image of some state in Uigjd] Thus, the disjoint sum of the 
Ri can be mapped homomorphically onto proving that Q^ is in V (since V 
is closed with respect to disjoint sum). 

In the general case, Q is a quotient of the disjoint sum of its 1-generated sub-
automata Qi,...,Qn- If Q 6 Cd * V then each Qi belongs to Cd * V. Thus, by 
the above argument, we have Q^ £ V, for each i. Since V is closed with respect 
to disjoint sum, it follows that the disjoint sum of the Q ^ is also in V. But 
is a quotient of this disjoint sum, so that QW £ V. • 
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Call a q-variety V decidable if there is an algorithm to decide for any given 
automaton Q whether or not Q belongs to V. Similarly, call an 1-variety V de-
cidable if there is an algorithm to decide whether or not a regular language (given 
by an automaton or a regular expression) belongs to V. From Corollary 4.4 and 
Proposition 4.5 we have: 

Theorem 4.6. For any *-variety V of automata with D * V C V, and for any 
d > 1 and automaton Q, we have that Q E Cd * V iff Q^ E V. Thus, if V is 
decidable, then so is C¡¿*V. 

A first characterization of the languages in the variety Cd * V, where V is any 
1-variety of languages, may be obtained from the wreath product principle. Let 
E denote an alphabet and consider the E-counter Cd — ([d],E, •) with i • a = 
i + 1 mod d, for all i £ [d\ and a 6 E. Consider the alphabet [d\ x E and the 
identity function iTd • [ci] x E —¥ [d\ x E. Let Cd denote the literal sequential 
function induced by the Mealy extension Cd([d] x E, Hd) in state 0. Then any 
literal sequential function a : E* —> A* induced by a state of a Mealy extension 
of an automaton in Cd can be factorized as the composition of od with a literal 
homomorphism r : ([ci] x £)* —> A*. Thus, by the wreath product principle we get: 

Proposition 4.7. A language L C E* belongs to Cd*V iff L can be written as 

L = U t E ^ n or-i^), 
i€[d] 

for some languages Ki € ([d\ x £)*V, i 6 [d\-

When V corresponds to a *-variety V with D * V C V, we can use Theorem 4.6 
to derive an alternative characterization of the languages in Cd * V. 

Suppose that L C £* and d > 1. We define 

L{d) = {(uo) • • • (uk-i) : Uo • • • Mfc-i £ L, m € £d, i E [A;]}, 

so that LW c (£(d))*. Moreover, for each u E £* with \u\ < d, we define L ^ = 
(Lu- l )W. Thus, L ^ and each L ^ is a language in (E^)* , moreover, L ^ = 

Theorem 4.8. Suppose that V is a *-variety of automata with D * V C V, and 
suppose that V denotes the language variety corresponding to V. Then for any 
integer d> 1 and language L C £*, if L £ Cd*V then € V, for all w e E* 
with M < d. Moreover, if L^^ E V, for all u 6 E* with |u| < d, and ifV is closed 
with respect to right (or left) concatenation with letters, then L £Cd*V. 

Proof. Suppose first that L is in E*(Cd * V). Then L can be recognized by an 
automaton Q in Cd * V. By Theorem 4.6 we have that Q^ E V. But each of the 
languages L^d'u\ where u E £* with |u| < d can be recognized by For if L 
is recognized by Q ~ (Q, E, •) with initial state q0 and final states F, then Z,(d>") 
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is recognized by Q^ with initial state qo and final states Fu = {q 6 Q : qu € F}. 
Thus, each L(d-u) belongs to V. 

Suppose now that each belongs to V, for any u 6 E* with |u| < d, so 
that each L(d'u) can be recognized by some automaton Qu in E ^ V . For each u, 
let Ru = Qu x (U;fc6[d]Efc). We turn Ru into a E-automaton (Ru, E, •) by defining, 
for each (q,v) € Ru and a £ E, 

(q,v) a — | otherwise. 

Let Q'u = (q,e), q £ Qu- Then Q'u determines a subautomaton of R^ which 
is isomorphic to Qu• Moreover, (q, v) = (q,e)v, for each (q,v) € Ru- Thus, by 
Remark 4.3 and the assumption D * V C V, it follows that Ru belongs to Cd * V. 
Now for every u, the language Lu = (Lu"n (£d)* can be recognized by Ru, so 
that Lu G Cd*V. Since L = Uues-, |u|<d ^ follows now that L is in C¿*V. • 

Corollary 4.9. Under the assumption of Theorem 4-8, ifV is deeidable, then so 
is Cd * V. 

Proof. This follows either from Theorem 4.8 or from Theorem 4.6. • 

Corollary 4.10. Suppose that M C Nat and V is a q-variety with corresponding 
l-variety V. Suppose that D * V C V and that V is closed with respect to right 
concatenation by letters. An automaton Q is in CM * V i J there is some d £ (M] 
with QW € V. 

Moreover, a language L C S * is in CM * V iff there is some d G (M] 
such that L(d<u) £ V for each u E £* with |u| < d. 
Remark 4.11. Suppose that V is a q-variety with corresponding language variety 
V. / / V * D C V, then V is closed with respect to right concatenation by letters. To 
see this, suppose that Q = (Q, E, •) is an automaton in V that accepts the language 
L with initial state qo and set of final states F. Moreover, suppose that ao is a letter 
in E. We turn the set R = {e} U (Q x E) into a (Q x E)-automaton by defining 

x{q,a) = (q,a), 

for all x £ R and (q, a) G Q x E. It is clear that R is a definite automaton, in fact 
a reset automaton. Then let Q' be the T.-automaton 

Q xm R, 

where n is the identity function Q x E —> Q x E. It is an easy matter to show that 
the language accepted by Q' with initial state (qo, e) and final states Q x (F x {ao}) 
is Lao-

In particular, if V contains D and is closed with respect to the cascade prod-
uct, then the language variety corresponding to V is closed with respect to right 
concatenation by letters. 
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5 Degree of aperiodicity 
Following [1, 16], we call an automaton Q = (Q, S, •) quasi-aperiodic if there is no 
n such that M(Q) (or S(Q)) contains a nontrivial group all of whose members can 
be induced by length n words. (In the terminology of [7], Q is quasi-aperiodic if no 
nontrivial group divides M(Q) in "equal lengths". ) 

It is clear that any aperiodic automaton is quasi-aperiodic. On the other hand, 
a counter of length > 1 is quasi-aperiodic, but not aperiodic. Let QA denote the 
stream of quasi-aperiodic automata. The following theorem is a rephrasing of a 
result due to Barrington, Compton, Straubing and Therien. In its original formu-
lation, the theorem involved the wreath product instead of the cascade product. 

Theorem 5.1. (Barrington et al. [1]) QA = C * A . Thus QA is a q-variety. 

It is a well-known consequence of the Krohn-Rhodes theorem [5,16] that A*A C 
A, in fact equality holds. Thus, by Proposition 3.5, QA is also closed with respect 
to the cascade product. Moreover, since D C A, we have that D * A C A. Thus, 
by Theorem 4.6 we have: 

Corollary 5.2. For any d> 1 and automaton Q, we have Q £ iff Q^ £ A. 

Corollary 5.3. An automaton Q is quasi-aperiodic iff there is some integer d > 1 
such that Q(d) is aperiodic. 

Proof. If Q is quasi-aperiodic, then by Theorem 5.1, Q is in C * A. But since C is 
the union of the Cn where n is any positive integer, it follows that Q is in C^ * A, 
for some d > 1. Thus, by Corollary 5.2, Q^ is in A, so that Q^ is aperiodic. 

Assume now that Q^ is aperiodic, for some d > 1. Then, by Corollary 5.2 and 
Theorem 5.1, Q is in CD * A C QA. • 

Remark 5.4. Of course, it is possible to prove Corollary 5.3 without using Theo-
rem 5.1 and Corollary 5.2. Assume that Q^ is aperiodic for some d > 1. Then 
it cannot be the case that for some n, the set of all functions in M(Q) that can be 
induced by the length n words contains a nontrivial group G, since otherwise each 
element of G would be induced by a word of length dn, so that QW would not be 
aperiodic. The other direction can be verified by following the argument given in 
the proof of Theorem 5.10. 

Proposition 5.5. Suppose that Q is an automaton such that both Q^ and 
are aperiodic, where m,n > 1. If m and n are relative primes, then also Q is 
aperiodic. 

Proof. If Q is not aperiodic, then M{Q) contains a cyclic subgroup G = 
{go, • • • j 9p—i} °f prime order p > 1, where g0 = e denotes the unit. Unless g™ = e, 
it follows that each element of G can be induced by a word whose length is a mul-
tiple of m. (Indeed, if g™ = gt, where i ^ 0, then gi can be induced by a word 
whose length is a multiple of m. Since gi is a generator element of G, the same 
holds for any other group element.) But since Q(m) is aperiodic, this is impossible. 
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We conclude that gj71 = e. In the same way, g" = e. But then p divides both m 
and n, a contradiction. • 

Corollary 5.6. Suppose that Q is an automaton such that both Q^ and Q^ are 
aperiodic. If d denotes the g.c.d. of m and n, then QW is also aperiodic. 

Corollary 5.7. An automaton Q is quasi-aperiodic iff there is a least integer d > 1 
such that Q^ is aperiodic. Moreover, for an integer n > I we have that Q^ is 
aperiodic iff this integer d is a divisor of n. 

Definition 5.8. The degree of aperiodicity, or aperiodicity degree of an automa-
ton Q is the least integer d such that Q^ is aperiodic, if such an integer exists. 
Otherwise the degree of aperiodicity of Q is oo. 

Thus, by Corollary 5.7, the aperiodicity degree of Q is finite iff Q is quasi-
aperiodic. 

For any set M of positive integers, we let Q A M denote the stream of automata 
whose aperiodicity degree is finite and belongs to (M]. In particular, A = Q A ^ j = 
QA 0 and QA = QAN a t . We also denote QA d = for each d > 1. 

Theorem 5.9. Suppose that M is a set of positive integers. Then Q A M = C m *A. 
Thus, Q A M is a q-variety closed with respect to the cascade product. 

Proof. Suppose that the aperiodicity degree d of Q is finite and is contained in (M]. 
Then Q^ is aperiodic, so that Q £ Cd *A, by Corollary 5.2. But Cd C CM, thus 
Q £ CM* A. 

Suppose now that Q £ CM* A.. Then since Cm is the union of all varieties CD, 
where d belongs to (M], it follows by Proposition 3.6 that Q £ Cd* A, for some 
such d. Thus, by Corollary 5.2, Q^ is aperiodic. But then the aperiodicity degree 
of Q divides d, so that it also belongs to (M). • 

Theorem 5.10. There exists an algorithm to compute the aperiodicity degree of 
an automaton. 

Proof. Barrington, Compton, Straubing and Therien showed in [1] how to decide for 
an automaton whether or not it belongs to QA. (See also [7].) Our result follows by 
a slight modification of their argument. Given Q = (Q, •), let M=m(Q) denote 
the set of all functions Q —» Q induced by the words in £ m , for each m > 0. 
Then, compute the sets M=1(Q), M=2(Q),... until a repetition occurs, i.e., until 
M=m(Q) = M=n(Q), for some m < n. Then also M=m+T(Q) = M=n+r(Q), for 
all r > 1. In particular, we have M=d{Q) = M=d+n-m(Q) for some m < d < n 
such that n — 77i divides d. Thus, M=d(Q) = M=2d(Q)> showing that M=d(Q) is a 
subsemigroup of M(Q). In fact, M=d{Q) is the semigroup of all functions inducible 
by words whose length is a positive multiple of d. If Q is quasi-aperiodic, then, 
by definition, this semigroup contains no nontrivial group. It follows that Q ^ is 
aperiodic. Thus, to compute the aperiodicity degree of Q it suffices to find the least 
divisor d' of d such that ' is aperiodic. On the other hand, if M=d does contain 
a nontrivial group, then Q is not quasi-aperiodic and thus its aperiodicity degree 
is oo. • 
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Corollary 5.11. Suppose that (M] is a recursive set. Then QA M is decidable. 

Remark 5.12. The opposite direction is immediate: if QAM is decidable then 
(M} is recursive. 

Since QA M is a q-variety, there is a corresponding 1-variety that we denote 
by QAM• We also denote QA{D) by QAd- In particular, QAS^} = QA\ = A 
and Q^Nat = QA, the 1-variety corresponding to QA. Since QA M is the union 
of the varieties QAd, where d is any element of the division ideal (M] generated 
by M, also QAM is the union of the QAd, where d is any member (M]. The 
languages belonging to A have been characterized by Schiitzenberger as the star-
free languages. 

Theorem 5.13. (Schiitzenberger [14]) A language L C E* belongs to A iff L can be 
constructed from the finite subsets ofY,* by the operations of set union, complement 
and concatenation. 

A similar characterization of QA was obtained in [1]. 

Theorem 5.14. (Barrington, Compton, Straubing and Therien [1]) A language 
L C E* belongs to QA iff L can be constructed from the finite languages in E* and 
the languages (Ed)*, d > 1, by the operations of union, complement and concate-
nation. 

In the rest of this section we prove a refinement of these results. 

Theorem 5.15. Let M denote any subset of the set of positive integers. A language 
L C £* belongs to QAM iff L can be constructed from the finite languages in E* 
and the languages (Em)*, where m € M, by the operations of union, complement 
and concatenation. 

In our argument, we will make use of the following characterization of QAd, 
which is an immediate consequence of Theorem 4.8 and the fact that A is closed 
with respect to right concatenation by letters (in fact, by Schiitzenberger's theorem, 
A is closed with respect to concatenation). 

Corollary 5.16. For any integer d> 1 and language L C £*, if L G QAd then 
L{d,u) € for a l l u e £» w i t h |w | < d Moreover, if L ^ € A, for all u e E* 
with |u| < d, then L G QAd-

Proof of Theorem 5.15. First note that the language (Ed)*, where d is any member 
of the division ideal generated by M can be constructed from the finite languages 
and the languages (Em)*, rri 6 M by the operations of union, complement, and 
concatenation. This follows from the following two facts. If mi and m,2 are positive 
integers andm denotes their least common multiple (l.c.m.), then (Em)* = (Em i)*fl 
(Em2)*. Moreover, if d is a divisor of m, then for some finite F, (Ed)* = (E m )*F. 
Thus, since QAM — UDE(M] QAD, in the rest of the argument we may assume that 
M is itself a division ideal. 
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Suppose first that L £ QAM• Since QAM is the union of the QAM with 
M £ M, there exists an integer d £ M with L £ QAD. Thus, by Corollary 5.16, 
all the languages L^D'U\ u £ £*, |u| < d are in A. By Schiitzenberger's theorem, 
Theorem 5.13, it follows that each with u £ E*, |u| < d can be constructed 
from the finite languages in ( E ^ ) * by using the operations of union, complement 
and concatenation. Hence, each language Ku = Lu~l D (Ed)*, where u £ E* with 
|u| < d can be constructed from the finite languages in £* and the language (£d)* 
by the operations of union, complement and concatenation. (Take complement 
relatively to (£d)*.) Since L - Uue£*, |u|<d^«u> s a m e holds for L. 

Suppose now that L can be constructed from the finite subsets of E* and the 
languages (Em)*, where M £ M by the operations of union, complement and 
concatenation. Let d denote the l.c.m. of those integers m for which (£m)* is 
used in the construction of L. If we can show that belongs to A, for each 
v £ E* with |u| < d, then it follows by Corollary 5.16 that L £ QAd, and thus that 
L £ QAM• We will show that for each u,v £ E* with |u|, |u| < d, the language in 

L{d,u,v) = {(X o) . . . (X f c_1) : k > 0 , ux0...xk-!V £ L} 

is in A. Now this follows by a straightforward induction argument using Schiitzen-
berger's theorem, Theorem 5.13, and the following facts. Let u,v £ E* with 
| u | , |u| < d, a n d let L,LI,L2 C E*. 

1. If L is finite, then so is L^u'v\ 

2. (Li U L2)^'u'v) - L[d'u'v) U 4 d ' u , u ) . 
3. (Lc)(d'u'v) = 
4. If the length of each word in Li is at least |m| and the length of each word in 

i 2 is at least M, then (L1L2)(d'u'") = U|wz |=d L{d'u'w){wz)L[d'z'v). 

5. If the length of each word in L\ is less than |w| and the length of each word 
in L2 is at least |v | , then ( L ^ ) ^ = {Jwz=u< w€Li L{d>z'v). 

6. If the length of each word in Li is at least |u| and the length of each word in 
L2 is less than \v\, then ( ^ L , ) ^ = U2lu=„, w e L 2 L^u'z). 

7. If the length of each word in Li is less than |u| and the length of each word 
in L2 is less than then (L\L2)l<d'u'v^ is finite. 

• 
Corollary 5.17. Suppose that (M] is a recursive set. Then there exists an algo-
rithm to decide for a regular language L C £* whether or not L can be constructed 
from the finite languages and the languages (Em)* with m £ M by the operations 
of union, complement and concatenation. 

Remark 5.18. The converse of the above corollary is immediate. If there exists 
an algorithm to decide for a regular language L C E* whether or not L can be 
constructed from the finite languages and the languages (£m)* with m £ M by the 
operations of union, complement and concatenation, then (M] is a recursive set. 
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Remark 5.19. By the first part of the proof of Theorem 5.15, it follows that a 
language L C E " is in QAM iff L is a finite union 

L = ( J Lun(Em)*u, 

where each Lu is in A and m G (M]. 

6 First-order logic 
The expressive power of first-order logic on words with a unary predicate corre-
sponding to each letter of the alphabet and < as the only numerical predicate was 
characterized by McNaughton and Papert [11]. We let FO[<] denote this logic. 
Thus, for any fixed alphabet E, the atomic formulas of FO[<] are the propositions 
Pa{x) and x < y, where a is any letter of E and x and y are variables. Formulas can 
be constructed from the atomic formulas by the boolean connectives V and ->, de-
noting disjunction and negation, and existential quantification. The other boolean 
connectives and universal quantification can be introduced as abbreviations. Free 
and bound variables are defined as usual. We may assume that no variable is bound 
two or more times in a formula, or in a finite set of formulas, and that any free vari-
able is different from any bound variable. Below we will denote syntactic equality 
by =. 

Suppose that (p is a formula with free variables in X, and suppose that w G E* 
and A : X -t [|tu|], i.e., A maps variables in X to "positions" in w. We say that 
(w, A) satisfies <p, denoted (w, A) |= <p, if 

• <p = Pa(x) and the letter in w at position xX is a, or 
• tp = x < y and xX < yA, or 
• <p = tpi V tp2 and (w, A) |= ipi or (w, A) f= y>2, or 
• <p = -iip and (w, A) ip, or 
• <p = (3a:)ip and there exists a function A' : X U {x} -> [|w|] which agrees with 

A on X such that (w, A') J= ip. (Here, by our conventions, we may assume 
without loss of generality that x £ X.) 

When X is empty, so that tp is a sentence, i.e., ip has no free variables, we write 
w \= tp and call the set {w G E* : w |= ip} the language defined by <p. Moreover, 
we say that a language L C E* is definable in FO[<] if there is a sentence <p which 
defines L. 

As before, we let A denote the ^-variety of aperiodic automata, and let A denote 
the corresponding *-variety of languages. 

Theorem 6.1. (McNaughton and Papert [11]) A language L C E* is definable in 
FO[<] iff L G E M . 

We refer the reader to [11]; and in particular to [16], for detailed proofs of 
Theorem 6.1. 
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Subsequently, Barrington, Compton, Straubing and Therien [1] considered the 
extension of first-order logic by atomic propositions of the form Cr

d{x), d > 1, r 6 [d\ 
meaning that position x in the word satisfies x = r mod d. Thus, using the above 
notations, (w, A) |= Cd(x) if and only if xX is congruent to r mod d. Since this logic 
is equivalent to the extension of FO[<] by all regular numerical predicates, see [15], 
we denote it by FO[R]. As before, let QA denote the 1-variety corresponding to 
the q-variety QA of quasi-aperiodic automata. 

Theorem 6.2. (Barrington et al. [1]) A language L C £* is definable in FO[R] 
iffLEZ*QA. 

For an integer d > 1, let FO[d] denote the fragment of FO[R] where only atomic 
propositions associated to the letters of the alphabet and propositions of the form 
x < y and Cd(x) are allowed. (It would be sufficient to allow only x < y and 
C°(x).) Moreover, for a set M of the positive integers, let FO[M] denote the union 
of the FO[d\ with d € M. Thus, FO[R] = FO[Nat] and FO[<] = FO[0]. 

Below we will write x < y as an abbreviation for ->(y < x), x = y + 1 for 
x < y A -i(3z)(a; < z A z <y), Last(x) for (Vj/)(j/ < x), True for ip V -up, where ip is 
a fixed sentence, and False for -iTrue. 

Proposition 6.3. A language L C £* is definable in FO[M] iff L is definable in 
FO[(M]]. 

Proof. This follows by the following two observations. 
1. If d is a divisor of m, say dk = m, then C%(x) can be expressed as V 

Ci(x) V . . . d M ( x ) . Moreover, for every r <E [d - 1], C^+l(x) can be 
expressed by (3y)(a; = y + 1 A C^{y)). 

2. If mi ,m2 > 1 and m denotes the l.c.m. of mi and mj , then can be 
expressed as C^x) A C^2(x). 

• 
By our previous results we can prove the following common extension of Theo-

rems 6.1 and 6.2. 

Theorem 6.4. Suppose that M is any set of the positive integers. Then a language 
LCI,* is definable in FO[M] iff L G E *QAM-

The proof of Theorem 6.4 will be completed at the end of the section. 

Proposition 6.5. Suppose that L C £* and d> 1. If L^ is definable in FO[<], 
then L n (£d)* is definable in FO[d], 

Proof. First we prove that for all <p G FO[<] with free variables in X there exists 
some ip' G FO[d] with free variables in X such that for all w G (E'd))* and A : X —i 
[Hi 

(w,X )\=ip iff (wh,K)\=(p', 
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where h denotes the homomorphism ( E ^ ) * —> E* defined by (u) u, for all 
u £ £ d , and where XK = d(xA), the product of the integers d and x\, for all x £ X. 
We prove this claim by induction on the structure of ip. 

• <p = P(U^(X), where u = ao • • • a<i-i- Then, writing XQ for x, we define 

<p' = (3xi)... (3xd-i) 
d—2 d—1 
A = x i + 1 A A P a i 
j=0 3=0 

<p = x < y. Then (p1 = x < y. 
<p = ipi V f2 • Then <p' = <p[ V <¿>2 • 
ip = . Then ip' = -lyi-
V = (3x)(^i. Then <£>' ee {3x){C°d{x) /K^). 

We now complete the proof of Proposition 6.5. Suppose that L ^ is defined by 
sentence tp in FO[<], Then L D (Ed)* is defined by tp' A (Vi)(Last(x) C^^x)). 

• 
Corollary 6.6. Suppose that L Ç E* and d > 1. If L ^ is definable in FO[<], 
for all u e S * with |u| < d, then L is definable in FO[d]. 

Proof. For each u € E* with |it| < d we have that L^-") = ( L u - 1 ) ^ ' . By Propo-
sition 6.5, it follows that if L ^ is definable in FO[<], then Ku = Lu'1 n (Ed)* 
is definable in FO[d], for each u £ E*, |«| < d. But then, using the formula 
^ = U«££*, |u\<dKuu> follows easily that L is definable in FO[d]. Indeed, if Ku 
is defined by ipu, where u = a0 ... a n _i £ E* with |tt| = n < d, then Kuu is defined 
by the formula ipu 

(3a;0)...(3a;n_i) 
n—2 n-1 
A Xi+i = Xi + 1 A A Pai(xi) A Last(xn_i) A </>„[< x0] 

Lt=0 ¿=o 

where y u [< xQ] is the relativization of (pu defined in the usual manner, cf. [16]. (If 
n = 0, so that there is no XQ, by this formula we mean ipu.) Finally, L is defined 
b y V „ 6 E M • 

Proposition 6.7. I f L Ç E* is definable in FO[dj, then L<-dî is definable in FO[<]. 

Proof. We prove the following claim. For all ip in FO[ri] with free variables in X 
and for all functions p \ X [d\ there exists a formula ip'p £ FO[<] with free 
variables in X such that for all words w £ (£(d))* and functions A : X -»• [|tu|], 

(w,\)\=tp' iff (wh,Kp)\= 

where h denotes the homomorphism (£(d))* E* given by (u) u, for all u £ Ed , 
and where XKp = (x\)d + xp, for all x £ X. We prove this claim by induction on 
the structure of ip. 
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• ip = Pa(x). Then ip'p is the disjunction of all of the P{u)(x) such that the 
letter of u on the (xp)th position is a. 

• ip = x < y. Then 

x < y if xp > yp 
x < y if xp < y p. 

J True if xp = r 
\ False if xp ^ r. 

• tp = ipi V tp2. Then (p'p = {tp[)p V (ip'2)p.. 
• tp = -iip. Then tp'p = -np'p. 
• tp = (3x)ip. Here we may assume that x is not in the set X. For each i £ [d\, 

let p[x i-)- i] denote that function X U {x} —> [d] which agrees with p on X 
and such that xp = i. Then we define 

^ = (3x) V iP'p[x^. 
ie{d] 

We now complete the proof of Proposition 6.7. Suppose that L C E* is defined 
by the sentence (p in FO[c£]. Let <p' be the corresponding sentence of FO[<] defined 
above. Then for all w £ ( E ^ ) * , 

w \= <p' iff wh |= tp. 

(Note that p is the empty function.) Thus, tp1 defines • 

Corollary 6.8. If L C E* is definable in FO[d], then for each u £ £* with |u| < d, 
L i s definable in FO[<]. 

Proof. Use the fact that L ^ = (Lu~l)W and that if L is definable in FO[eI], 
then so is Lu~l. • 

We are now in the position to complete the proof of Theorem 6.4. 

Proof of Theorem 6.4- By Corollaries 6.6 and 6.8, a language L C £* is definable 
in FOfdj iff L i s definable in FO[<], for each u £ £* with |u| < d. Thus, by 
the theorem of McNaughton and Papert, Theorem 6.1, and by Corollary 5.16, L 
is definable in FO[<i] iff L £ QAd- Since a language is definable in FO[M] iff it 
is definable in FO[cf), for some d in the division ideal generated by M, and since 
QAM is the union of the QAD where d is any integer in the division ideal generated 
by M, the result follows. • 

Corollary 6.9. Suppose that (M] is a recursive set. Then it is decidable for a 
regular language L whether or not L can be defined in FO[M]. 

Again, the converse direction holds obviously. 

tp = Cr
d{x). Then 

<PO = 
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7 Temporal logic 
The language LTL of Linear (Propositional) Temporal Logic [13] over an alphabet 
E has, as atomic formulas (or atomic propositions), the propositional constants pa 
associated with the letters a £ E. Formulas can be constructed from the atomic 
formulas by the boolean connectives V and ->, and the modalities X (next) and 
U (until). Other boolean connectives may be introduced as usual. Suppose that 
u £ £* and that tp is a formula. We say that u satisfies tp, denoted u \= tp, if 

1. tp = pa and u = av, for some a £ E and v £ £*, or 
2. tp = tpi V tp2, for some tpi and tp2, and u |= tpl or u |= tp2, or 
3. tp = ->V> f° r some formula ip, and it is not the case that u \=ip, or 
4. tp = Xip, for some ip, and u is of the form av with a £ E and v £ E* such 

that v |= ip, or 
5• tp = tp1Utp2, for some tp1 and tp2, and there exist v, w £ E* such that u = vw, 

w tp2, moreover, z j= tpi for all suffixes z of u properly including w. 
In this section we study the extension of LTL by a sort of modular counting 

which is different from the one considered in [2]. 
Suppose that M C Nat. For an alphabet E, the atomic formulas of LTL[M] 

are those of LTL together with an additional propositional constant \gd r, for each 
d £ M and r £ [d\. Formulas are constructed from the atomic formulas as above, 
so that if tp and ip are formulas, then so are tpVtp, -up, Xtp and tpUip. For all 
d £ M and r £ [d\, we define u (= lgd r iff the length of u is congruent to r modulo 
d. The semantics of the other constructs of LTL[M] are defined as above. When 
M = {d}, for some positive integer d, we write just LTL[d] for LTL[M]. Note that 
LTL[0] is just LTL. 

We say that a language L C E* is definable in LTL[M] if there is a formula tp 
of LTL[M] (with propositional constants corresponding to the letters of E) such 
that L = Lv = {u £ E* : u |= tp}. 

Example 7.1. For any m, n > 0 and u £ £*, we have that u |= lg„, 0 and u |= lgn 0 
iff u |= lgfe 0, where k denotes the least common multiple of m and n. Moreover, 
u \= lgmr, for r £ [m], iff u |= Xr\gm0, where XT is X... X with X appearing r 
times. Also, if n divides m, then u f= lgn 0 iff u |= Vi6[ro/„] 'gm,in-

By the above example, we have that LTL[M] is exactly as expressive as 
LTL[(M]], i.e., a language is definable in LTL[M] iff it is definable in LTL[(M]]. 
Moreover, when M is not empty, then a language is definable in LTL[M] iff it is 
definable in LTL[d\, for some d £ (M). 

The logic LTL[M] allows for several counting versions of the until modality. 
For any formulas tp and ip, and for any d £ M and r £ [d\, define tpU^d'°^ip to be 
the formula 

¿e[d] 
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and define tpU^'^ip, r > 0 as 

ip A Xtp A . . . A Xr~ V A Xr{<pU{d'0)ip). 

Then we have u |= ipU^d'r^ip iff u has a decomposition u = vw such that w f= ip, 
is congruent to r modulo d, moreover, for all x, z with xz = u such that w is a 

proper suffix of z, it holds that z ¡= tp. 
A second counting version of the until modality can now be defined as follows. 

For all <p, ip and d, r as before, let tpU[d'°^ip be the formula 

V t ' g < M A H gd ,iV^)c/(d '°V]. 

(d r) Moreover, when r > 0, let ipU\ ' ip be the formula 

XT(vU[dfi)TP). 

We now have u 
\= <pu[d'r)4>, for u a word in £*, iff u has a decomposition u — vw 

such that w \= ip, is congruent to r modulo d, moreover, for all x,z with xz — u 
such that w is a proper suffix of z and |a;| is congruent to r modulo d, it holds that 
z\=<p. 

A last version of until involves several formulas. Suppose, as before, that 
d £ M, and suppose that ipo, - . . ,<Pd-i, ip are formulas of LTL[M], We define 
(<po,..., v?d_i)f/2d'°' ip as the formula 

V s A 

i€[d] 
A H g d j - v w O 

j,k€[d], j—k=i mod d 

U^ip) 

Thus, for all words u £ £*, we have u [= (t/?0, • • • ,<Pd-lW^'^ip iff u has a decom-
position u = vw such that w \= ip, |i>| is congruent to r modulo 0, moreover, for all 
x, z and i £[d\ with xz — u such that w is a proper suffix of z and is congruent 
to i modulo d, it holds that z \= tpi. The modalities U^'^ with r £ [d\, r ^ 0, 
which have a similar semantics, can be introduced in the obvious way. Of course, 
the propositional constants lgd can in turn be defined using either version of until. 

Remark 7.2. The last version of the until modality shows that the extension of 
LTL by counting is a particular case of Wolper's extension of temporal logic by 
grammar (or finite automaton) operators, cf. [22, 21]. 

We introduce several abbreviations. First, let True = pa V ->pa, where a is any 
letter in £, and let False = ->True. Moreover, let End denote the formula / \ a g E ->pa, 
so that for all u £ £*, we have u End iff u = e. Finally, for any formula tp, let 
0 ( d ' r V stand for Truei/(d ' rV and D ^ V for The modalities 0 and • 
are defined as usual. 
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Example 7.3. Let E = {a, b}. If tp is the formula ()(2'0)End, then Lv, the language 
defined by <p is (E2)*. Moreover, if ift = paU^'°\a(pb V End)), then L^ is the 
language (a2)*b*. 

In his thesis [10], Kamp proved that temporal logic with past and future modali-
ties is expressively complete in the sense that it can express every first-order property 
of words. Subsequently, it has been shown in [8] that future (or past) modalities 
alone suffice. An algebraic proof of this result, based on the Krohn-Rhodes de-
composition theorem for finite semigroups and automata [5, 16], was later given by 
Cohen, Perrin and Pin in [4]. See also Th. Wilke, [20]. 

Theorem 7.4. (Kamp [10], Gabbay et al. [8]) A language L C S * is definable in 
LTL iff L is definable in FO[<], 

Hence, L is definable in LTL iff L is in A. Our aim is to prove the following 
counting extension of Kamp's theorem. 

Theorem 7.5. For any set M of positive integers, a language L C S* is definable 
in LTL [M] iff L is definable in FO[M], 

In our proof of Theorem 7.5, we will use: 

Proposition 7.6. Suppose that L C E*; d > 1 and v G E* with |i;| < d. If £(<*'") 
is definable in LTL, then L n (Ed)* v is definable in LTL[cf). 

Proof. First we show that for every formula tp of LTL there is a formula tp' of 
LTL[d] such that for all words w G ( E ^ ) * it holds that w (= tp iff (wh)v \= tp', 
where h denotes the homomorphism ( E ^ ) * E* defined by (w) i-> w, all w £ Ed . 
We construct tp' by induction. 

• tp = p(u), where u = a0 •. • ad-1. Then 

tp' = ^ M ^ A . - . A ^ V i -

where Xntp is X... Xtp with X appearing n times. 
• tp = ^ v tp2. Then tp' = tp[ V tp'2. 
• tp = -«ft. Then tp' = -iift'. 
• tp = Xift. Then tp' = Xdip'. 
• tp = VlUtp2. Then tp' = tp^U^tp'z. 

Suppose now that is defined by tp. Then the formula 

<p' A 0(d,O) (Pao A Xpai A . . . A X ' - i p ^ A X'End) 

defines L n (Ed)*v, where v = a0 ... ai-i and tp' denotes the formula constructed 
above. • 

Corollary 7.7. Suppose that L C E* andd> 1. If L ^ is definable in LTL, for 
each u G £* with u G E*, |u| < d, then L is definable in LTL[d\. 
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We are now ready to prove Theorem 7.5. 

Proof of Theorem 7.5. It is well-known that temporal logic can be embedded in 
first order logic. Thus, any language definable in LTL is definable in FO[<]. The 
proof goes by formula induction, essentially by formalizing the definition of the 
semantics of LTL in first-order logic. It is easy to show in the same way that any 
language definable in LTL[M] is definable in FO[M], 

Suppose now that L is definable in FO[M]. Then L is definable in FO[d], for 
some d 6 (M]. Thus, by Corollary 6.8, is definable in FO[<], for each u € £* 
with |u| < d. Thus, by Theorem 7.4 and Corollary 7.7, L is definable in LTL[<i], 
hence in LTL[(M]] and in LTL[M]. • 

8 Summary and future results 
Our main results can be summarized in a single statement that establishes the 
equivalence between four descriptions of the same class of languages. 

Corollary 8.1. Suppose that M is a set of the positive integers. The following 
conditions are equivalent for a language L C £*: 

1. L can be constructed from the finite subsets of E* and the languages (£m)*, 
where m € M, by the Boolean operations and concatenation. 

2. L can be defined by a formula o/LTL[M]. 
3. L can be defined by a formula o/FO[M]. 

4- L can be accepted by a finite automaton whose degree of aperiodicity belongs 
to (M] (or equivalently, the minimal automaton accepting L is finite with 
aperiodicity degree contained in (M]). 

As mentioned above, this result is a common extension of those obtained in 
[1, 8, 10, 11, 14]. In fact, we have shown that Corollary 8.1 is easily derivable from 
the classical results of Schiitzenberger [14], McNaughton and Papert [11], Kamp [10] 
and Gabbay et al. [8], using Corollary 4.10, which is in turn based on Theorem 4.8 
and Theorem 4.6. (Of course, it is possible to prove Corollary 4.10 without using 
Theorem 4.6.) 

Some of the implications of Corollary 8.1 are quite obvious. It is clear that 
the second condition implies the third as does the first. The fact that the second 
condition implies the first can be proved by generalizing an argument from [4] 
which concerns the case when M is empty. That the third condition implies the 
fourth can also be shown directly using Ehrenfeucht-Fraisse games, following the 
usual argument establishing the fact that any language definable in FO has an 
aperiodic syntactic monoid. In the classical case, i.e., when M = 0, there are also 
known direct arguments establishing that the last condition implies the second. One 
argument is based on (a weak form of) the Krohn-Rhodes decomposition theorem, 
and can be found in [4]. A more elementary argument is given in [20]. Both 
arguments can be generalized to any given set M of moduli. 
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Theorem 4.8 and Theorem 4.6 are also very useful in the characterization of 
the expressive power of other variants of first-order and temporal logic. Various 
fragments of LTL have been studied in [4] and [20]. In a forthcoming paper, we 
will characterize the expressive power of the extension of most of these fragments 
by counting. In [16, 17], the expressive power of first-order logic with modular 
quantifiers with respect to any given set of moduli has been characterized, as well as 
the expressive power of first-order logic with modular quantifiers and the predicates 
C^(x), where m is any positive integer and r 6 [m]. Using Theorem 4.8 and 
Theorem 4.6, we can give a characterization of the expressive power of the extension 
of first-order logic with any collection of modular quantifiers and any collection of 
predicates C^(x). A further natural research topic is to extend these results to 
w-languages. 
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