
Acta Cybernetica 16 (2003) 133-145.

Mining Dynamic databases by Weighting*

Shichao Zhang1' and Li Liu*

Abstract
A dynamic database is a set of transactions, in which the content and the

size can change over time. There is an essential difference between dynamic
database mining and traditional database mining. This is because recently
added transactions can be more 'interesting' than those inserted long ago
in a dynamic database. This paper presents a method for mining dynamic
databases. This approach uses weighting techniques to increase efficiency,
enabling us to reuse frequent itemsets mined previously. This model also
considers the novelty of itemsets when assigning weights. In particular, this
method can find a kind of new patterns from dynamic databases, referred to
trend patterns. To evaluate the effectiveness and efficiency of the proposed
method, we implemented our approach and compare it with existing methods.

1 Introduction
In real-world applications, a business database is dynamic, in which (1) its content
updates over time and (2) transactions are continuously being added. For example,
the content and size of the transaction database of a supermarket change time by
time, and different branches of Wal-Mart receive 20 million transactions a day. This
generates an urgent need for efficiently mining dynamic databases.

While traditional data mining is developed for knowledge discovery in static
databases, some algorithms have recently been developed for mining dynamic
databases [4, 5, 6, 13]. However, there is an essential difference between dynamic
database mining and traditional database mining. This is because recently added
transactions can be more 'interesting' than those inserted long ago in a dynamic
database. Actually, some items such as suits, toys, and some foods are with smart in
market basket data. For example, "jean" and "white shirt" were often purchased
in a duration from a department store, and "black trousers" and "blue T-shirt"
were often purchased in another duration. The department store made different

"This research is partially supported by the Australian Research Council Discovery Grant
(DP0343109) and partially supported by a large grant from the Guangxi Natural Science Funds

^Faculty of Information Technology, University of Technology, Sydney, PO Box 123, Broad-
way NSW 2007, Australia, and Guangxi Teachers University, Gulin, P R China. Email:
zhangscff l i t .uts .edu.au

^Faculty of Information Technology, University of Technology, Sydney, PO Box 123, Broadway
NSW 2007, Australia. Email: l i l i u f f l i t . u t s . e d u . a u

179

180 ShichcLO Zhang and Li Liu

decisions on buying behavior according to such different purchased models. This
means, some goods are very often purchased in a duration in market basket data,
and they are solely purchased in another duration. These items are called smart
goods. Apparently, most of smart items may not be frequent itemsets in a market
basket data set. But they are useful to making decisions on latest buying behavior,
referred to trend pattern.

Consequently, mining trend patterns is an important issue in mining market
basket data. Indeed, since new data may represent the changing trend of customer
buying patterns, we should intuitively have more confidence on the new data than
on the old data, therefore, the novelty of data should be highlighted in mining
models. However, mining customer buying behavior based on support-confidence
framework (see [1]) can only reflect the frequency of itemsets but the trend of data.
In this paper, a new method is proposed for mining association rules in dynamic
databases. The proposed approach is based on the idea of weighted methods and
aims at incorporating both the size of a database and the novelty of the data in
the database.

The rest of this paper is organized as follows. In the next section, we first show
our motivation, and then briefly recall some related work, concepts and definitions.
In Section 3, a weight model of mining association rules for incremental databases is
proposed. A competition is set up for tackling the problem of infrequent itemsets
in Section 4. In Section 5, we show the efficiency of the proposed approach by
experiments, and finally, we summarize our contributions in the last section.

2 Preliminaries

This section recall some previous work and concepts needed.

2.1 Related Work
Data mining can be used to discover useful information from data like 'when a
customer buys milk, he/she also buys Bread' and 'customers like to buy Sunshine
products'.

Strictly speaking, data mining is a process of discovering valuable information
from large amounts of data stored in databases, data warehouses, or other informa-
tion repositories. This valuable information can be such as patterns, associations,
changes, anomalies and significant structures [19]. That is, data mining attempts
to extract potentially useful knowledge from data.

Recently, mining association rules from large databases has received much at-
tention [1, 7, 12, 15, 17]. However, most of them [1, 10, 12] presuppose that the
goal pattern to be learned is stable over time. In real world, a database is often
updated. Accordingly, some algorithms have recently been developed for mining
dynamic databases [4, 5, 6, 13].

Mining Dynamic databases by Weighting 181

One possible approach to the update problem of association rules is to re-run
the association rule mining algorithms [1] on the whole updated database. This
approach, though simple, has some obvious disadvantages. All the computation
done initially at finding the frequent itemsets prior to the update are wasted and
all frequent itemsets have to be computed again from scratch. An incremental
approach for learning from databases is due to [6], which uses the maintaining
ideas in machine learning [13].

The most prevailing dynamic database mining model should be the FUP model
proposed by Cheung et al [4] (The model will be detailed in Subsection 2.3). The
FUP model reuses information from the old frequent itemsets. That is, old frequent
itemsets and promising itemsets are required to be kept. This can significantly re-
duce the size of the candidate set to be searched against the original large database.
Like the Aporiori algorithm [1], the FUP model employs the frequencies of item-
sets to mine association rules. However, the FUP approach only need to scan the
new data set for generating all the candidates. To deal with more dynamics, the
authors also proposed an extended FUP algorithm, called FUP2 [5], for general
updating operations, such as insertion, deletion and modification on databases.

However, previous models (such as the FUP model) use retrace technique to
handle the problem that smaller itemsets become frequent itemsets during main-
tenance. The retrace technique is to re-mine the whole data set. Unfortunately,
because the change is unpredicatable in applications, the technique may be repeat-
edly applied leading to poor performance.

In particular, previous models don't work well for the novelty of data. This
paper will present techniques to address the above problems. Before figuring out our
approach, we now present some well-known concepts for data mining and knowledge
discovery used throughout this paper.

2.2 Basic Concepts

Let I = {¿i, ¿2, • • • , ij\r} be a set of N distinct literal called items. D is a set
of variable length transactions over I . Each transaction contains a set of items
ii, ¿2, • • • , ik € A transaction has an associated unique identifier called TID. An
association rule is an implication of the form A=> B (or written as A —y B), where
A, B C I, and A D B = 0. A is called the antecedent of the rule, and B is called
the consequent of the rule.

In general, a set of items (such as the antecedent or the consequent of a rule)
is called an itemset. The number of items in an itemset is the length (or the size)
of an itemset. Itemsets of some length k are referred to as a /c-itemsets. For an
itemset A • B, if B is an m-itemset then B is called an m-extension of A.

Each itemset has an associated measure of statistical significance called support,
denoted as supp. For an itemset A C I, supp(A) = s, if the fraction of transactions
in D containing A equals s. A rule A —»• B has a measure of its strength called
confidence (denoted as conf) defined as the ratio supp(A U B)/supp(A).

182 ShichcLO Zhang and Li Liu

Definition 1. (support-confidence model): If an association rule A -t B has
both support and confidence greater than or equal to some user specified minimum
support (minsupp) and minimum confidence (minconf) thresholds respectively, i. e.
for regular associations:

supp(A U B) > minsupp

supp(AuB)
canfiA B) = , > minconf v ' supp(A) ~

then A B can be extracted as a valid rule.

Mining association rules can be decomposed into the following two issues.

(1) All itemsets that have support greater than or equal to the user specified
minimum support are generated. That is, generating all frequent itemsets.

(2) Generate all the rules that have minimum confidence in the following naive
way: For every frequent itemset X and any B C X, let A = X - B. If the
rule A —• B has the minimum confidence (or supp(X)/supp(A) > minconf),
then it is a valid rule.

Example 1. Let 7\ = {A,B,D}, T2 = {A,B,D}, T3 = {B,C,D}, T4 =
{B,C, D}, and T5 = {A, B} be the only transactions in a database. Let the min-
imum support and minimum confidence be 0.6 and 0.85 respectively. Then the
frequent itemsets are the following: {B}, {D}, {A, B} and {B,D}. The valid
rules are A —• B and D —>• B.

2.3 The FUP Model
For comparison, we now present the FUP model [4]. Let D be a given database,
D+ the incremental data set to D, A be an itemset that occurs in D, A+ stands
for A occurring in D+, Then A is a frequent itemset in D U D+ only if the support
of A is great than or equal to minsupp. We now define the FUP model as follows.

Definition 2. (F U P model): An association rule A —> B can be extracted as a
valid rule in DuD+ only if it has both support and confidence greater than or equal
to minsupp and minconf respectively. Or

, . „, t(A U B)+ t{A+ U B+) ^ " .
suppyA U B) = > minsupp

c[JJ) + c[D+)

.. . supp{Al)B) .
conftA B) = . > minconf.

supp(A)

where c(D) and c(D+) are the cardinalities of D and D+, respectively; t(A) and
t(A+) denote the number of tuples that contain itemset A in D and the number of
tuples that contain itemset A in D+, respectively.

Mining Dynamic databases by Weighting 183

According to the FUP model, the update problem of association rules can be
reduced to finding the new set of frequent itemsets [4]. It can be divided into the
following subproblems:

(1) Which old frequent itemsets will be become small in the updated database.
(2) Which old small itemsets will be become frequent in the updated database.
(3) Tackle these itemsets: delete the association rules A B that AuB became

small in the updated database; apply the mining algorithms into the itemsets
that became frequent in the updated database.

(4) How long would a database system be processed so as to update the factors
of all itemsets.

The FUP algorithm works iteratively and its framework is Apriori-like (For
details of the Apriori algorithm, please see [1]). At the /cth iteration it performs
three operations as follows:

1. Scan D+ for any fc-itemsets, A. If the support of A in D+ is greater than,
or equal to, minsupp, A is put into L'k that is the set of frequent itemsets in
D+.

2. For any fc-itemsets A in L'k, if A is not in that is the set of frequent
itemsets in D, the support of A in D U D+ is computed. If the support of A
in D U D+ is smaller than minsupp, A is removed from the candidate set of
D+.

3. A scan is conducted on D to update the support of A for each itemset in the
candidate set of D+.

3 Mining Strategies for Dynamic Databases
As we argued previously, the dynamic of databases is represented in two cases: (1)
the content updates over time and (2) the size changes incrementally. When some
transactions of a database are deleted or modified, it says that the content of the
database has been updated. And this database is referred to an updated database.
When some new transactions are inserted or appended into a database, it says
that the size of the database has been changed. And this database is referred to
incremental database. This section designs efficient strategies for mining updated
databases and incremental databases.

3.1 Pattern Maintenance for Updated Databases
The update operation includes deletion and modification on databases. Consider
transaction database

TD = {{A, B); {A, C}-, {A, B, C}; { B , C); {A, B, D}}

where the database has several transactions, separated by a semicolon, and each
transaction contains several items, separated by a comma.

184 ShichcLO Zhang and Li Liu

The update operation on TD can basically be

Case-1 Deleting transactions from the database TD. For example, after deleting
transaction {A,C) from TD, the updated database is TD\ as

TD1 = {{A,B}-,{A,B,C}-,{B,Cy,{A,B,D}}

Case-2 Deleting attributes from a transaction. For example, after deleting B from
transaction {A,B, C} in D, the updated database is TD2 as

TD2 = {{A, B}-, {A, C}-, {A, Cy {B, C}; {A, B, D}}

Case-3 Modifying existing attributes of a transaction in the database TD. For
example, after modifying the attribute C to D for the transaction {A, C} in
TD, the updated database is TD3 as

TD3 = {{A, B}-, {A, B}-, {A, B, C}; {B, C}; {A, B, D}}

Case-4 Modifying a transaction in the database TD. For example, after modifying
the transaction {A, C} to {A, C, D} for TD, the updated database is TD, as

TD, = {{A, B}-, {A, C, D}-, {A, B, C}; {B, C}; {A, B, D}}

Mining updated databases generates a significant challenge: the maintenance of
their patterns. To capture the changes of data, for each time of updating a database,
we may re-mine the updated database. This is a time-consuming procedure. In
particular, when a database mined is very large and the changed content of each
updating transaction is relatively small, re-mining the database is not an intelligent
strategy, where an updating transaction is a set of update operations. Our strategy
for updated databases is to scan the changed contents when the information amount
of the changed contents is relatively small;, otherwise, the updated database is re-
mined. The information amount is defined as follows.

Let D be a database with n transactions and the average number of attributes
per transaction be m. Then the information amount of D is

Amount(D) = mn

Let UO be an updating transaction, consisting of the k update operations, Ni,
N2, • • •, Nk, on the database D. As we have seen, each update operation, Ni, can
generates two sets: Additems(Ni) and deleteitems(Ni). Additems(Ni) is the set
of records, in which items are added to the database D. And deleteitems(Ni) is
the set of records, in which items are deleted from the database D. For example,

• Additems(UO\) = {} and deleteitems(UO\) = {{A,C}} for the example in
Case-1;

• Additems(U02) = {} and deleteitems(U02) = {{5}} for the example in
Case-2;

Mining Dynamic databases by Weighting 185

• Additems(U03) = {{-D}} and deleteitems(UOs) = {{C}} for the example
in Case-3; and

• AdditemsiJJOi) = {{£)}} and deleteitems{UOi) = {} for the example in
Case-4.

For Ni (1 < i < k) in UO, the information amount of N{ is the sum of
Amount(Additems(Ni)) and Amount(deleteitems(Ni)). Then the information
amount of UO is

k

Amount(UO) = Amount(Additems(Nj)) + Amount(deleteitems(Ni)))
i=1

For the above example, we have
(1) Amount(UOi) = 2 for Case-1, where UOi is the update operation in the

corresponding example;
(2) Amount(U02) = 1 for Case-2, where UO2 is the update operation in the

corresponding example;
(3) Amount{UOz) = 2 for Case-3, where UO3 is the update operation in the

corresponding example; and
(4) Amount(UOi) — 1 for Case-4, where UOi is the update operation in the

corresponding example.
For an updating transaction UO on a database D, if

Amount(UO)/Amount(D) > 7, the updated database D must be mined,
where 7 is a minimal relative information amount threshold. Otherwise, we only
need to mine the changed contents in the updated database.

Let

Additems(UO) = Additems(Ni) U Additems{N2) U • • • U Additems(Nk)
deleteitems(UO) = deleteitems(N\) U deleteitems(N2) U • • • U deleteitems(Nk)

When mining the changed contents over the database D, we need to mine both
Additems(UO) and deleteitems(UO). Let XAdditems be the number of itemsets X
occurring in Additems(UO) and Xdeieteitems be the number of itemsets X occurring
in deleteitems(UO). The the number, f (X) , of itemsets X is

/(-^0 — X-A dditems Xdeieteitems

There may be some hopeful itemsets in Additems(UO). Let A be an itemsets in
the changed contents and |D| be the number of records in D. The relative support
of A, rsupp(A), is defined as

rsupp(A) = -y^p

When rsupp{A) is large enough, the itemset A may be a frequent itemset in the
updated database. This means that we may scan the database D for checking
whether or not a hopeful itemset is frequent.

186 ShichcLO Zhang and Li Liu

On the other hand, if the total information amount of the updating transaction
UO and M updating transactions (ALLCC — {UOI, UO2, •••, UOM}) is greater
than 7, the database D must also be re-mined, where UO\ < 7, UO2 <7, • • •,
UOM < 7 and the M updating transactions have done before the updating trans-
action UO.

Including the above idea, the updating transaction UO leads to that the
database D must be re-mined if

Mut(UO, allCC) = Amount(UO)/Amount (D) > j\J
M

Amount(UO) + Amount(UOi)

— > 7 (1)

Amount(D) y '

Below we design the algorithm for updated database mining.

Algorithm 1. UpdatedDBMining;
Input D: original database; UO: set of update operations; FS: set of frequent

itemsets in D; 7: minimal relative information amount; a: relative minimal
support for itemsets in the changed contents;

Output newFS: set of frequent itemsets in the updated database;

1. compute Amount(D);
2. let CC <- the changed contents;
3. let allCC 0
4. compute Amount(UO)\
5. if Mut(UO, allCC) then begin
6. mine the updated database and put frequent itemsets into newFS;
7. allCC «- 0;
8. endif
9. else begin

10. hopeset 0;
11. allCC 4- the updating transaction ¡70;
12. mine the changed contents CC;
13. Cset the set of items in CC;
14. for any A in Cset do
15. if f(A) > a then
16. hopeset <— hopeset U {A};
17. Candidate the set of itemsets in FS, in which each itemset contains at

least an item in Csei;

Mining Dynamic databases by Weighting 187

18. scan the updated database for hopeset and Candidate-,
19. generate new F S by FS, hopeset and Candidate;
20. end else;
21. output newFS;
22. end procedure;

The algorithm UpdatedDBMining generates frequent itemsets in updated
databases. The initialization is carried out in steps 1-4. Step 5 checks whether
Mut(UO,allCC) is true or not. When Mut(UO,allCC) is true, the updated
database must be mined in step 6 and the set allCC is emptied in step 7. Oth-
erwise, we only need mine the changed contents in steps 9-20. The set hopeset is
used to save all hopeful itemsets in the changed contents. Step 11 puts the updat-
ing transaction UO into allCC. Step 12 mines the changed contents. Steps 14-16
generate the set of hopeful itemsets. Step 17 generates the set of itemsets in FS,
in which their supports have been changed. Step 18 takes one scan on the updated
database for tackling both hopeset and Candidate, so as to generate all frequent
itemsets in the updated database in step 19. Step 21 outputs all frequent itemsets
in the updated database.

We now illustrate the use of this procedure by an' example as follows.
Consider the above database TD. Let minsupp = 0.4. Then Amount(TD) = 12

and the frequent itemsets in TD are

A, 0.8; B, 0.8; C, 0.6; AB, 0.6; AC, 0.4; BC, 0.4

where there are 6 frequent itemsets, separated by a semicolon, and each frequent
itemset contains 2 items, its name and frequency, separated by a comma.

Let 7 = 0.2, a = 0.25 and the first updating transaction is UOi, in which the
transaction {A, C} is deleted from TD. Then the updated database is UD\ as

UD! = {{A, B}; {A, B, C}; {B, C}; {A, B, £>}}

And

Additems(UO\) = 0
deleteitems(UOi) = {{A,C}}

Because UOi is the first updating transaction, allCC = 0. For UO\,
Amount(UOi) = 2,

Amount(UOi)/Amount(TD) = 2/12

and Mut(UOi, allCC) is not true. Consequently, we only need to mine the changed
contents {A, C} and the itemsets are A, C and AC. By the definition of the relative

188 ShichcLO Zhang and Li Liu

support of itemsets,

Therefore,

rsupp(A) = = ^ = 0.2 < a

rsupp(C) = ¡Щ = 1 = 0 2 < а

f(AC) 1
rsupp(AC) = -Щ\= 5=0-2<"

hopeset = 0
allCC = {i/Oi}

For the set of frequent itemsets in D, we have

Candidate = {A, C,AB, AC, ВС}

By scanning the updated database for Candidate, we have

newFS = {A, 0.6; B, 0.8; C, 0.4; AB, 0.6; ВС, 0.4}

Note that the size of the updated database can approximately be equal to the
size of D when D is relatively large. Accordingly, the above example takes 5 as
the size of the updated database, aiming at showing how to deal with the frequent
itemsets using the changed contents.

Now, let the second updating transaction is UO2, in which the transaction
{B,C} in UDi is modified as {A,B ,C} . Then the updated database is UD2 as

UDi = {{А, В}; {А, В, С}; {А, В, С}; {A, B, D}}

And

Additems(U02) = {{A}}
deleteitems(U02) = 0

For UO2, Amount{U02) = 1 and

Amaunt(U02)/Amount{TD) = 1/12

Because allCC = {f/Oi}, Mut(U02,allCC) is true. Consequently, we need to
mine the updated database UD2 and the itemsets are as follows

newFS = {A, 1;B, 1;C, 0.4; AB, 0.75; ВС, 0.5; AC, 0.5; ABC, 0.5}

The above examples have shown our strategy for effectively maintaining frequent
itemsets in updated databases. We will focus on identifying trend patterns from
incremental databases in the following sections.

Mining Dynamic databases by Weighting 189

3.2 Pattern Maintenance for Incremental Databases
The incremental operation includes insertion and appending on databases. Con-
sider transaction database

D = {{F, H, I, J}; {E, H, J}; {E, F, H}-{E, I}}

where the database has several transactions, separated by a semicolon, and each
transaction contains several items, separated by a comma.

The incremental operation on a database TD can be

(1) inserting transactions into the database TD. For example, after inserting two
transactions {A, C} and {A, B, C} into TD before the transaction {E, H, J},
the incremental database is TDi as

TD\ = {{P, H, I, J}; {A, C}-, {A, B, C}; {E, H, J}; {E, F, H}\ {E, I}}

(2) Appending transactions into the database TD. For example, after appending
transactions {B, C} and { A , B , D } to TD, the incremental database is TD2
as

TD2 = {{F, H, I, J}-, {E, H, J}-{E, F, H}-, {E, /}; {B, C}-, {A, B, D}}

¿From the above observations, both the inserting and appending operations
do not change the original contents in the database TD. Therefore, we can take
an incremental operation transaction as the union of the database TD and the
incremental dataset D+, where the dataset D+ is a set of transactions that are
added to TD by the incremental operation transaction.

Example 2. Let TD be a set of a transaction database with 10 transactions in
Table 1 which is obtained from a grocery store, where A = bread, B = coffee,
C = tea, D — sugar, E = beer, F = butter and h = biscuit. Assume that D+ is
a set of transactions in Table 2, which are new sales records in the grocery store,
where G = choclate.

The databases TD and D+ are sets of data that represents the customer behav-
iors during two terms. And D+ illustrates the latest customer behavior, whereas
TD presents the old customer behavior. A frequent itemsets in D+ is referred to
trend pattern. Trend patterns are very important in marketing because they are
useful in the decision-making of merchandize buying. For example, H is a trend
pattern, which is frequently purchased in the new duration.

However, by using the support-confidence framework, H is not a frequent item-
set in TD U D+ when minsupp = 0.4. Therefore, trend pattern discovery has
become a key issue in incremental database mining. On the other hand, to cap-
ture the novelty of data, for each incremental operation transaction, we may also
re-mine the incremental database. In particular, when an original database mined
is very large and the dataset generated by an incremental operation transaction is
relatively small, re-mining the incremental database is time-consuming. Like the

190 ShichcLO Zhang and Li Liu

Table 1: Transaction databases in TD

Transaction ID Items
2i A, B, D, H
T2 A, B, C, D
T3 B, D, H
T4 B, C, D
?5 A, C, E
T6 B, D, F
T7 A, F
TS C , F
T9 B, C, F
Tic A, B, C, D, F

Table 2: Transaction databases in D+

Transaction ID Items
A, B, H

N2 B, C, G, H
N3 B, H

updated database mining, our strategy for mining incremental databases is to scan
the incremental dataset when the information amount of the incremental dataset
is relatively small; otherwise, the incremental database is re-mined.

For an incremental dataset D+ added to a database D, if
Amount(D+)/Amount(D) > /?, the incremental database D U D+ must be
mined, where /? is a minimal relative information amount threshold. Otherwise,
we only need to mine the incremental dataset and synthesize the patterns in D+

and D by weighting (see Sections 4 and 5).
If the total information amount of the incremental dataset D+ and M incre-

mental datasets (allaet = {D*, D2, • • •, D i s greater than /3, the database D
must also be re-mined, where Df < /3, D2 < /3, • • •, D^ < (3 and the M datasets
are added to D before the incremental dataset D+ is.

Intuitively, the constraint Amount(D+)/Amount(D) > /3 indicates that the
incremental dataset D+ contains a information amount large enough to drives the
mining of the incremental database. However, D+ may only contain few records
with much information. For example, let D+ only contain a records with 200
distinct items in Example 2 and these items are also different from items in.D.
Certainly, the constraint Amount(D+)/Amount(D) > ¡3 holds. This leads to the
mining of the incremental database. By using the support-confidence framework,
there are no frequent itemsets in D+ because the frequency of each item in D+

is 1. Accordingly, we must take into account the size, | i?+ | , of D+ in our mining

Mining Dynamic databases by Weighting 191

strategy. In this paper, the constraint is constructed as

constraint^, D) = L ^ h i ^ ^ i g l

Including the above idea, the incremental dataset D+ leads to that the database
D must be re-mined if

Mid{D+, allset) = constraint(D+, D) > ¡3\j
M

constraint(D+,D)+ ^2constraint(Di',D) >/3 (2)
i= 1

Below we design the algorithm for incremental database mining.

Algorithm 2. IncrementalDBMining;

Input D: original database; D+: incremental dataset; FS: set of frequent itemsets
in D; ¡3: minimal relative information amount; minsupp: minimal support;

Output weightedFS: set of frequent itemsets by weighting;

1. compute Amount(D);
2. let allset0
3. compute Amount(D+)\
4. if Mid(D+, allset) then begin
5. mine the database D U D+ and put frequent itemsets into weightedFS;
6. allset <- 0;
7. endif
8. else begin
9. allset <— the incremental dataset D+;

10. mine the incremental dataset D+;
11. Pset the set of frequent itemsets in D+\
12. weight the support and confidence of A in D and D+

13. if supp(A) > minsupp then
14. weightedFS <- A;
15. end else;
16. output weightedFS',
17. end procedure;

The algorithm IncrementalDBMining generates frequent itemsets in incre-
mental databases. The initialization is carried out in steps 1-3. Step 4 checks

192 ShichcLO Zhang and Li Liu

whether Mid(D+, all set) is true or not. When Mid(D+, all set) is true, the incre-
mental database must be mined in step 5 and the set allset is emptied in step 6.
Otherwise, we only need mine the incremental dataset D+ in steps 9-15. Step 9 puts
the incremental dataset D+ into allset when Mid(D+, allset) is not true. Step 10
mines the incremental dataset D+. Steps 11-14 generate the set of frequent itemsets
by weighting. Step 16 outputs all frequent itemsets in the incremental database.

The algorithm IncrementalDBMining includes a weighting procedure which
is used to identify trend patterns. We will present the weighting technique in the
following Sections.

4 Weight Method
Let D be a given database, D+ the incremental dataset to D, A be an itemset that
occurs in D, A+ stands for A occurring in D+. The support of A in the incremental
database Dt = D U D+ is as follows

S U P P { A) = c (D) + V) + c{D){fc{D+) (3)

Where c(D) and c(D+) are the cardinalities of D and D+, respectively; and t(A)
and t(A+) denote the number of tuples that contain itemset A in D and the number
of tuples that contain itemset A in D+, respectively.

Let suppi(A) = t(A)/c(D) and supp2(A) = t(A+)/c(D+) stand for the supports
of A in D and D+, respectively. Then the equation (3) can be represented as

C (D) c(Z?+)
supp(A) = c { D) + c{D+)supPL(A) + c [D) + c { d +) S U P P 2 (A) (4)

Let

C(D)
h =

k2 =

c(D) + c{D+)

c(D+)
c{D) + c{D+)

where ki and k2 are the ratios of D and D+ in the incremental database D\,
respectively. And the equation (4) can be represented as

supp(A) = k\ * suppi(A) + k2* supp2(A) (5)

For the equation (5), we can take k\ and k2 as the weights of D and D+ in
the incremental database D\. This means, if a dataset has a larger number of
transactions, the weight of the dataset is higher. And if a dataset has few trans-
actions, the dataset is assigned a lower weight. Therefore, traditional data mining

Mining Dynamic databases by Weighting 193

techniques, such as the support-confidence framework, can really be regarded as
trivial weighting methods.

Consider the database D and the incremental dataset D+ in Example 2. When
minsupp = 0.4, the frequent itemsets in D and D+ are listed in Tables 3 and 4,
respectively.

Table 3: Frequent itemsets in D

Item Number of Support Item Number of Support
Transactions P(X) Transactions P(X)

A 5 0.5 B 7 0.7
C 6 0.6 D 6 0.6
F 5 0.5 BC 4 0.4

BD 5 0.5

Table 4: Frequent itemsets in D+

Item Number of Support
Transactions P(X)

B 3 1
H 3 1

BH 3 1

After the transactions in D+ are added to D to form the incremental database
Di = DU D+, the frequent itemsets in D\ are listed in Table 5.

Table 5: Frequent itemsets in Dx

Item Number of Support
Transactions P(X)

A 6 0.4615
B 10 0.769
C 7 0.5385
D 6 0.4615

From Tables 3, 4 and 5, the desirable patterns H and B H are not frequent
itemsets in the incremental database D\. To identify trend patterns such as H and
BH, the novelty of data must be emphasized. In this paper, we propose to assign
the incremental dataset D+ a higher weight for stressing the novelty of data. For
example, for the database D and the incremental dataset D+, we have

194 ShichcLO Zhang and Li Liu

c(D) 10 _
= c(D) + c(D+) = 13 — ® ®

c(D+) 3
fc2 = c(D) + c(D+)=i3=0"231

Taking into account the above idea, we assign £> a weight wi = 0.66 and D+ a
weight W2 = 0.34. And the support of an itemset X in D\ is as follows

SUpp(X) =Wi* SUppi(X) + W2* supp2{X) (6)

Hence, for the itemsets B, H and BH, we have

supp(B) = 0.66 * suppi(B) + 0.34 * supp2(B)
= 0.66*0.7 + 0.34*1 =0.802

supp(H) — 0.66 * suppi (H) + 0.34 * supp2 (H)
= 0.66 * 0.2 + 0.34 * 1 = 0.472

supp(BH) = 0.66 * suppi (BH) + 0.34 * supp2(BH)
= 0.66*0.2 + 0.34* 1 = 0.472

This means that both H and BH are frequent itemsets in D\ according to the
equation (6). And all frequent itemsets in D\ are listed in Table 6.

Table 6: Frequent itemsets in D\

Item Number of Weighted Support
Transactions supp(X)

A 6 0.445
B 10 0.802
C 7 0.51
H 5 0.472

BH 5 0.472

Comparison with Table 6, the supports of itemsets A, C and D are decreased
in Table 7 because they are not frequent itemsets in the incremental dataset D+.
In particular, itemset D is not a frequent itemset in Di because

supp(D) = 0.66 * suppi(B) + 0.34 * supp2{B)
= 0.66 * 0.6 + 0.34 * 0 = 0.396

On the other hand, the supports of itemsets B, B and BH are increased in
Table 7 because they are strongly supported in the incremental dataset D+.

Mining Dynamic databases by Weighting 195

The above results have shown the following fact. In the weighting model, some
infrequent itemsets (for example H and BH) can be interested, whereas some
frequent itemsets (for example D) can be uninterested.

We now define the weighting model for maintaining association rules in incre-
mental databases.

Definition 3. (Weighting model): An association rule X Y can be extracted
as a valid rule in D U D+ only if it has both support and confidence greater than or
equal to minsupp and minconf respectively. Or

suppw(X U Y) = wi * suppi(X U Y) + w2 * supp2(X U Y) > minsupp (7)

The confidence of the rule X —¥ Y can be directly weighted as follows

confw(X Y) = w\ * confi(X Y) + w2 * conf2(X ->Y)> minconf (9)

Generally, for D, Di, •••, Dn with weights wi, w2,-- • we define the
weighted support, suppw(X), of itemset X as follows.

suppw(X) = wi* supp(X) + w2* suppi(XY) -\ 1- wn+i * suppn(X) (10)

where, supp(X), suppi(X), • • •, suppn(X) are the the supports of the itemset X
in D, Di, • • •, Dn respectively.

Let X —• Y be an association rule in D, we define the weighted support
suppw(X U Y) and confidence confw(X —> Y) for X —> Y as follows

suppw (X U Y) = wi * supp(X U Y) + w2 * suppi (XllF)H (11)

1- wn+i * suppn(X U Y)
confw(X ->Y) = Wi * conf{X -+Y)+W2* confi(X Y) + • • • (12)

h wn+i * confn(X Y)

where, supp(X U Y), suppi(X U Y), • • •, suppn(X U Y) are the the supports of
the rule X Y in D, Di, • • •, Dn respectively; conf(X -» Y), confi(X Y),
• • •, confn(X —> Y) are the confidences of the rule X —> Y in D, Di, - • •, Dn
respectively.

We now present the algorithm for weighting the support and confidence of as-
sociation rules.

Let D be the given database, D+ the incremental data set, supp and conf
the support and confidence functions of rules in D, supp+ and conf+ the support
and confidence functions of rules in D+, minsupp, minconf, mincruc: threshold
values given by user, where mincruc (< Min{minsupp, minconf}) is the crucial
value that an infrequent itemset can become frequent itemset in a system.

confw(X ->• Y) =
suPPw(X U Y)

suppw(X) > minconf (8)

196 ShichcLO Zhang and Li Liu

Procedure 1. Weighting

Input: D+: database; minsupp, minconf, mincruc: threshold values; R: rule
set; CS, CS': sets of itemsets;

Output: X —> Y: rule; CS, CS': sets of items ets;

(1) input wi 4- the weight of D\
input W2 the weight of D+;
let RR <- R\ R 0; temp 0;
let Itemset <- all itemsets in D+ \
let CSD+ all frequent itemsets in D+\
let i i + 1;

(2) for any X —» y € RR do
begin

let supp(X U Y) <- wi * supp(X UYJ+iuj* supp(X+ UY+) ;
let conf(X Y) <r- wi * conf{X -*Y) + w2* conf+(X Y)-,
if supp > minsupp and conf > minconf then

begin
let R rule X Y\
output X Y as a valid rule of ith mining;

end;
else let temp temp U {X, X \J Y} \

end;
(3) for any B 6 CS do

begin
let supp(B) w\ * supp(B) + ui2 * supp{B+)\
if supp(B) > minsupp then

for any A C B do

begin
let supp(A) w\ * supp(A) + w2* supp(A+)\
let conf (A (B - A)) <r- supp(B) / supp(A)-,
if conf (A (B — A)) > minconf then

begin
let R <= rule A (B - A)]
output A (B — A) as a valid rule of ith mining;

end;
else let temp 4- temp U {B, A}-,

end
end;

(4) call competing;
(5) return;

The procedure Weighting generates association rules that are weighted. Here
the initialization is done in Step (1). Step (2) performs the weighting operations on

Mining Dynamic databases by Weighting 197

rules in RR, where RR is the set of valid rules in the last maintenance. In this Step,
all valid rules are appended into R and, the itemsets of all invalid rules weighted is
temporarily stored in temp. Step (3) extracts all rules from competitive set CS and
all invalid itemsets weighted in CS is temporarily stored in temp. (Note that any
itemset in CS' can generally become as a hopeful itemset and may be appended into
CS by competition. However, it cannot become a frequent itemset. In other words,
CS' can be ignored when rules are mined.) Step (4) calls procedure competing to
tackle the competing itemsets for CS and CS1, which will be described in next
section.

5 Competitive Set Method
As has been shown, the proposed weighted model is efficient to mine trend patterns
in incremental databases. To capture the novelty, some infrequent itemsets or new
itemsets may be changed into frequent itemsets. We refer to this as the problem of
infrequent itemsets.

To deal with this problem, we use a competitive model to deal with this problem
so as to avoid retracing the whole data set. A competitive set CS is used to store
all hopeful itemsets, which each itemset in CS can become frequent itemset by
competition. We now define some operations on CS.

Let D be given database, D+ the incremental data set to D, A be an itemset,
supp(A) the support of A in D, supp(A+) the relative support of A in D+. Firstly,
all hopeful itemsets in D is appended into CS, which are defined in Theorem 2.

Secondly, an itemset may become invalid after each mining is done. Such an
itemset is appended into CS if its weighted support > mincruc.

Thirdly, some frequent itemsets in D+ are appended into CS after each mining
if their weighted supports > mincruc. These itemsets are neither in the set of
frequent itemsets, nor in CS. But their supports are pretty high in D+. This
means that their supports in D are unknown. For unknown itemsets, a compromise
proposal is reasonable. So we can regard their supports in D as mincruc/2. For
any such itemset X, suppw(X) = w\ * mincruc/2 + w2 * supp(X+) according to
Weight model. And if suppw{X) > mincruc, itemset X is appended into CS. In
other words, if

> mincrucj2-Wl)
' - 2W2

in D+, itemset X is appended into CS\ else itemset X is appended into CS' if its
weighted support mincruc/2, which CS' is an extra competitive set. CS' is used
to record another kind of hopeful itemsets. The operations on CS' are similar to
those on CS. The main use of CS' is to generate a kind of itemsets with middle
supports in D+. For example, let mincruc = 0.3 and minsupp = 0.6. Assume the
support of an itemset A be less than 0.3 in a given database D, and the supports
of A in incremental data sets: Di, D2, • • • Dg be all 0.64. Because the support
of A is less than 0.3 in D, A is not kept in system. Let wi = 0.75 be the weight
of the old database and w2 = 0.25 the weight of the new incremental data set.

198 ShichcLO Zhang and Li Liu

According to the operations on CS, suppw(A) = wi *mincruc/2 + W2*supp(A+) =
0.75 * 0.15 + 0.25 * 0.64 = 0.2725. This means that itemset A cannot be appended
into CS. But the support is greater than mincruc/2 = 0.15. From the novelty of
data, it can be generated as a frequent itemsets if there are enough incremental
data sets. Accordingly, we use CS' to capture this feature of new data. This kind
of itemsets such as A can become frequent as follows.

supp(A) < 0.3 -4 0.15 * 0.75 + 0.64 * 0.25 = 0.2725
A with supp(A) = 0.2725 => CS'
0.2725 * 0.75 + 0.64 * 0.25 = 0.364375
A with supp(A) = 0.2725 => CS
0.364375 * 0.75 + 0.64 * 0.25 = 0.43328
0.43328 * 0.75 + 0.64 * 0.25 = 0.48496
0.48496 * 0.75 + 0.64 * 0.25 = 0.52372
0.52372 * 0.75 + 0.64 * 0.25 = 0.55279

-4 0.55279 * 0.75 + 0.64 * 0.25 = 0.57459
-> 0.57459 * 0.75 + 0.64 * 0.25 = 0.590945

0.590945 * 0.75 + 0.64 * 0.25 = 0.60321

Fourthly, some itemsets in CS' are appended into CS after each mining if their
weighted supports > mincruc

Finally, some itemsets are deleted from CS after each mining of association
rules is done. By the weighted model, for any A G CS, suppw(A) = w\ *supp(A) +
W2 * supp(A+). If suppw(A) < mincruc, A is deleted from CS; else A is kept in
CS with new support suppw(A).

We now design the algorithm for pattern competition.

Procedure 2. Competing

Input: mincruc: threshold values; temp, Itemset, CSD+, CS': sets of itemsets;
w\, u>2: weights;

Output: CS, CS': competitive sets;

(1) let tempi 0; temp2 0;
(2) for A £ temp do

if suupp(A) > mincruc then
let tempi <— A;

else if suupp(A) > mincruc/2 then
let temp2 <— A\

(3) for A G CS' do
begin

let supp(A) w\ * supp(A) +w2* supp(A+)\

Mining Dynamic databases by Weighting 199

if suupp(A) > mincruc then
let tempi A;

else if suupp(A) > mincruc/2 then
let temp2 A;

end
(4) for A e CSD+ do

begin
let supp(A) wi * mincruc/2 + w2* supp(A+);
if suupp(A) > mincruc then

let tempi A;
else if suupp(A) > mincruc/2 then

let temp2 A;
end

(5) let CS <- tempi; let CS' temp2;
(6) return;

The procedure Competing generates a competitive set for infrequent itemsets. Here
the initialization is done in Step (1). Step (2) handles all itemsets in temp. And
all itemsets with supports in interval [mincruc, minsupp) is appended into CS and
the itemsets with supports in interval [mincruc/2, mincruc) is appended into CS'.
Step (3) and (4) are as similar as Step (2) to deal in the itemsets in CS' and CSD+ ,
respectively.

6 Experiments
To evaluate the proposed approach, we have done some experiments using synthetic
databases in the Internet. Our experiments shown, this model is efficient and
promising. For simplicity, we choose the UCI database BreastCancer to illustrate
the effectiveness and efficiency, which contains 699 records. For maintenance, the
set of the first 499 records is taken as the initial data set. And the set of each next
50 records is viewed as an incremental new data set. There are four incremental
new data sets. And they will be appended into the database one by one. It needs to
maintain the association rules once a new data set is appended into. The parameters
of experiment databases is summarized as follows.

Table 7: The Experiment Databases

Record number Attribute number
Old Database 499 10

New Database 1 50 10
New Database 2 50 10
New Database 3 50 10
New Database 4 50 10

200 ShichcLO Zhang and Li Liu

Comparing Running Time of Algorithms

We compare the large item set mining time with the Apriori and FUP. Undoubt-
edly the Apriori will spent the most time cost because it need scan for the candidate
items in the old plus new database. The FUP model gets a good improvement. It
scan the candidate items in the new database, it need scan in the old database only
when the item in old large item set but not in new item set, or in new item set but
not in old item set. But our algorithm only need to scan in the new database, so it
spent the least time cost. Same conclusion shown in our experiment as in Figure 1.

4000 i- time
"'Weight* — i —

* "FUP2" — x —
"Apriori" ---*•--

3500 -

3000 -

2500 - - *

2000 -

500 •

g , i , i maintenance times |

1 1.5 2 2.5 3 3.5 4

Figure 1: The large item set mining time cost comparison

Our algorithm gets a significant improvement by only scanning the new
database. But there are some different rules in our rule set to the rule set made by
Apriori which scan all old and new data. But on earth what is the difference, how
about its influence? Because Cheung's FUP algorithm also scans the old database,
which saves some cost by reducing the candidate number in old database, so it
generate the same large itemsets as Apriori. Then they will generate same rules
according certain confidence. So we only need to compare the result rule set with
one of them after generate Large itemset. But our algorithm don't scan the old data
but only the new database, then generates the Competitive Rule Set by weighting
and choose the winners as result (There is some similarity like genetic algorithm),
so it can consist with the new data better than their algorithms. According the
result rule sets from large itemset 1 to 4, we compared the difference between our
algorithm and Cheung's FUP model.

Mining Dynamic databases by Weighting 201

Comparison with FUP

Let minsupp = 0.2, minconf = 0.7, the confidence threshold mincruc = 0.25, the
weight of old and new rule confidence is 0.7 and 0.3 respectively, results shown as
follows.

Table 8: The rules in the maintenance

After 1st After 2nd After 3rd After 4th
maintenance maintenance maintenance maintenance

FUP2 1062 1096 1130 1189
Weight algorithm 1095 1185 1204 1397

Both in AKW 1044 1089 1114 1160
Only in Apriori 18 7 16 29

Only in our 51 96 90 237
Weight algorithm

All the rules have two supports and two confidences generated relatively by the
two algorithms, which Fconficience and Fsupport are for FUP algorithm, Wconfidence
and Wsupport are for weight algorithm. If the rule not generated by an algorithm, we
let its confidence and support equal zero. We define error = \ Wsupport — Fsupport\
to measure the difference between two confidence. For those results generated by
both FUP and weight algorithm, the comparison shown as follows.

Table 9: The comparison with generated results

After 1st After 2nd After 3rd After 4 th
maintenance maintenance maintenance maintenance

Average error 0.015 0.031 0.032 0.02
Max error in a rule 0.296 0.2 0.085 0.252
Rule number with 1 1 0 28

error over 0.1

We can see that they are almost equal at the first 3 maintenance, at most one
rule with error over 0.1. But at the 4th maintenance, there are 28 rules with error
over 0.1, because some rules from new database with significant different confidence
begin influence the old rule set by the Competitive Set.

Now we analysis those different rules: (1) To those rules generated by our algo-
rithm but not FUP, they are the new rules can not be found by FUP. They keep
more consistency with new database. For example, this is a rule with confidence
only 0.4 before maintenance, but in the new database it is a significance rule, al-
ways with confidence over 0.9. In FUP, because the new databases are relatively

202 ShichcLO Zhang and Li Liu

small than the old database, so the significant association in new data still can
not be shown in the all data. During maintenance, it got a confidence serials: 0.4,
0.44, 0.46,0.49, 0.55. But according our algorithm, the confidence change in the
maintenance should be:

0.4 0.4 * 0.7 + 0.9 * 0.3 = 0.45
-4 0.45*0.7 + 0.9*0.3 = 0.585

0.585 * 0.7 + 0.9 * 0.3 = 0.66
-> 0.66*0.9 + 0.3 = 0.732

Figure 2: The competitive procedure of a rule

(2) To those rules generated by FUP algorithm but not our algorithm, they
are the "lost" rules from FUP. It needs to know why they lost, how about the
influence when lost those rules?

So we analysis all those "lost" rules, and found that, for every rule, at least one
of it's Fsupport and Fconfidence near the relative thresholds. We define the neighbor
of minsupp and the neighbor of minconf as Sintervai and CinteTvai respectively.
There are four classes of lost rules as follows.

Classl: Rules with Fconfidence in Cinterval Fsupport ^ Sinterval>

Class2: Rules with Fconfidence
i n Cinterval a n d Fsupport n o t i n Sintervai 5

Class3: Rules with Fconfidence not in Cinterval and Fsupport in Sintervai!

Class4: Rules with Fconfidence not in Cintervai and Fsupp0rt not in

Mining Dynamic databases by Weighting 203

The following figure shown the rule distribution:

Table 10: The rule distribution

The 1st After 2nd The 3rd The 4th
maintenance maintenance maintenance maintenance

Classl 5.5% . 0 0 0
Class2 66.5% 0 19% 3%
Class3 27.8% 100% 81% 97%
Class4 0 0 0 0

As we know, those rules with support in Sintervai or confidence in Cintervais
usually mean the uncertain and debated knowledge. We often discard those rules
in practical decision, so we can say that those "lost" rule only generate some ne-
glectable influence. In order to capture the novelty, this error is certainly reasonable
and necessary.

We have seen, our algorithm can save much time cost in association rule main-
tenance. It keeps more association with the new data than old data, especially in a
time serial of continually maintenance. It can generate many new rules to describe
the new association in new data. At same time, it discards some old rules unfitting
the new data. Their confidence or support near the threshold, so deleting them will
only generate a slight influence to the final decision. At a word, our algorithm is
efficient in association maintenance, especially suit the practice company decisions
which pay more attention to the new market trend, need to a time serial support
analysis.

7 Conclusions

Database mining generally presupposes that the goal pattern to be learned is sta-
ble over time. This means that its pattern description does not change while
learning proceeds. In real-world applications, however, pattern drift is a natural
phenomenon which must be accounted for by the mining model. To capture more
properties of new data, we advocated a new model of mining association rules in
incremental databases in this paper. Our concept of mining association rules in this
paper is different from previously proposed ones. It is based entirely on the idea
of weighted methods; the main feature of our model is that it reflects the novelty
of dynamic data and the size of the given database. Actually, previous frequency-
based models are the special cases of our method working without respect to the
novelty. Our experiments shown, the proposed model is efficient and promising.

204 ShichcLO Zhang and Li Liu

References
[1] R. Agrawal, T. Imielinski, and A. Swami, Mining association rules between sets

of items in large databases. In: Proceedings of the ACM SIGMOD Conference
on Management of Data, 1993: 207-216.

[2] S. Brin, R. Motwani and C. Silverstein, Beyond Market Baskets: Generaliz-
ing Association Rules to Correlations. In: Proceedings of the ACM SIGMOD
International Conference on Management of Data, 1997: 265-276.

[3] M. Chen, J. Han and P. Yu, Data Mining: An Overview from a Database
Perspective, IEEE Trans. Knowledge and Data Eng., vol. 8, 6(1996): 866-881.

[4] D. Cheung, J. Han, V. Ng and C. Wong, Maintenance of discovered association
rules in large databases: An incremental updating technique, Proceedings of
12nd International Conference on Data Engineering, New Orleans, Louisiana,
1996: 106-114.

[5] D. Cheung, S. Lee and B. Kao, A gerneral incremental technique for maintain-
ing discovered association rules, Proceedings of the Fifth International Confer-
ence on Database Systems for Advanced Applications, Melbourne, Australia,
1997.4: 185-194.

[6] R. Godin and R. Missaoui, An incremental concept formation approach for
learning from databases. Theoretical Computer Science, 133(1994): 387-419.

[7] J. Han, J. Pei, and Y. Yin, Mining frequent patterns without candidate gen-
eration. In: Proceedings of ACM SIGMOD, 2000: 1-12.

[8] C. Hidber, Online Association rule mining, In: Proceedings of the ACM SIG-
MOD Conference on Management of Data, 1999.

[9] H. Liu and H. Motoda, Instance Selection and Construction for Data Mining.
Kluwer Academic Publishers, Feburary 2001.

[10] G. Piatetsky-Shapiro, Discovery, analysis, and presentation of strong rules.
In: Knowledge discovery in Databases, G. Piatetsky-Shapiro and W. Frawley
(Eds.), AAAI Press/MIT Press, 1991: 229-248.

[11] T. Shintani and M. Kitsuregawa, Parallel mining algorithms for generalized as-
sociation rules with classification hierarchy. Proceedings of the ACM SIGMOD
International Conference on Management of Data, 1998: 25-36.

[12] R. Srikant and R. Agrawal, Mining generalized association rules. Future Gen-
eration Computer Systems, Vol. 13, 1997: 161-180.

[13] P. Utgoff, Incremental induction of desion trees. Machine Learning, 4(1989):
161-186.

Mining Dynamic databases by Weighting 205

[14] D. Tsur, J. Ullman, S. Abiteboul, C. Clifton, R. Motwani, S. Nestorov and A.
Rosenthal, Query flocks: A generalization of association-rule mining. Proceed-
ings of the ACM SIGMOD International Conference on Management of Data,
1998: 1-12.

[15] G. Webb, Efficient search for association rules. In: Proceedings of ACM
SIGKDD, 2000: 99-107.

[16] X. Wu, Building Intelligent Learning Database Systems, AI Magazine,
21(2000), 3: 59-65.

[17] S. Zhang and C. Zhang, Estimating Itemsets of Interest by Sampling. In: Pro-
ceedings of the 10th IEEE International Conference on Fuzzy Systems, Dec.
2001.

[18] S. Zhang and C. Zhang, Pattern discovery in probabilistic databases. In: Pro-
ceedings of AI'01, Dec. 2001.

[19] Chengqi Zhang and Shichao Zhang, Association Rules Mining: Models and
Algorithms. Springer-Verlag Publishers in Lecture Notes on Computer Science,
Volume 2307, p. 243, 2002.

Received December, 2001

