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Abstract 

This article introduces modifications that have been applied to GeLog, a 
genetic logic programming framework, in order to improve its performance. 
The main emphasis of this work is the structure processing of genetic algo-
rithms. As studies have shown, the linkage of genes plays an important role in 
the performance of genetic algorithms. Thus, different approaches that take 
linkage learning into account have been reviewed and the most promising 
has been implemented and tested with GeLog. It is demonstrated that the 
modified program solves problems that proved hard for the original system. 

1 Introduction 
The GeLog program combines two approaches, inductive logic programming (ILP) 
and artificial evolution [1]. This work aims at improving the GeLog framework by 
incorporating methods that help the evolutionary algorithm to maintain a rugged 
search behavior without losing the ability to quickly find (local) optima. Both 
requirements are most relevant to noisy search spaces, which are often characteristic 
in inductive logic programming. This article introduces the modifications that were 
applied to the GeLog framework and presents the results of two experiments, which 
demonstrate that the program has been drastically improved. 

The following section briefly introduces the GeLog framework. Section 3 ex-
plains the term linkage and introduces related approaches. The modifications that 
have been applied to GeLog are depicted in Section 4. In Section 5 some test results 
are presented. Finally, Section 6 concludes this article and provides a short outlook 
on future investigations and improvements. 

2 Brief Introduction into GeLog 
The GeLog framework is a genetic logic programming framework, an inductive 
logic programming system combined with an evolutionary search algorithm [1]. In-
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ductive logic programming is a machine learning approach, in which correlations 
of objects are ascertained by induction. Hypotheses are searched for and evalu-
ated by comparing their classification results with a sufficiently large number of 
instances for which it is known whether their objects are correlated or not [2]. It is 
thus assumed that hypotheses classifying these training instances correctly will also 
approximate the target function well over any other set of instances. The learned 
hypotheses can be interpreted as PROLOG programs, since they consist of set of 
rules, that is, first order Horn clauses. 

GeLog's data representation resembles more to that of genetic programming: 
the individual solutions consist of PROLOG program parts, which encode the hy-
potheses' rules. Thus, an individual comprises the target predicate as its left hand 
side and a number of disjunctions (right hand sides), all of which are conjunctions 
of literals. The following example demonstrates how individuals are represented in 
the the original GeLog implementation: 

daughter(XO, XI) : - f emale (XO) , p a r e n t s ( X l , X0, X I ) . 

parents(XO, XI , X I ) . 

f e m a l e ( X I ) , female (XO) , p a r e n t s ( X l , XI , XO) . 

The depicted individual consists of three disjunctions (right hand sides); each 
disjunction contains a number of conjuncted literals and is terminated by a dot. 

The pay-off of one hypothesis results from the number of correctly classified 
instances. Different selection operators have been implemented: Roulette Wheel 
Selection, Rank Selection, and Elitism (for further explanation of these operators 
see [3] and [4]). 

Due to the non-standard data representation special recombination and muta-
tion operators had to be implemented: 

• Two recombination operators; (1) two individuals exchange entire disjunc-
tions by single- or multi-point crossover, (2) two individuals exchange predi-
cates by performing single- or multi-point crossover at disjunction level. 

• Mutation operators; (1) insertion and deletion of literals, (2) insertion and 
deletion of entire disjunctions, (3) insertion of new variables, and (4) substi-
tution of variables. 

3 Linkage Learning and Related Work 
The first complete theory of the dynamics and processing units of genetic algorithm 
was developed by Holland [5]. In his schema theorem he suggested that genetic al-
gorithms process the search space implicitly parallel. A specific individual is also 



Incorporating Linkage Learning into the GeLog Framework 211 

a representative of a class of individuals that have certain gene values (alleles) in 
common. For example, individual 100101 represents the class of individuals with a 
leading '1' (denoted as 1*****); but it also represents individuals that contain two 
'0' alleles on second and third position (*00***), etc. Thus, by selecting individual 
solutions the (schema) classes which are represented by the individual gain influ-
ence. For example, if *00*** exhibits a relative high fitness, i.e., individuals that 
contain the specified '0' alleles are on average fitter than others are, this schema is 
represented more often than other schemata. A higher fitness is achieved if those 
parts of solutions are recombined that caused the former individuals to exhibit a 
higher fitness than other individuals. In other words, by combining fit schemata 
even fitter schemata are generated. 

Based on the insights attained by the schema theory Goldberg formulated what 
he called the building block hypothesis [3]. He concluded that the central processing 
units of genetic algorithms are "short, low-order, and highly fit schemata". These 
entities he called building blocks. Goldberg also found that some problems are hard 
to solve for genetic algorithms because of difficulties in processing building blocks. 
Consider four building blocks: Hi = 1*****, H2 = *****1, H3 = 0*****, and H4 
= ***+*0. Let the fitness of Hi and H2 be remarkably greater than the fitness of 
Hz and H4, also let the fitness of a recombination of Hx and H2 (1****1) be smaller 
than 0****0 (the combination of H3 and H4). As the two recombined schemata 
exhibit a relatively high order, chances are high that they are disrupted quickly, 
resembling schemata Hi - H\. Since the selection probabilities for schemata 
and are low it is difficult for the genetic algorithm to recombine them both 
yielding the highly fit schema 0****0 again. 

The situation changes if the defining genes of the schemata are linked more 
tightly, since the probability of disruption decreases drastically. On the one hand 
that increases the chances of preserving the fit recombined schema, on the other 
hand it ensures that the unfit schema is discarded and not split into the two fit 
sub-schemata which lead to the deception. This is obviously a simplification of the 
dynamics of genetic algorithms and has been criticized for that reason (cf. [6, 7]). 
However, it could be shown that for many problems improving the linkage situation 
of building blocks also improved the performance of the genetic algorithm. It is 
therefore worthwhile to develop techniques that lead to tighter linkage of building 
blocks. 

It was long assumed that individuals in genetic algorithms would eventually 
evolve towards tighter linkage. However, early efforts that used inversion operators 
to achieve tight linkage proved that selection is too powerful and thus counteracting 
linkage learning [8]. 

3.1 Messy GA 
One of the early approaches that took this observation into account was the so-
called messy genetic algorithm [9]. In addition to a "messy coding" which allowed 
for a reordering of the chromosome, linkage learning and selection were separated 
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into two phases such that selection is prevented from vitiating linkage learning. The 
two phases are repeated alternately increasing the order of building blocks that are 
processed. In the first phase all possible building blocks of the current order are 
generated. This explicit enumeration is very expensive ( 0 { 2 k i k ) , where I is the 
chromosome length and k is the highest order of building blocks, i.e., the number of 
genes, that define a building block). After this enumeration the threshold operator 
tries to select individuals such that only those compete that define the same class 
of schemata. For example, 00* and 11*, but not 0*1 and *01. The second phase 
resembles to a simple genetic algorithm. A variation of this approach replaces the 
expensive enumeration of all building blocks of a specific order by a probabilistic 
technique [10]. Instead of generating all order-fc schemata explicitly, this technique 
makes use of the fact that one bit string may contain multiple schemata at the 
same time, since the bit string is normally longer than the order of the schema. 
Thus, only a fraction of the former 0{2klk) individuals had to be created. The 
threshold selection operator must then decrease the string lengths, such that only 
fit schemata remain. However, the threshold selection operator has proven quite 
unfit in this task [11]. 

3.2 Gene Expression Messy GA 

Another messy genetic algorithm was developed by Kargupta [12]. The process 
of gene expression as observed in nature inspired his approach. Consequently this 
type of algorithm is called gene expression messy genetic algorithm (GEMGA). The 
linkage learning is done by induction; the genes that improve the solution's pay-off 
are assumed to correlate. In a first transcription phase the contribution of a gene is 
to the fitness of the individual is determined. This is done by flipping each gene to 
its opposite value if the fitness increases, the original value does not contribute to 
the fitness, otherwise it does and is marked such that it cannot be changed in the 
future. In the second transcription phase all genes in a chromosome that have been 
marked as unchangeable are collected and compared with the same unchangeable 
genes of another randomly chosen chromosome. The intersection of the genes is 
saved (linkage set) and either is added to a list of the former chromosome or, if 
the set is already present, its weight is increased. After some iterations a matrix is 
build, which contains the probabilities of the presence of a gene under the condition 
that a specific gene is in the linkage set. 

Afterwards, the schemata that have been identified as good are manifolded 
using class selection: two chromosomes are randomly picked, the fitter of both is 
marked, the genes in the linkage set of the marked chromosome are copied to the 
other chromosome, provided that the destroy genes exhibit less linkage than the 
genes by which they are replaced. Additionally tournament selection is applied. 

Recombination is done by randomly picking an individual and selecting its max-
imum weighted linkage set, another individual is selected, and the corresponding 
genes are exchanged if the disrupted linkage sets in the latter chromosome have a 
smaller weight than the maximum weight of the former. 
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3.3 Linkage Learning GA 

A completely different approach was taken by Harik [13]. Harik showed that a 
specific recombination operator, the so-called exchange crossover operator, could 
under certain conditions improve the linkage of genes. The chromosomes in Harik's 
linkage learning genetic algorithm (LLGA) are declared as rings. Each gene is de-
scribed by its allele (value) and a locus, i.e., the interpretation position of this gene. 
By introducing so-called introns, genes that are not interpreted at all, the relative 
distance of two genes can be adjusted. In Figure 1 an example of a chromosome 
containing three genes is given. One can see that by inserting non-coding genes 
(introns) between the coding genes (exons) the distances (yi, y2, and 2/3) can be 
varied. 

gene 3 

gap yi 

Figure 1: Chromosome in linkage learning genetic algorithm. 

In contrast to most common implementations the exchange crossover operation 
is directional, that is, one individual serves as donor, the other one is the recipient. 
First some exchange material is randomly chosen from the donor chromosome, 
then a random graft point is declared at the recipient. The exchange material is 
then inserted within the graft point of the recipient. As one can see in Figure 2 
the crossover leaves an over-determined chromosome, that is, some of the genes 
appear twice. Therefore an expression step is appended: A starting point and an 
interpretation direction are defined. Beginning from the starting point each gene 
that has been previously defined on the circle is simply removed, yielding a valid 
chromosome. 

Harik proved that by applying this operator the individuals evolve towards 
tighter linkage. He assumed that the population will eventually consist mostly of 
both optimal building blocks and deceptive building blocks (as described earlier). 
This assumption can be made as the genetic algorithm eventually rules out all 
apparently unfit building blocks. Harik observed two effects: 

(1) Linkage Skew: tightly linked building blocks in the donor chromosome have a 
higher survival probability than loose linked building blocks. This mechanism 
is comparable to fitness-proportional selection. 
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Figure 2: Exchange Crossover Operator: (a) donor, (b) recipient, (c) offspring 
before expression, and (d) offspring after expression. 

(2) Linkage Shift: if exchange material from the donor is copied onto the 
recipient—which contains an optimal building block—the building block is ei-
ther disrupted or its linkage is increased. 

However, in order for linkage learning to work selection must be slowed down, 
since it counteracts the evolution towards tighter linkage (as shown by Harik). 
Harik suggests two different methods to slow down selection: 

(1) Restricted tournament selection: In contrast to conventional selection opera-
tors where each individual is competing against one another, with tournament 
selection individuals only replace solutions which have a similar bit-string [13]. 

Thus, this selection operator is not only well suited for multi-modal optimiza-
tion tasks, but will also maintain a high level of diversity within the population. 

The main program's pseudo code listing in Section 4.5 comprises a detailed 
description of restricted tournament selection. 
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(2) Probabilistic expression: This approach refers to an alternative way of chromo-
some encoding in which all genes appear twice, exhibiting the actual allele and 
its opposite. The starting point of the chromosome interpretation is randomly 
changed, resulting in a change of the genes' alleles with some probability. Thus, 
even if an allele has leveled out in the population, it might be revived. 

3.4 Summary 
The messy genetic algorithm and its variant the fast messy genetic algorithm can 
be considered early approaches. They have proven to work in limited settings, but 
haven proven infeasible for real-world applications. A very promising approach 
has been suggested by Kargupta [12]. However, the number of additional fitness 
evaluation (in the transcription phase) and the large administration effort, which is 
necessary in order to store linkage information, seem to be a remarkable drawback. 
Harik's LLGA, on the other hand, proved to work well on exponentially scaled 
problems, that is, problems where parts of the genes contribute differently to the 
fitness value. As the hard problems for GeLog can be assumed to belong to this 
kind of problem class, this approach seems well suited for GeLog. 

4 Improving the GeLog Framework 
This section introduces the modifications that were applied to the data structures 
and the operators, which were implemented in order to achieve linkage learning. We 
have chosen the Linkage Learning GA (LLGA) approach to achieve this goal, since it 
offers a relatively good scalability and the genotypic representation is appropriate 
for GeLog. Moreover, the apparently reasonable theory of the LLGA and the 
promising results suggested an application to the GeLog framework. 

The probabilistic expression (PE) as suggested by Harik [13] is not incorporated 
for the maintenance of diversity. Instead, tournament selection and restricted tour-
nament selection are used. While tournament selection is a standard selection 
scheme in genetic algorithms, restricted tournament selection is commonly used for 
multi-objective optimization problems [13]. 

4.1 Chromosome 
The genotypes in GeLog are represented by a so-called object graph [1], which allows 
for a direct transformation into the data structures used in logic programming. 
However, this representation is not ideal for the processing of building blocks in 
genetic algorithms. Not only is there evidence [5] that short alphabets have a 
positive impact on the implicit parallelism, but also for the linkage learning a 
chromosome of fixed length seems more appropriate. It is important that the entire 
search space is explicitly represented in one individual. 

Except for the necessary changes in the genotype representation, the new ver-
sion tried to stay as close to the original representation as possible. As in the 
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original work, each individual contains a number of disjunctions. However, in con-
trast to the previous implementation the number of disjunctions is fixed, i.e., each 
individual consists of the same number of disjunction. A gene, or bit, in the chromo-
some stands for one conjunction. A conjunction represents one variable assignment 
corresponding to the respective predicate. 

For example, let the background knowledge, i.e., the pool of valid predicates 
which may be used at the right hand side of the individual, be: 

f e m a l e / 1 p a r e n t s / 3 

with the target predicate: daughter(XO, XI) 
In the original work an individual could look as follows: 

daughter(XO, X I ) - : - f emale (XO) , p a r e n t s ( X l , XO, X I ) . 

parents(XO, XI , X I ) . 

f e m a l e ( X I ) , f emale (XO) , p a r e n t s ( X I , XI , XO). 

The new representation consists of a fixed number of fixed length bit strings. 
The individual must hence be transformed into something like this: 

1000000100 (1 . d i s j u n c t i o n ) 
0000000010 (2 . d i s j u n c t i o n ) 
1100010000 (3 . d i s j u n c t i o n ) 

How do we achieve an appropriate representation? 
First of all, we have to determine the length of the chromosome, since it will be 

fixed throughout the entire process. Thus, the chromosome's length must allow for 
encoding all valid predicates with all possible assignments: 

I = parity (t)arity<-p\ 
P€B 

where B is the background knowledge, p is one of the background knowledge's 
predicates, and t is the target predicate. 

For the former example the length would be: 

I = arity{ daughter ) o r i i y ( f e m a l e ) + aniy (daughter) a r , iy<' larents) 

= 21 + 23 = 10 

If we introduce a number of additional, unbound variables (v) that the literals 
may take as arguments this can be transformed into 

I = parity (t) + v)arity(p\ 
peB 
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In our example we allow for additional two variables, with the target predicate's 
original two variables we obtain variables XO. .X3: 

I = (arity (daughter) + w)arI iy ( female ) + (arity (daughter) + ^ « " i y (parents) 

= 41 + 43 = 68 

Let pn(x) be the nth predicate of the background knowledge with allocation 
x = (xo, • • •,xm); where m = arity(pn) — 1. All variables Xj (with 0 < i < m) must 
be one of the target predicate's or of additional variables: 0 < Xi < (arity(t) + v). 
The locus of this mapping can be calculated as follows: 

n-l arity(pn)-l 

locus{pn{x)) = 5 ^ (arity (i) + v ) a r i t y ^ + Xi- (arity(t) + v)\ 
j=0 1 = 0 

Let us calculate the locus of the parent /3 predicate of the former example using 
allocation parents (X3, XI, XI). 

Zocus(parents(X3, XI, XI)) = (arify(daughter) + u) o H i y ( f e m a l e ) 

+ 3 • (arity(daughter) + v)° + 1 • (arity(daughter) + u)1 

+ 1 • (arity (daughter) + v)2 = 41 + 3 + 1 • 4 + 1 • 16 = 27 

Thus, gene number 27 indicates whether the predicate parents (X3,Xl ,Xl ) is 
present or not. Its allele (value) is either 1 or 0. 

The coding of the genes is messy, that is, their position in the bit string is not 
fixed but they may float around. A gene's predicate allocation is not determined 
by the gene's position in the bit string but by its locus, which is in general different 
from the position. 

It is quite obvious that the length of the chromosomes is increasing exponentially 
with the arity of the predicates of background knowledge and the arity of the target 
predicate. This is problematic since the genes have messy coding, which means 
every single gene contains a number as large as the chromosome's length. This is 
necessary since the locus—the position of the genes within the chromosome—has 
to be stored. For example, for 100 literals in the background knowledge, an average 
arity of 10, and a target predicate's arity of 10 the chromosome length is 1012, a 
number that must be stored in all 1012 genes of the chromosome. 

4.2 Mutation 
With the new representation the change of one single bit deletes or adds one map-
ping of a predicate. Thus, a single allocation, a predicate, or even a disjunction may 
be erased altogether by the change of one bit. The following example illustrates 
this: Let the background knowledge be the same as in the previous example. The 
three rows represent the variable numbers within the literal. The columns denote 
the subscript of the X variables. There are four variables (X0, XI are arguments of 
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the target literal daughter; X2, X3 are unbound variables), and we need to be able 
to place any of these four variables on any position within each literal. Therefore, 
we only need four positions for the female literal, as it takes only one argument 
(i.e., XO, XI, X2, or X3). For the second literal, parents , we need 43 positions, since 
it requires three arguments. 

1. Variable 0123 0123 0123 0123 0123 0123 0123 0123 0123 0123 0123 0123 0123 0123 0123 0123 0123 
2. Variable 0000 1111 2222 3333 0000 1111 2222 3333 0000 1111 2222 3333 0000 1111 2222 3333 
3. Variable 0000 0000 0000 0000 1111 1111 1111 1111 2222 2222 2222 2222 3333 3333 3333 3333 

001010000101001000010100100001000010000101001000010000100101000010000100001000010000 

is equivalent to the structure: 

f e m a l e ( X 2 ) , p a r e n t s ( X I , XI , XO), p a r e n t s ( X I , X3, X0) „ 
p a r e n t s ( X I , X3, X I ) , parents (X2 , X2, X2). 

Two mutations are performed: 

H h 
001010000101001000010100100001000010000101001000010000100101000010000100001000010000 

=> 001010000101001001010100100001000010000101001000010000100001000010000100001000010000 

This is equivalent to inserting a new predicate allocation (parents (X2, X2 , X0)) 
and deleting one (parents (X2 , X2, X2)) : 

f e m a l e ( X 2 ) , p a r e n t s ( X I , XI , X0) , p a r e n t s ( X 2 , X2, X0) , 
p a r e n t s ( X I , X3, X0 ) , p a r e n t s ( X I , X3, XI) . 

Since the modified version of GeLog aims at maintaining a high level of diversity, it 
does not depend on mutation. Compared to the original work, the mutation rates 
have therefore been decreased drastically. 

4.3 Diversity 
In order to make linkage learning work, it is necessary to maintain a large diversity 
in the population. It might therefore be desirable to keep solutions in different parts 
of the search space and optimize these solutions individually. A better solution 
replaces another solution only if both are similar to another, i.e., if their distance 
is small. 

In order to evaluate the distance of two individuals, their chromosomes have to 
be compared. Since the chromosomes are bit strings, the Hamming distance (i.e., 
the sum of all difference bits) is an appropriate distance metric. As individuals 
in GeLog do not only consist of one but a number of chromosomes, the Hamming 
distances for all chromosomes have to evaluated. One approach is to calculate the 
Hamming distance for each pair of chromosomes of the two individuals (x and y), 
after which the sum of these chromosome-wise distances yields the distances of the 
individuals: 

m n 

E E ^ - t f i . 
c = 0 ¿=0 
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where m is the number of chromosomes and n is the number of genes. In contrast 
to a single chromosome where a gene at a specific locus always encodes the same 
trait, it cannot be pre-termined what kind of disjunction one chromosome will be 
coding for. Therefore, the distance between two individuals is not as obvious as 
in a single chromosome case. One extreme case is, two individuals containing the 
same chromosomes yet in a different order. 

One solution to this problem is to form the sum of the distances of all chromo-
somes in one solution with all the chromosomes in. the other solution: 

where m is the number of chromosomes and n is the number of genes. This distance 
metric is referred to as sum/ sum. 

This approach, however, does not aim at finding corresponding chromosomes in 
the compared individuals. For example, although the sum of all distances might be 
large, the distance between certain chromosomes is possibly small. The sum/min 
approach takes this into account by identifying matching slots. By finding the 
permutation p of disjunctions that maximizes 

those disjunctions are identified that exhibit a much smaller distance than the 
disjunctions with the second smallest distance. 

for all ci :— chromosomes in individual 1 do 
find C2 unmarked chromosomes in individual with minimum distance to ci 
if two chromosomes have the same minimum distance then 

choose one randomly 
end if 
store distance 
mark chromosome C2 

end for 
sum up all stored distances 

The algorithm's complexity is 0(n • n\) in the number of chromosomes. Since 
distance comparisons are needed very frequently, GeLog uses a variation of this 
procedure. Instead, all distances between all chromosomes are evaluated and those 
chromosomes are assumed to match that have the smallest distance. If any chromo-
some has the same distance to more than one chromosome in the other individual, 
one of these chromosomes is chosen randomly. Figure 3 demonstrates the algorithm. 

m m n 

c=0d=0i=0 

¿=1 

Figure 3: Pseudo code of the sum/min algorithm 
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4.4 Recombination 
The different recombination operators of the original GeLog version, as explained in 
Section 2, have been replaced by a single operator. Selection yields two individuals, 
a donor and a recipient. First one chromosome is selected in the donor individual 
and a corresponding chromosome in the recipient is chosen. After crossover has 
been performed a slot for the new recombined chromosome has to be chosen. This 
process of choosing chromosomes, recombining them and storing them is repeated 
for all chromosomes. 

Since it is not obvious how to select chromosomes for recombination, several 
strategies have been developed: 

(1) ordered: the chromosomes are selected in the order they appear in the indi-
vidual, 

(2) shuf f led : the chromosomes are randomly shuffled and selected in this new 
order, or 

(3) f i t n e s s : the chromosomes are selected fitness proportionally, i.e., by roulette 
wheel selection. This scheme is very expensive, as a huge number of fitness 
evaluations have to be performed. 

The new individual (offspring) is now created by the recombined chromosomes. 
However, each chromosome has to go into a different slot in the offspring. Therefore, 
a selection strategy is also required for storing: 
(1) ordered: the chromosome is stored in the same slot as the recipient's chromo-

some was selected from, 
(2) shuf f led : a randomly shuffled list of all chromosomes slots is generated, the 

chromosomes are stored in that new order, or 
(3) s imi lar i ty : the chromosome is placed into the slot that has the shortest 

distance, i.e., the number of the recipients slot which is most similar to the 
recombined chromosome. 

The most important of the nine possible combinations are explained in the follow-
ing: 

(1) ordered/ordered: Each chromosome has its fixed slot, for the whole evolu-
tionary process. 

(2) s h u f f l e d / s i m i l a r i t y : The parents are chosen randomly, the offspring, how-
ever, replaces the chromosome, which it is most similar to. This selec-
tion/storing scheme induces a similar distribution on the single individual as 
the restricted tournament selection did on the entire population. 

(3) shuf f l e d / s h u f f l e d : The parents are selected randomly, the offspring is stored 
at a random position. This scheme is suitable if restricted tournament selection 
is used and all clauses should be intermixed. 
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(4) f i t n e s s / s i m i l a r i t y : As s h u f f l e d / s i m i l a r i t y , but holds the danger that 
the inner-individual diversity gets lost too fast since only well performing chro-
mosomes are selected. 

As introduced by Harik [13] an exchange crossover operator was used to re-
combine two chromosomes. When combined with a harsh control of selection, this 
operator induces a tighter linkage on the building blocks. 

4.5 Flow of GeLog 
In this section, pseudo-code is presented for the fitness evaluation routine and for 
the main program. 

The fitness evaluation consists of two parts: first the genome of the individual 
has to be decoded into a hypothesis, and in a second step it is checked, whether 
the hypothesis correctly classifies all training instances. The hypothesis must clas-
sify negative instances as false and positive instances as true. The fitness value 
corresponds to the percentage of correctly classified training instances. 

Fitness Evaluation 
input individual A 
hypothesis H := decode A 
for all positive training instances EP[j] (j := 0..number of pos. instances) do 

if H accepts EP{j] then 
increase fitness of A 

else 
decrease fitness of A 

end if 
end for 
for all negative training instances EN\j] (j := 0..number of neg. instances) do 

if H rejects EN[j] then 
increase fitness of A 

else 
decrease fitness of A 

end if 
end for 

The following flow demonstrates that the GA flow differs substantially depend-
ing on the selection operator. With conventional selection operators the fitness of 
individuals is evaluated after the new population has been created, whereas with 
restricted tournament selection more evaluation steps have to be performed. 

The program has been implemented using the programming language C + + ; 
all experimental runs have been conducted on Intel /AMD processor based com-
puters running the Linux operating system. As PROLOG interpreting system the 
SICStus framework version 3.8.5 was used, which can be easily linked to C / C + + 
programs. However, calling the external PROLOG process is expensive and decid-
edly contributes to the time required by fitness evaluations. This circumstance is 
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especially problematic with restricted tournament selection, for which a number of 
additional fitness evaluations have to be performed. 

Main Program 
initialize prolog interpreter 
load background knowledge 
randomly initialize start population 
for fill individuals A[i] (i := 0..population size) do 

evaluate A[i] 
end for 
while not (termination criterion reached or max. number of generations) do 

if selection = restricted tournament then 
while not new population complete do 

A := select randomly 
B := select randomly 
A' := exchange crossover A, B 
B' := exchange crossover B, A 
mutate A' ,B' 
W[] := select randomly w individuals 
A" := Wb'l, where distance(W[j], A') = min (distance(W[il, A')) 
evaluate A! 
if fitness A' > fitness A" then 

replace A!' with A' 
end if 
repeat the same for B' 

end while 
else 

while not new population complete do 
A := select individual (using any recombination operator) 
B := select individual (using any recombination operator) 
A' := exchange crossover A, B 
B' := exchange crossover B, A 
mutate A', B' 
place A', B' into the new population 

end while 
evaluate all individuals in the new population 

end if 
end while 

5 Experimental Results 

Two experiments that had proven difficult for the original version of GeLog have 
been conducted in order to verify that the performance of GeLog has been improved. 
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5.1 Tic-Tac-Toe 
This experiment was introduced by Aha [14] and is based on the Tic-Tac-Toe game. 
It encodes all possible endgame situations where the player using the "X" symbol 
has started. The target concept, which takes the nine board squares as variables 
with values blank, X, or 0, is to classify the win situation for player "X". For 626 
of the 956 possible constellations player "X" wins. 

The performance of the concept learning algorithms on this data set varied re-
markably, depending on the used variant of learners: while experiments conducted 
with decision tree based learners exhibited errors of 20% or more, other algorithms, 
such as rule based learners performed well on it (errors < 2%). With the original 
version of GeLog we could not achieve error results below 24%, which were signifi-
cantly improved after the modifications. 

individual chromosome chromosome selection lowest average 
distance selection storing operator error (%) error (%) 
none ordered ordered ts 6.25 9.71 
none shuffled similarity ts 5.26 8.66 
sum/min shuffled similarity rts " 6.25 10.13 
sum/sum shuffled similarity rts 6.25 10.86 
original GeLog version 24.95 26.91 

Table 1: GeLog test results on 'TicTacToe' 

Table 1 shows four tests, each consisting of five test runs. All tests have been 
conducted using ten-cross-validation, that is, the example set is divided into 10 
disjunctive subsets. One is declared as test set. This procedure is used in order 
to avoid over-fitting. The first column indicates the individuals' distance metric. 
For tournament selection this column contains the word "none", since this selec-
tion operator does not utilize the individuals' distances. The second and third 
columns state the chromosome selection and storing scheme as described in Sec-
tion 4.4. The selection operator appears in the fourth row, "rts" means restricted 
tournament selection, whereas "ts" is tournament selection. The depicted settings 
have been chosen in order to clarify whether restricted tournament selection is in 
any case necessary to maintain a high level of diversity. Therefore, tournament 
selection was tested using the ordered selection and storing scheme, thus totally ig-
noring the distance relation. The second experiment was conducted using random 
selection but with storage into the slot that exhibits the highest similarity. For re-
stricted tournament experiments the same selection/storing scheme was used with 
the two different distance metrics, as this might be a critical factor for restricted 
tournament selection. The mutation probability for all experiments was defined 
as 0.01, crossover was performed with a probability of 0.6, a population consists 
of 150 individuals, and the maximum number of generations was 250, however, 
for tournament selection, the lowest error rate was chiefly obtained after 50-100 
generations. 
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Figure 4: Minimal versus average error for "TicTacToe": (a) tournament selection, 
(b) restricted tournament selection 

The absence of a significant difference in the results of tournament and restricted 
tournament selection may indicate that the problem is not difficult enough, i.e., that 
plain tournament restriction can maintain large enough a diversity. 

For the chromosome selection/storing we see a slight difference between 
"ordered/ordered" and "shuffled/similarity", which can be attributed to higher 
in-individual diversity, that is, clauses have greater differences. 

Figure 4 shows two runs of the same experiment, however only 100 individuals 
per population are generated. It becomes clear that restricted tournament selection 
is aiming at improving the fitness situation of the entire .population. 

individual selection run time 
distance operator (25 generations) 
none ts w 3m50s 
sum/sum rts « 5m 
sum/min rts ~ 5m8s 
original GeLog version « 2ml0s 

Table 2: Durations for different selection operators and distance metrics for 25 
generations. 

In Table 2 the durations for different operators and distance metrics are demon-
strated. The original version of GeLog is faster, due to faster decoding times and 
less fitness evaluations. It is also obvious that restricted tournament selection has 
a significantly longer run time, owing to the higher number of fitness evaluations. 
The different distance metrics seem to have little influence on the duration. 

All experiments have been executed on an Intel Pentium II computer with 
450 MHz. The run time experiments only involved 25 generations. The number of 
right hand sides (disjunctions) was fixed to three. The length of a chromosome is 
27. 
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5.2 Chess Endgame King-Rook-King 

The second experiment we have chosen to validate the performance improvement 
of GeLog is a chess endgame variant, the "White King and Rook vs. Black King" 
[15]. There are three pieces left on the board: a white king, a white rook, and a 
black king. The next player to move is white. The objective is to classify legal and 
illegal constellations, where a situation is illegal when either white has already won 
or black can capture the rook without being check (draw). 

individual chromosome chromosome selection lowest average 
distance selection storing operator error (%) error (%) 
none ordered ordered ts 0.53 0.71 
sum/sum ordered ordered rts 0.53 0.71 
sum/sum shuffled shuffled rts 0.53 0.72 
sum/min shuffled shuffled rts 0.53 0.72 
sum/sum shuffled similarity rts 0.53 0.72 
sum/min shuffled similarity rts 0.53 0.74 
original GeLog version 4.90 8.02 

Table 3: GeLog test results on 'King-Rook-King' 

There is a total of 28056 entries, each of which consists of the coordinates of 
the pieces and an attribute for the optimal number of moves for white to win. The 
attributes are the number of moves (0..17) and "draw". 

mutation probability 0.01 
crossover probability 0.6 
population size 150 
number of generations 250 
termination criterion -

Table 4: Parameter Settings for the 'King-Rook-King' experiment 

With the original GeLog program the minimum error was about 5%. Table 
3 shows the experimental results for the modified version of GeLog, each entry 
representing five test runs, all of which are conducted using ten-cross-validation. 
The experiment settings are summarized in Table 4. 

Again, neither the different distance metrics nor the diversity sustaining re-
stricted tournament selection exhibit a remarkable difference with respect to the 
objective function values. 

Also Figure 5 shows that the average payoff of the population is remarkably 
higher for restricted tournament selection. 
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Figure 5: Best versus average payoff for "King Rook King": (a) tournament selec-
tion, (b) restricted tournament selection 

In Table 5 the run times for the different operators and metrics are listed. 
The experiments have been conducted with the same settings as in the previous 
experiment. However, the number of disjunctions is set to five. The length of 
chromosome in the new version is 54. 

individual selection run time 
distance operator (25 generations) 
none ts . « 3m50s 
sum/sum rts « 4m50s 
sum/min rts « 5ml0s 
original GeLog version ~ 2m6s 

Table 5: Run times for different selection operators and distance metrics for 25 
generations. 

6 Conclusion and Future Work 
In this article we presented some modifications to the GeLog framework—a genetic 
logic programming system—in order to improve its underlying genetic algorithm. 
The original GeLog program, linkage learning, and some related approaches were 
briefly introduced. 

It was demonstrated how linkage learning was incorporated into the GeLog 
framework. All necessary changes and the resulting problems were presented. A 
distance metric, which was developed for the implemented selection operator, was 
also presented. 

Finally, the test results showed that the GeLog framework has been significantly 
improved. Problems that used to be hard for the original program were solved. 
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Although these first test results are very promising and already demonstrate 
that the modifications do indeed enhance GeLog's performance, further experiments 
have to be conducted to quantify the influence of the improvements achieved by the 
modified GeLog framework. In particular, it has to be investigated if under certain 
conditions linkage learning by the combination of the exchange crossover operator 
and standard tournament selection can withstand the force of selection. 
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