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Discovering Associations in Very Large Databases 
by Approximating* 

Shichao Zhang* and Chengqi Zhang* 

Abs t rac t 
Mining association rules has posed great challenge to the research com-

munity. Despite efforts in designing fast and efficient mining algorithms, it 
remains a time consuming process for very large databases. In this paper, we 
adopt a slightly different approach to this problem, which can mine approxi-
mate association rules quickly. By considering the database as a set of records 
that are randomly appended, we can apply the central limit theorem to esti-
mate the size of a random subset of the database, and discover both positive 
and negative association rules by generating all possible useful itemsets from 
the random subset. However, because of approximation errors, it is possible 
for some valid rules to be missed, while other invalid rules may be generated. 
To deal with this problem, we adopt a two phase approach. First, we dis-
cover all promising approximate rules from a random sample of the database. 
Second, these approximate results are used as heuristic information in an ef-
ficient algorithm that requires only one-pass of the database to validate rules 
that have support and confidence close to the desired support and confidence 
values. We evaluated the proposed technique, and our experimental results 
demonstrate that the approach is efficient and promising. 

K e y w o r d s : Da ta mining, data processing, approximating rule, assisting 
knowledge discovery, da ta analysis. 

1 Introduction 
One of the main challenges in data mining is to identify association rules for very 
large databases tha t comprise millions of transactions and items. Some recent 
efforts have focused on designing efficient algorithms [2, 4, 7, 15], employing parti-
tioning techniques [6, 9, 14], supporting incremental updat ing and exploiting par-
allelism [10, 13, 16]. The main "limitation" of these approaches, however, is t ha t 
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they require multiple passes over the database. For very large databases that are 
typically disk resident, this requires reading the database completely for each pass 
resulting in a large number of disk I/Os. 

An alternative approach is to take a sample of the database, and determine 
association rules that are valid on the sample database. In other words, the problem 
of mining the association rules becomes a 3-step procedure: 

(1) Generate a random subset of a given large database; 
(2) Generate all large itemsets in the random subset; 
(3) Generate all the rules with both support and confidence greater than or equal 

to minimum support and minimum confidence respectively. 

As the sample size is typically very much smaller than the original database size, 
the association rules on the sample can be obtained at a much faster time. We 
shall refer to these association rules (obtained from the sample) as approximate 
association rules. The key issue in this approach is to pick a right sample that is 
representative of the database, so that the approximate association rules are indeed 
the association rules that hold on the database. 

In this paper, we reexamine mechanisms for the 3 steps discussed above. To 
obtain a random sample of the database, we apply the central limit theorem. As 
we shall see shortly, the use of the central limit theorem allows us to cut down the 
sample size by about half compared to known techniques [11, 12]. For the second 
subtask, a new algorithm for generating all possible useful itemsets for mining rules 
with -both positive and negative itemsets is proposed. Finally, the last subtask is 
solved by generating all positive and negative association rules. 

Unfortunately, because of approximation errors, it is possible for some valid rules 
to be missed, while other invalid rules may be generated. To deal with this problem, 
we adopt a two phase approach. First, we discover all promising approximate rules 
from a random sample of the database. Second, these approximate results are used 
as heuristic information in an efficient algorithm that requires only one-pass of the 
database to validate rules that have support and confidence close to the desired 
support and confidence values.. We evaluated the proposed technique, and our 
experimental results demonstrate that the approach is efficient and promising. 

The rest of this paper is organized as follows. In the next section, we briefly 
review some concepts and definitions. In Section 3, we apply the central limit the-
orem to mine approximate association rules. In order to discover both of positive 
and negative association rules, an algorithm to generate all possible useful itemsets 
is also proposed. In Section 4, we evaluate the effectiveness of the proposed ap-
proach experimentally. In Section 5, we propose a method to (1) assist knowledge 
discovery and (2) determine the validation of the rules with support or confidence 
close to the user-specified thresholds. Finally, we summarize our contributions in 
section 6. 
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2 Basic Concepts 
One of the most widely used data mining model for association rules is the support-
confidence framework established by Agrawal, Imielinski, and Swami [1]. We shall 
review some of the concepts here. 

Let I = {¿i, ¿2, • • • , IN} be a set of N distinct literals called items. D is a set of 
variable length transactions over I . A transaction is a set of items, i.e., a subset of 
I. A transaction has an associated unique identifier called TID. 

In general, a set of items (such as the antecedent or the consequent of a rule) is 
referred to as an itemset. For simplicity, an itemset ¿2,¿3} is sometimes written 
as ¿ii2i3. 

For an itemset A C I and a transaction T € D, A is purchased (occurred) in 
T (or T contains A) if Va 6 A(3i((l < i < n) A (T(z) = a))), where 'T(z)' is ith 

element of T. 
The number of items in an itemset is the length (or the size) of an itemset. 

Itemsets of some length k are referred to as a fc-itemsets. 
An itemset has an associated measure of statistical significance called support, 

denoted as supp. For an itemset AC I, supp(A) = s, if the fraction of transactions 
in D containing A equals s. An itemset A is a large itemset if supp(A) > minsupp, 
where lminsupp' is a user specified minimum support. 

While A indicates the occurrence of an itemset A, the negation of A means 
the nonoccurrence of A, stood for A The support of A is as supp(A) — 1 — 
supp(A). Generally, for itemsets A = {ii,--- ,im} and B = {j i , --- ,jn}, the 
support of A U S is supp(A\J B) = supp(B) — supp(AU B) = supp({ji, • • • ,jn}) — 
supp({ii,-- - ,im,ji,--- ,jn})• 

An association rule is an implication of the form A B (or written as A —> B), 
where A, B C I, and A n B = 0. A is called the antecedent of the rule, and B is 
called the consequent of the rule. 

An association rule A —> B has a measure of its strength called confidence 
(denoted as conf) defined as the ratio supp(A U B)/supp(A), where A U B means 
that both A and B are present in transactions. 

The work in this paper extends traditional associations to include association 
rules of forms A —> B, A —> B, and A —> B, which indicate negative associations 
between itemsets. We call rules of the form A —> B positive association rules, and 
rules of the other forms negative association rules. Negative rules indicate that 
the presence of some itemsets will imply the absence of other itemsets in the same 
transactions. Negative rules are also very useful in association analysis, although 
they are hidden and different from positive association rules. 

The problem of mining association rules is to generate all rules A —» B that have 
both support and confidence greater than or equal to some user specified minimum 
support (min s u p p ) and minimum confidence ( m i n c o n f ) thresholds respectively, i.e. 

1 An itemset A is often taken as an event in computations meaning that A is true in a transaction 
if item i presents in the transaction for Vi £ A. A is taken as an event in computations meaning 
that A is true in a transaction if item i does not present in the transaction for 3i £ A. That is, 
A is different from I — A. 
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for regular associations: 

r, a supp(AuB) 
supp(A U B) > minsupp, conf (A B) - — s u p p ^ — - m m c o n f -

It can be decomposed into the following two subproblems. 

(1) All itemsets that have support greater than or equal to the user specified 
minimum support are generated. That is, generating all large itemsets. 

(2) Generate all the rules that have minimum confidence in the following naive 
way: For every large itemset X and any B C X, let A — X — B. If the rule 
A B has the minimum confidence (or supp(X)/supp(A) > minconj), then 
it is a valid rule. 

Example 1. Let Ti = {¿1,12,14}, T2 = T3 - {¿2,13,¿4}, T4 = 
{¿2,13,14}, and T5 = {¿i,i2} be the only transactions in a database. Let the mini-
mum support and minimum confidence be 0.6 and 0.85 respectively. Then the large 
itemsets are the following: {¿1}, {¿2}) {H}> {¿1^2} and {¿2,14}. The valid rules 
are ¿1 —> ¿2 and ¿4 —»i2. 

3 Mining Approximate Rules 
In probability theory, if a situation is such that only two outcomes, often called 
success and failure, are possible, it is usually called a trial. The variable element in 
a trial is described by a probability distribution on a sample space of two elements, 
0 representing failure and 1 success; this distribution assigning the probability 1—6 
to 0 and 0 to 1, where 0 < 0 < 1. Suppose we consider n independent repetitions of 
a given trial. The variable element in these is described by a probability distribution 
on a sample space of 2n points, the typical point being x = (xi, x2, • • • , xn), where 
each Xi is 0 or 1, and xl represents the result of the \ th trial. The appropriate 
probability distribution is defined by 

Pe{x) = (1 - 0)n~m^, 

where m(x) = Xi is the number of Is in the results of the n trials, this being 
so since the trials are independent. 

Given an x in this situation it seems reasonable to estimate 0 by m(x)/n, the 
proportion of successes obtained. This seems in some sense to be a 'good' estimate 
of 0. 

In data mining, a database D can be taken as a trial. For any itemset A, it is 
1 if the itemset A occurs in a transaction T (written as T(A)), else it is 0 (written 
as ->T(A)). Let P be the set of all transactions that the itemset A occurs in, and 
Q be the set of all transactions that the itemset A doesn't occur in. Then P and 
Q are partitions of D as follows. 

P = {T\T(A)}, 
Q - {ThT(A)}. 
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Given a database, its n transactions can be viewed as n independent data stored in 
the database. Certainly, each transaction has two possible outcomes for an itemset 
A, which are 1 and 0. Suppose the probability of A occurring in the database is p 
and the probability of A not occurring is q = 1 — p. Since the database is static, we 
can say that probability p of A occurring in each transaction is the same for each 
transaction. Hence, this given database can be taken as a Bernoulli trial. 

3.1 The Application of Central Limit Theorem 
The central limit theorem is one of the most remarkable results in probability 
theory. Loosely put, it states that the sum of a large number of independent 
random variables has a distribution that is approximately normal. Hence it not 
only provides a simple method for computing approximating probabilities for sums 
of independent random variables, but it also helps explain the remarkable fact that 
the empirical frequencies of so many natural populations exhibit bell-shaped (that 
is, normal) curves. In its simplest form the central limit theorem is as follows. 

Let X\, X2, • • • , Xn be a sequence of independent and identically distributed 
random variables, each having finite mean E(Xi) = p and Var(Xi) = o2. Then 
the distribution of 

Xi + • • • + Xn - np 
a-y/n 

tends to the standard normal as n —» 00. That is, 

n[X1 + --- + Xn-np ^ 1 fa _x2/2 P{ -rz < a} —= / e x ''dx as n 00. (1) 
Oy/n V ^ i - o o 

Readers are referred to [5] for other concepts and theorems. 
We now set up a new mining model in this subsection, which applies central 

limit theorem to mine approximate association rules from large databases. 

Theo rem 1. Let I be the set of items in database D, A C I an itemset, rj > 0 
the degree of asymptotic to association rules and £ > 0 the upper probability of 
P[\Ave{Xn) - p\ < rj\, where Ave(Xn) is the average of A occurring in n transac-
tions in D and p is the probability of A in D. Suppose records in D are matched 
Bernoulli trials. If n random records of D is enough for determining the approxi-
mate association rules in D according to central limit theorem, n must be as follows: 

„ . M M (2) 

where z(x) = —= I-oq e~y !2dy is a standard normal distribution function, which 
can find out it from the Appendix in [5]. 

Proof. From the given conditions in this theorem, we take 

P(\Ave(Xn)-p\<r,)=t 
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Clearly, 
P(\Ave(Xn) - p| < ij) = P(-v < (Ave(Xn) - p) < V) 

= P( < Ave(Xn) - p Tj 

4 / ( 2 ^ ) ~ l /(2Vn) - 1/(2Jn)> 

» N(2R]Y/N) - N(-2R)Y/N) 

= 2N(2R)Y/N) - 1 

where N() is the distribution function of the standard normal distribution. And 
for this probability to equal £ we need 

N{2LS/N) = \{ 1 + 0 

which is satisfied by 

2 ; = z((l + 0/2) 

the required value for n then is 

z2(( 1 + 0/2) 
V 

• 

Example 2. Suppose a new process is available for doping silicon chips, used in 
electronic devices, p (unknown) is the probability that each chip produced in this 
way is defective. We assume that the defective chips are independent of each other. 
How many chips, n, must we produce and test so that the proportion of defective 
chips found (Ave(Xn)) does not differ from p by more than 0.01, with probability 
at least 0.99? That is, we want n such that 

P(\Ave(Xn) -p\< 0.01) > 0.99, 

r) = 0.01, £ = 0.99,z(0.995) = 2.57, we have 

2 572 

n = 4 7 o o F = 1 6 5 1 3 ' 
considerably smaller than the value n = 27000 that is needed by using the model in 
Chernoff bounds [11, 12]. 

Based on Theorem 1, the random target database can be obtained in two steps: 
(1) generating a set X of pseudo-random numbers, where = n and (2) generat-
ing the random database RD (instance set) from D using pseudo-random number 
set X. That is, for any Xi e X, get (Xi + l ) t h record of D and append it into RD. 

Note that generating random database RD of the given database D doesn't 
mean to establish a new database RD. It only needs to build a view RD over D. 
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3.2 Mining Approximate Association Rules 
In this subsection, we construct a new model for discovering both of positive and 
negative association rules. For this goal, an algorithm of generating all positive and 
negative large itemsets is also proposed. 

Positive and Negative Large Itemsets 

For mining general approximate association rules, all positive and negative large 
itemsets in a random database would be generated. For example, if one of A —> B, 
A -» B and A —>• B can be discovered, then one of supp(A U B) > minsupp, 
supp(A U B) > minsupp and supp(A U B) > minsupp must hold. This means that 
supp(A U B) < minsupp. However, itemsets such as A U B, are not generated as 
large itemsets into the set of all large itemsets. In order to mine negative rules, we 
present a procedure to generate all positive and negative large itemsets in a random 
database as follows. 

Procedure 1. PNLargeltemsets 
Input: D: database; minsupp: minimum support; 
Output: PL: large itemsets; NL: negative large itemsets; 
Begin 

(1) generate sample RD of a given database D; 
let PL <- 0; NL <- 0; 

(2) let Li i- {large 1-itemsets}; PL <- PLU Li; 
(3) for (k = 2; (Lk_i ± <D); k + + ; do 

begin //Generate all possible positive and negative k-itemsets of interest in 
RD. 
(3.1) let Lk 4- {{¡ci,... xk-\,xk}\ {x\,..., G A 

{xi,...xk-2,xk} E L/fc-i}; 
(3.2) for each transaction t in RD do 

begin 
//Check which k-itemsets are included in transaction t. 

let txem the k-itemsets in t that are also contained in Lk; 
for each itemset A in trem do 

let A.count A.count + 1; 
end 

(3.3) //Selecting all positive k-itemsets in Lk 
let Temk <- {C\C e Lk A (supp{C) = (C.count/\RD\) >= minsupp)}; 
let PL <- PL U Temk; 
//Selecting all negative k-itemsets in Lk 

let NL <- NL U (Lk - Temk); 
end 

(4) output PL and NL; 
End. 
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The procedure PNLargeltemsets generates all positive and negative itemsets 
in the sample RD. The initialization and generating sample RD of a given database 
D are done in Step (1). Step (2) counts the frequencies of itemsets in RD. Step 
(3) generates all positive and negative itemsets of interest. 

Rules of Interest 

In [8], Piatetsky-Shapiro argued that a rule X -» Y is not interesting if 

supp(X —¥ Y) « supp{X)supp{Y) 

According to probability interpretation [3]: supp(XuY) = P(XUY) and conf(X 
Y) = P(Y\X) = P(X U Y)/P(X) Then Piatetsky-Shapiro's argument can be 
denoted as 

P(X\JY)^P(X)P(Y). 

This means that X Y cannot be extracted as a rule if P(X U Y) « P(X)P(Y). 
Actually, P(XUY) « P(X)P(Y) denotes X is approximately independent to Y in 
probability theory. A statistical definition [3] of dependence of the sets X and Y is 

Interest(X, Y) - U 

P(X)P(Y)' 

with the obvious extension to more than two sets. This formula is referred to as the 
interest of Y given X is one of the main measurements of uncertainty of association 
rules. Certainly, the further the value is from 1, the more the dependence. Or for 
1 > A > 0, if | p(x)P(y) ~ - ^ e n X Y ' s a r u le °f interest. 

By Piatetsky-Shapiro's argument, we can divide Interest(X, V) into 3 cases as 
follows: 

(1) if P{XUY)/{P{X)P(Y)) = 1, then P{Xl)Y) = P{X)P(Y) or Y and X are 
independent; 

(2) if P{XUY)/{P(X)P{Y)) > 1, or P(XLiy) > P{X)P(Y), then Y is positively 
dependent to X; 

(3) if P(XL>Y)/{P(X)P(Y)) < 1, or P(XUY) < P(X)P(Y), then Y is negatively 
dependent to X, or Y is positively dependent to X. 

In this way, we can define another form of interpretation of rules of interest as 
follows. For 1 > A > 0, (a) if ¡^xyp^Y) ~ — t ' i e n A' -> Y is a rule of interest; 

and (b) if — {p(xyp(Y) ~ 1) — ^ e n X —> Y is a rule of interest. 
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Theorem 2. Let I be the set of items in database D, X,Y C I be itemsets, 
X n Y = 0, P(X) ± 0 and P(Y) ± 0. minsuvv,minConf and A > 0 are given by 
users or experts. If 

(1) supp(X U Y) > minsupp, conf(X Y) > minconf, and P(X UK) -
P(X)P(Y) > A, then X -» Y can be extracted as a rule of interest. 

(2) supp(X U Y) > minSUVp, suppiY) > TntTlgupp} conf(X ->• Y) > minconf, and 
-(P(X U Y) - P(X)P{Y)) > A, then X ^ Y can be extracted as a rule of 
interest. 

Proof. From assumption of the above theorem, we have 

\(P(X U Y) — P(X)P(Y))\ > A 
P(X)P(Y) ~ P(X)P(Y)' 

or 
P(XUY) A 
P(X)P(Y) 1 - P{X)P{Y)' 

Because 0 < P(X)P(Y) < 1, so A / ( P ( X ) P ( Y ) ) > A. Hence, 

]P(X)P(Y) ' 

That is, X —> Y can be extracted as a rule of interest. • 

Mining Positive And Negative Rules 

By our definition on interest, if P(X U Y) « P(X)P(Y), X is approximately 
independent to Y in probability theory; if the greater the value of P(X U Y) — 
P(X)P(Y) > 0 is, the more the positive dependence; and if the smaller the value 
of P{X U Y) - P(X)P{Y) < 0 is, the more the negative dependence. However, 
-P(X)P(Y) < P(XU Y) — P(X)P{Y) < P(X)(1-P(Y)). In order to reflect this 
relationship between P(X U Y) and P(X)P(Y), we propose the probability ratio 
(PR) model here. Under the PR model, we define the measure PR to determine 
the degree in which the valid rule X Y is interesting. 

r P ^ - P ^ n , i f P ( X U Y) > P(X)P(Y), 
PR(Y\X) = < P(X)(l-P(Y)) ¿0. 

{ P{XU?№(TY)> V P(XVY) < P(X)P(Y),P(X)P(Y) ¿0. 

Certainly, PR has some properties as follows. 

Property 1. PR satisfies the following: 

PR{Y\X) + PR(Y\X) = 0. 
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Proof. We shall only prove the property holds when P{X U Y ) > P{X)P(Y). The 
others can be derived in a similar manner. Since 

P(X U Y)/P(X) = P(Y\X), P(X U Y)/P(X) = P(Y\X), P(Y\X) + P(Y\X) = 1, 

and _ 
P{Y\X) = 1 - P(Y\X) < 1 - P(Y) = P(Y). 

Therefore, 

P(X U Y) - P(X)P(Y) _ P{Y\X) - P{Y) 
PR(Y\X) = 

PR(Y\X) = 

P(X)(1-P(Y)) 1 -P(Y) 

P{X U F) - P{X)P(Y) _ P(Y\X) - P(Y) 
P(X)P(Y) ~ P(Y) 

Hence, 

PR(Y\X) 4- PR(Y\X) - P(XUY)-P(X)P(Y) P(X UY) - P(X)P(Y) PR(Y\X) + PR(Y\X) - p { x ) { 1 _ p { Y ) ) + P{X)P(Y) 

_ P(Y\X)-P(Y) P(Y\X) - P(Y) 
1 -P{Y) + p(Y) 

P(Y\X) - P(Y) (1 - P(Y\X)) - (1 - P(Y)) 
1 - P(Y) 1 - P(Y) 

So, we have PR{Y\X) + PR{Y\X) = 0. • 

We now apply the PR model to measure the uncertainties of association rules. 

(1) For an association rule A -»• B, its supp(A U B) is P(A U B) and, PR(B\A) 
is taken as the confidence of the rule. The task of mining this association 
rule is defined as follows. For itemset A U B, if supp(A U B) > minsupp and 
PR(B\A) > minconf, then A B can be extracted as a valid rule. 

(2) For an association rule A B, PR(B\A) = -PR(B\A) according to 
Property 1. Therefore, if supp(A U B) > minsupv, supp(B) > minsupp, 
PR(B\A) < 0 and PR{B\A) > minconj, then A -t B can extracted as a 
valid rule. 

(3) For A B, PR(B\A) is taken as the confidence of the rule. The task 
of mining this association rule is defined as follows. For itemset A u B , if 
supp{A) > minsupp, supp(A U B) > TTlZTlgupp and PR(B\A) > minconf, then 
A B can be extracted as a valid rule. 

(4) For an association rule A B, PR(B\A) = -PR(B\A) according to 
Property 1. Therefore, if supp(A U B) > minsupp, supp(A) > minsupp, 
supp(B) > minsupp, PR(B\A) < 0 and PR(BjA) > minconj, then A -)• B 
can extracted as a valid rule. 
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Note that the requirements that supp(B) > minsupp and supp(A) > minsupp ensure 
the probability significance of rules with negative itemsets. 

We now demonstrate how to apply this model to discover association rules with 
the data in Example 1. Let minsupp = 0.2 and minconf = 0.4. 

Example 3. For itemset AllC, P{A) = 0.6, P(C) = 0.4 and P(A U C) = 0, we 
have P(A U C) < P(A)P(C). This means that the disbelief increases, or A C 
may be extracted as a rule of interest. Furthermore, 

P(AUC)-P(A)P(0 0 - 0 - 6 . 0 . 4 
PR{ClA) = P(A)P(C) = 0 .6 .0 .4 = - 1 ' 

According to our model, A —> C can be extracted as a valid rule due to PR(C\A) = 
-PR(C\A) = 1 > minconf, supp(A U C) = 0.6 ^ TTllTlsxipp, and supp(C) = 0.4 > 
TTltTlgupp. 

As we have seen, our PR model is both reasonable and comprehensive. And 
general association rules can be easily discovered. Furthermore, we can obtain the 
following theorem that facilitates the extraction of interesting rules. 

T h e o r e m 3. Let I be the set of items in database D, X, Y C I be itemsets, 
X n Y = 0, P{X) 0 and P(Y) ^ 0. minsupp,minconf and A > 0 are given by 
users or experts. Then 

(1) if supp{X U Y) > minsupp and PR(Y\X) > Max{minconf, A}, then X Y 
can be extracted as a rule of interest; 

(2) if supp(X U Y) > minsuppj_ supp(Y) > minsupp and PR(Y\X) > 
Max{minCOnf, A}, then X —> Y can be extracted as a rule of interest; 

(3) if supp(X U Y) 777.2.72. suppj supp(X) > minsupp and P.R(F|X) > 
Max{minconf, A}, then X —> Y can be extracted as a rule of interest; 

(4) if supp(Xl>Y) > minsupp, supp(Y) mins_upv, supp(X) > minsupp and 
Pi? (y |X) > Max{minconf, A}, then X Y can be extracted as a rule of 
interest. 

Proof. As before, we only prove (1) of the above theorem since the rest can 
be obtained similarly. We first prove that (1) holds. Since PR(Y\X) > 
Max{minconf, A}, according to the assumption in (1), we have PR(Y\X) > 
minconf and PR(Y\X) > A. 

On the othe^hand, because PR(Y\JQ > 0, and using the Property 1, 
P i i ( y | X ) + PR(Y\X) = 0, we have -PR(Y\X) > A. 

According to previous interpretation of rules of interest, X Y can be ex-
tracted as a rule of interest. That is 

X Y 

can be extracted as a rule of interest. • 
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Algorithm 

Let D be a database, |D| the total number of transactions in D, I the set of all 
items in D, and for X C I, the number of transactions in D that contain 
itemset X, minsupp, minconf, A and 7 given by users. The algorithm of discovering 
association rules in our probability ratio model is constructed as follows. 

Algorithm 1. PRModel 
Input: D: database, minsupp,minconf, X and 7: threshold values; 
Output: approximate rules; 

(1) Determine the sample size, n, based on the central limit theorem; 
Generate the sample database with n transactions; 
call routine PNLargeRemsets; 

(2) for any large itemset A in PL begin 
for any itemset X C A begin 

let Y = A - X; 
if |Pi?(Y|X)| > Max{minconf, A} then 

output the rule X —> Y 
with confidence PR(Y\X) and support P(A); 

end 
for any itemset A in NL begin 

for any itemset X C A begin 
let Y = A- X; 
if (supp(X UF) > minsupp and supp(Y) > minsupp 

and |Pi?(F|X)| > Max{minconf, A}) then 
output the rule X —> Y 

with confidence PR(Y\X) and support P{A); 
end 
if (supp(X U 7 ) > THZTlsupp and supp(X) > minsupp 

and |Pi?(F|X)j_> Max{minconf, X}) then 
output the rule X —> Y 

with confidence PR(Y\X) and support P{A); 
end 
if (supp(X U Y) > minsupp and supp(X) > minsupp 

and supp(Y) > minsupp and |P/?(y|X)| > Max{minconf, A},) 
then 
output the rule X -> Y 

with confidence PR(Y\X) and support P{A); 
end 

end 
end 
endall. 

Algorithm PRModel generates all positive association rules in PL and negative 
association rules in NL. Step (1) calls procedure PNLargeltemsets to generate 
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the sets PL and NL with positive and negative large itemsets in the database 
D. Step (2) firstly generates positive association rules of interest of the form: 
X Y, in PL. If PR(Y\X) > minconf, X Y is extracted as a valid rule. 
If PR(X\Y) > minconf, y => X is extracted as a valid rule. ̂ Secondly, the step 
generates negative association rules of interest of the forms X —> Y, Y X, 
X - + F , a n d F ^ X, in NL. 

4 An Experimental Study 
To study the effectiveness of our model, we have performed several experiments. 
Our server is Oracle 8.0.3, and the algorithm is implemented on Sun SparcServer 
using Java, and JDBC API is used as the interface between the program and Oracle. 
The database used in our experiments has the following conceptual scheme 

Report(sno, test, grade, area) 

where sno is the primary key about student numbers, test is an attribute about 
examinations of subjects, grade is an attribute about students' grades with 
{A, B, C, D, E) as its domain, area is an attribute about students' nationality with 
a domain (China, Singapore, • • •). In order to illustrate the efficiency of our ap-
proximate rule model, we list partially the experimental results, which are the large 
itemsets and their supports. For more details, please refer to Appendix A. 

Let minsupp = 0.2 and minconf = 0.6. Some results are listed in Table 1. 

We evaluated three methods: the traditional approach where the entire database 
is used (denoted D), the sampling approach based on Chernoff bounds [11, 12] (de-
noted LRD), and the proposed approach using the central limit theorem (denoted 
CRD). As shown in Table 1, the supports for the various useful itemsets are very 
close among the three methods. For example, the supports of item "China" are 
37%, 36.78% and 36.48% for D, LRD and CRD respectively. This shows that rel-
evant itemsets can be determined based on a small sample of the database. In our 
case, LRD requires only 15000 records which is only 15% of the original database 
size, while CRD makes use of no more than 7% of the original database size. We 
also note that the running time of mining the original database is 815 seconds. The 
time for LRD is 436 seconds (consisting of 207 seconds for LRD and 229 seconds 
for approximate rules), while that of CRD is only 241 seconds (consisting 101 sec-
onds for LRD and 140 seconds for approximate rules). The significant reduction 
is clearly due to the smaller size of the samples. We also note that CRD is more 
efficient than LRD, making CRD a promising approach for mining association 
rules. 

Referring to the Table, some of the rules of interest are China —> B, China —• 
C, China Singapore, Singapore —• C, B —> C. However, from the example, we 
also note the following problems, which we shall investigate shortly. 

(i) Some rules such as China Singapore and B —> C are also extracted as 
rules of interest. 
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(ii) Due to the probability significance and the constraint condition of minsupp, 
some rules such as China —> D, Singapore —• D, China —» E and 
Singapore —> E, can't be extracted as negative rules of interest in our model. 
In some context, these rules are useful for applications. But mining rules such 
as China —» Tom has no significance, where "Tom" is name of some student. 

Table 1: Some itemsets in the original database. 

DB useful Itemset Support size of sample running time 
China 37% 

Singapore 50% 
B 33.2% 
C 42.05% 

D China, B 27.75% 100000 815 
Singapore, C 35% 

China, Singapore 0% 
China, C 3.1% 

B, C 0% 
China 36.78% 

Singapore 50.43% 
B 33.43% 
C 42.17% 

LRD China, B 27,83% 15000 436 
Singapore, C 34.97% 

China, Singapore 0% 
China, C 2.87% 

B, C 0% 
China 36.48% 

Singapore 50.82% 
B 33,45% 
c 42.3% 

CRD China,B 27.71% 6724 241 
Singapore, C 35.07% 

China, Singapore 0% 
China, C 3.01% 

B, C 0% 

As we have seen, if all data are randomly appended in to a given large database, 
the association rules can be approximated by our model using central limit theorem. 
The experiments also show the effectiveness of the proposed approach. Before 
closing this section, we shall make the following claim. 

/ 
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Claim 1. Consider the given database D, we have 

(1) If all data are randomly appended into a given large database, association 
rules can be approximated by our model using limit theorems. 

(2) If A B can extracted as a rule in our model, it must be a rule of interest. 
(3) The model in central limit theorem is more efficient than the model in Chernoff 

bounds. 

We now explain these arguments. (1) can directly be proven by the above 
algorithm and Theorem 1; (2) can be obtained from Theorem 3 and Algorithm 1. 

For Theorem 1 and model based on Chernoff bounds [11, 12], we can compare 
the efficiency between Chernoff bounds and central limit theorem as follows. 

where "||" is a comparison symbol, or 

In-
z2 

I (1+0/2 
1 - S ' 

where (1 + £)/2 > 0.5. According to the list of standard normal distribution 
function, the following inequality holds for 1 > £ > 0 

In— > Z 2 { 1 + i ) / 2 . 
- 2 

Hence, 

J-ln — > 
2r]2 1 — £ 4t f ' 

Thus, the model in central limit theorem is more efficient than the model in 
large number law, i.e., (3) in Claim holds. 

• 

5 Assisting Knowledge Discovery 
As has been shown, our model is efficient to discover approximate association rules 
in large databases. However, if the support of an itemset A is in the neighbour 
of minsupp, then A can be sometimes be treated as a large itemset and sometimes 
not as a large itemset due to approximation errors. In other words, some such 
itemsets are large itemsets in D but not in RD, and some such itemsets are not 
large itemsets in D but they are large itemsets in RD. This is a weakness of our 
model. For example, consider a random subset RD of a given large database D. Let 
minsupp = 0.2 and the probability of error to be tolerated be 0.05. Let two itemsets 
A and B in D with probabilities (supports) 0.18 and 0.23 respectively. Assume also 
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that A and B are generated with probabilities 0.21 and 0.194 respectively, in the 
random database RD. This means that A is a large itemset in RD and B is not a 
large itemset in RD due to approximating error 0.05. They are unexpected results. 

On the other hand, if we cannot compromise the validity of mined rules, or 
when certain support and confidence are necessary for some applications, 77 > 0 
can be expected to be much smaller. This implies that we have to end up with a 
very large sample of the database, which diminishes the gains of sampling. 

However, because of the randomness of data in a given database, we can roughly 
generate a possible large itemset set at first. Then this set is used as heuristic 
information to obtain large itemsets with only one pass through the given database. 
In this way, we can use such heuristic information to (1) assist knowledge discovery 
where accuracy is important or certain support and confidence is desirable, and 
(2) determine if an itemset in the neighbour of minsupp in the random subset of a 
given database is a large itemset. 

Definition 1. If an itemset A in RD is greater than or equal to minsupp — rj, then 
it is reasonable in probability to conjecture that A is a large itemset in the database 
D. And itemset such as A is called hopeful large itemset in D. Reversedly, if an 
itemset A in RD is less than minsupp — rj, then it is reasonable and comprehensive 
in probability to believe that A is impossible as a large itemset in the database D. 

Apparently, assessing hopeful large itemset are not only useful to the itemsets 
in the neighbour of minsupp, but also efficient to assist non-approximate knowledge 
discovery in databases. We now present the algorithm of accomplishing such two 
tasks as follows. 

Procedure 2. TLargeltemset 
Input: r): accuracy of results, probability of requirements, minsupp: minimum 

support, 
D: original database, HLIsSet: set of hopeful large itemsets; 

Output: LI: large itemsets D; 
Begin 
let LI 0; 
for each transaction r of D do 

for each itemset a of HLIsSet do 
if a 6 r then 

let Counta Counta + 1; 
for each itemset a of HLIsSet do 

if supp(a) > minsupp then 
let LI <- LIU {a}; 

output the set LI of all large itemsets in D; 
end; 

Again, if the confidence of a rule A —> B is in the neighbour of minconf, then 
A —> B can be sometimes extracted as a valid rule and sometimes not as a valid 
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rule due to the approximate error. The problem of the neighbour of minconf can 
be addressed using a similar method as that for the neighbour of minsupp. 

Now, we can describe the model of applying our method to assist non-
approximate knowledge discovery in databases as follows. For a given large 
database D, with the users specified minsupp and minconf, the following steps 
are performed. 

(1) Generate a random subset RD of D according to our model in this paper; 
(2) Generate the set HLIsSet of all hopeful large itemsets in RD with support 

greater than or equal to max{0,minsupp — approximate error}; 
(3) Generate all large itemsets in D with support greater than or equal to minsupp 

according to the set of hopeful large itemsets and Procedure 2; 
(4) Generate all the rules with both support and confidence greater than or equal 

to minimum support and minimum confidence respectively, according to the 
large itemsets in the given database. 

Certainly, applying approximate results to assist knowledge discovery needs only 
rough estimation, such as TJ = 0.01 and £ = 0.9 are enough to generate all hopeful 
large itemsets. On the other hand, Algorithm 1 is linear. It can be guaranteed by 
the following theorem. 

Theorem 4. For given large database D, let n = \D\, m be the time of generating 
the set HLIsSet of all hopeful large itemsets in random subset RD of D. Then the 
time of generating all large itemset in D is at least 0(m + n2). 

Proof. According to the above definition, Algorithm 1 and Procedure 2, it needs 
only one pass to read the given database D. And each reading takes t + t' to read 
a transaction from D and count itemsets in HLIsSet, where t the time to read 
a transaction from D, and t' the time to count all itemsets in HLIsSet. So, n 
reading incurs time of n(t +1 ' ) . Hence, the time to generate all large itemsets in D 
is m + n(t + t'). Let t" be the time to count an itemset. Then t' = t"\HLIsSet\ for 
general databases. Because \HLIsSet\ is at least 0(n), and t and t" are two small 
constants, so m + n(t + t') =m + n(t + t"\HLIsSet\) is at least 0(m + n2). • 

In order to handle the problem caused by both the neighbour of minsupp and 
the neighbour of minconf, we can use two methods as follows. One of them is 
to take max{0,minsupp — t]} and max{0, minconf — r]} as the minimum support 
and minimum confidence respectively, for applications that need only approximate 
results. If an application requires more accurate results or certain support and 
confidence, the following method can be performed. 

For a given large database D, minsupp and minconf are given by users. 

(1) Generate a random subset RD of D\ 
(2) Generate all hopeful large itemsets in RD with support greater than or equal 

to max{0,minsupp — approximate error}; 
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(3) Generate the set RSET of all the rules with both support and confidence 
greater than or equal to minimum support (max{0 ,min s u p p — 77}) and mini-
mum confidence (max{0 , TflUl^QJlf — 77}) respectively, according to the hopeful 
large itemsets in RD\ 

(4) For the subset PS of RSET with both support and confidence in the neigh-
bour of minsupp and the neighbour of Tninconf respectively, generate the set 
VRS of all rules in PS that is valid in £>; 

(5) Output ( R S E T - PS) U VRS. 
Theorem 5. For given large database D, minsupp and minconf are given by users. 
A —• B can be extracted as an approximate rule in the above model if and only if 
A —» B is a valid rule in D. 
Proof. We first prove (—>). According to the above assumption, if 

(1) supp(A U B) > max{0,minsupp — 77}; and 
(2) conf(A —• B) > max{0,minconf — 77}; 

hold in random subset RD of D. By (4) and (5) in the above definition, we can 
obtain 

(i) supp(A US) > minsupp; and 
(ii) conf(A -» B) > minCOnf; 

This means, A B is still a valid rule in D. 

The proof of (<=) can be directly obtained from Theorem 1, Theorem 3, and 
the above definition. 

So, A —> B can be extracted as an approximate rule in the above model if and 
only if A —> B is a valid rule in D. • 

6 Conclusions 
Mining association rules is an expensive process. Mining approximate association 
rules on a sample of a large database can reduce the computation cost significantly. 
Srikant and Agrawal [11] suggested a method to select the sample of a given large 
database for estimating the support of candidates using Chernoff bounds. Also, 
Toivonen [12] applied the Chernoff bounds to discover association rules in large 
databases. However, previous approximate models based on Chernoff bounds may 
require a large sample size compared to the central limit theorem for discovering 
association rules in large databases. In this paper, we have addressed the issue of 
mining association rules, and have made the following contributions: 

(1) Presented a method of applying the theorems to estimate the size of random 
database that enables us to mine approximate association rules. 

(2) Proposed the algorithm to discover approximate association rules with neg-
ative itemsets. In particular, an algorithm of generating all possible useful 
(positive and negative large) itemsets is also presented. 
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(3) Demonstrated the effectiveness of our approach experimentally. Our results 
show that the approximating model is more efficient than models based on 
Chernoff bounds [11, 12]. 

(4) Proposed a method to (a) assist knowledge discovery and (b) determine the 
validation of a rule in the neighbour of minsupp or the neighbour of mincon¡ 
in the given database. 
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Appendix A 
The size of the given database is 100000 and minsupp = 0.2. In order to illustrate 
the efficiency of our approximate rule model, we partly list the experimental re-
sults, which are the large itemsets and their supports. The variables a, b, and XQ 
are the initialized values used in the random number generator. In order to test 
the approximation, we list three different supports of each itemset from different 
samples with the same size as follows. 

Some itemsets of PL and NL in original database 

/* 1-items */ 

Item = China, count = 37000, support = 37'/, 

Item = Singapore, count = 50000, support = 50'/, 

Item = B, count = 33200, support = 33.2'/. 

Item = C, count = 42050, support = 42.05'/, 

/* 2-items .*/ 

Itemset = {China, B}, count = 27750, support = 27.75'/, 

Itemset = {Singapore, C}, count = 35000, support = 35'/, 

Itemset = {China, Singapore}, count = 0, support = 0'/. 

Itemset = {China, C}, count = 3100, support = 3.1'/, 

Itemset = {B, C}, count = 0, support = 0'/, 
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Some itemsets of PL and NL in models based on Chernoff bounds 

/* parameter value */ 

Accuracy of result: 0.01 

Probability of requirements: 0.9 

RandomDBSize: 15000 

a = 53 

b = 113 

x0= 17 

/* 1-item */ 

Item = China, count = 5517, support = 36.78'/, 

Item = Singapore, count = 7565, support = 50.43"/, 

Item = B , count = 5015, support = 33.43'/, 

Item = C, count = 6326, support = 42.17'/, 

/* 2-items */ 

Itemset = {China, B>, count = 4175, support = 27.83"/, 

Itemset = {Singapore, C}, count = 5246, support = 34.97'/, 

Itemset = {China, Singapore}, count = 0, support = 0'/, 

Itemset = {China, C}, count = 431, support = 2.87'/, 

Itemset = {B, C}, count = 0, support = 0'/, 

/* parameter value */ 

Accuracy of result: 0.01 

Probability of requirements: 0.9 

RandomDBSize: 15000 

a = 53 

b = 113 

x0= 43 

/* 1-item */ 

Item = China, count = 5543, support = 36.95'/, 

Item = Singapore, count = 7449, support = 49.66'/. 

Item = B, count = 4946, support = 32.97% 

Item = C, count = 6300, support = 42'/. 

/* 2-items */ 

Itemset = {China, B>, count = 4109, support = 27.39'/. 

Itemset = {Singapore, C>, count = 5249, support = 34.99'/, 

Itemset = {China, Singapore}, count = 0, support = 0'/, 

Itemset = {China, C}, count = 411, support = 2.74'/, 

Itemset = {B, C}, count = 0, support = 0'/, 
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/* parameter value */ 

Accuracy of result: 0.01 

Probability of requirements: 0.9 

RandomDBSize: 15000 

a = 53 

b = 113 

x0= 97 

/* 1-item */ 

Item = China, count = 5513, support = 36.75'/, 

Item = Singapore, count = 7568, support = 50.45'/, 

Item = B, count = 5012, support = 33.41% 

Item = C, count = 6332, support = 42.21'/, 

/* 2-items */ 

Itemset = {China, B}, count = 4172, support = 27.81'/, 

Itemset = {Singapore, C}, count = 5252, support = 35.01'/, 

Itemset = {China, Singapore}, count = 0, support = 0'/, 

Itemset = {China, C}, count = 473, support = 3.15'/, 

Itemset = {B, C}, count = 0, support = 0'/. 

Some itemsets of PL and NL in central limit theorem 

/* parameter value */ 

Accuracy of result: 0.01 

Probability of requirements: 0.9 

RandomDBSize: 6724 

a = 53 

b = 113 

x0= 17 

/* 1-item */ 

Item =. China, count = 2453, support = 36.48'/, 

Item = Singapore, count = 3417, support = 50.82'/, 

Item = B, count = 2249, support = 33.45'/, 

Item = C, count = 2844, support = 42.3'/, 

/* 2-items */ 

Itemset = {China, B}, count = 1863, support = 27.71'/, 

Itemset = {Singapore, C}, count = 2358, support = 35.07'/, 

Itemset = {China, Singapore}, count = 0, support = 0'/, 

Itemset = {China, C}, count = 202, support = 3.01'/ 

Itemset = {B, C}, count = 0, support = 0'/, 
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/* parameter value */ } 

Accuracy of result: 0.01 

Probability of requirements: 0.9 

RandomDBSize: 6724 

a = 53 

b = 113 

x0= 43 

/* 1-item */ 

Item = China, count = 2468, support = 36.7'/, 
Item = Singapore, count = 3350, support = 49.82'/, 

Item = B, count = 2216, support = 32.96% 

Item = C, count = 2829, support = 42.077, 

/* 2-items */ 

Itemset = {China, B>, count = 1830, support = 27.22'/, 

Itemset = {Singapore, C}, count = 2359, support = 35.08°/, 

Itemset = {China, Singapore}, count = 0, support = 0'/, 

Itemset = {China, C}, count = 196, support = 2.91'/, 

Itemset = {B, C}, count = 0, support = 0'/, 

/* parameter value */ 

Accuracy of result: 0.01 

Probability of requirements: 0.9 

RandomDBSize: 6724 

a = 53 

b = 113 

x0= 97 

/* 1-item */ 

Item = China, count = 2456, support = 36.53'/, 

Item = Singapore, count = 3412, support = 50.74'/, 

Item = B , count = 2255, support = 33.54'/, 

Item = C, count = 2837, support = 42.19'/, 

/* 2-items */ 

Itemset = {China, B}, count = 1867, support = 27.77'/, 

Itemset = {Singapore, C}, count = 2350, support = 34.95'/, 

Itemset = {China, Singapore}, count = 0, support = 0'/, 

Itemset = {China, C}, count = 204, support = 3.04'/. 

Itemset = {B, C}, count = 0, support = 0% 
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