
Acta Cybernetica 16 (2003) 209-228.

Incorporating Linkage Learning into the GeLog
Framework*

Tim Fühnert and Gabriella Kokai*

Abstract

This article introduces modifications that have been applied to GeLog, a
genetic logic programming framework, in order to improve its performance.
The main emphasis of this work is the structure processing of genetic algo-
rithms. As studies have shown, the linkage of genes plays an important role in
the performance of genetic algorithms. Thus, different approaches that take
linkage learning into account have been reviewed and the most promising
has been implemented and tested with GeLog. It is demonstrated that the
modified program solves problems that proved hard for the original system.

1 Introduction
The GeLog program combines two approaches, inductive logic programming (ILP)
and artificial evolution [1]. This work aims at improving the GeLog framework by
incorporating methods that help the evolutionary algorithm to maintain a rugged
search behavior without losing the ability to quickly find (local) optima. Both
requirements are most relevant to noisy search spaces, which are often characteristic
in inductive logic programming. This article introduces the modifications that were
applied to the GeLog framework and presents the results of two experiments, which
demonstrate that the program has been drastically improved.

The following section briefly introduces the GeLog framework. Section 3 ex-
plains the term linkage and introduces related approaches. The modifications that
have been applied to GeLog are depicted in Section 4. In Section 5 some test results
are presented. Finally, Section 6 concludes this article and provides a short outlook
on future investigations and improvements.

2 Brief Introduction into GeLog
The GeLog framework is a genetic logic programming framework, an inductive
logic programming system combined with an evolutionary search algorithm [1]. In-

"This work is supported by the grants of Bayerischer Habilitationsforderpreis 1999.
^Department of Computer Science II, University of Erlangen-Nuremberg, Martensstr. 3, 91058

Erlangen, Germany, e-mail: fuehnerfliis-b.fhg.de, kokaiflinformatik.uni-erlangen.de

209

210 Tim Fiihner and Gabriella Kókai

ductive logic programming is a machine learning approach, in which correlations
of objects are ascertained by induction. Hypotheses are searched for and evalu-
ated by comparing their classification results with a sufficiently large number of
instances for which it is known whether their objects are correlated or not [2]. It is
thus assumed that hypotheses classifying these training instances correctly will also
approximate the target function well over any other set of instances. The learned
hypotheses can be interpreted as PROLOG programs, since they consist of set of
rules, that is, first order Horn clauses.

GeLog's data representation resembles more to that of genetic programming:
the individual solutions consist of PROLOG program parts, which encode the hy-
potheses' rules. Thus, an individual comprises the target predicate as its left hand
side and a number of disjunctions (right hand sides), all of which are conjunctions
of literals. The following example demonstrates how individuals are represented in
the the original GeLog implementation:

daughter(XO, XI) : - f emale (XO) , p a r e n t s (X l , X0, X I) .

parents(XO, XI , X I) .

f e m a l e (X I) , female (XO) , p a r e n t s (X l , XI , XO) .

The depicted individual consists of three disjunctions (right hand sides); each
disjunction contains a number of conjuncted literals and is terminated by a dot.

The pay-off of one hypothesis results from the number of correctly classified
instances. Different selection operators have been implemented: Roulette Wheel
Selection, Rank Selection, and Elitism (for further explanation of these operators
see [3] and [4]).

Due to the non-standard data representation special recombination and muta-
tion operators had to be implemented:

• Two recombination operators; (1) two individuals exchange entire disjunc-
tions by single- or multi-point crossover, (2) two individuals exchange predi-
cates by performing single- or multi-point crossover at disjunction level.

• Mutation operators; (1) insertion and deletion of literals, (2) insertion and
deletion of entire disjunctions, (3) insertion of new variables, and (4) substi-
tution of variables.

3 Linkage Learning and Related Work
The first complete theory of the dynamics and processing units of genetic algorithm
was developed by Holland [5]. In his schema theorem he suggested that genetic al-
gorithms process the search space implicitly parallel. A specific individual is also

Incorporating Linkage Learning into the GeLog Framework 211

a representative of a class of individuals that have certain gene values (alleles) in
common. For example, individual 100101 represents the class of individuals with a
leading '1' (denoted as 1*****); but it also represents individuals that contain two
'0' alleles on second and third position (*00***), etc. Thus, by selecting individual
solutions the (schema) classes which are represented by the individual gain influ-
ence. For example, if *00*** exhibits a relative high fitness, i.e., individuals that
contain the specified '0' alleles are on average fitter than others are, this schema is
represented more often than other schemata. A higher fitness is achieved if those
parts of solutions are recombined that caused the former individuals to exhibit a
higher fitness than other individuals. In other words, by combining fit schemata
even fitter schemata are generated.

Based on the insights attained by the schema theory Goldberg formulated what
he called the building block hypothesis [3]. He concluded that the central processing
units of genetic algorithms are "short, low-order, and highly fit schemata". These
entities he called building blocks. Goldberg also found that some problems are hard
to solve for genetic algorithms because of difficulties in processing building blocks.
Consider four building blocks: Hi = 1*****, H2 = *****1, H3 = 0*****, and H4
= ***+*0. Let the fitness of Hi and H2 be remarkably greater than the fitness of
Hz and H4, also let the fitness of a recombination of Hx and H2 (1****1) be smaller
than 0****0 (the combination of H3 and H4). As the two recombined schemata
exhibit a relatively high order, chances are high that they are disrupted quickly,
resembling schemata Hi - H\. Since the selection probabilities for schemata
and are low it is difficult for the genetic algorithm to recombine them both
yielding the highly fit schema 0****0 again.

The situation changes if the defining genes of the schemata are linked more
tightly, since the probability of disruption decreases drastically. On the one hand
that increases the chances of preserving the fit recombined schema, on the other
hand it ensures that the unfit schema is discarded and not split into the two fit
sub-schemata which lead to the deception. This is obviously a simplification of the
dynamics of genetic algorithms and has been criticized for that reason (cf. [6, 7]).
However, it could be shown that for many problems improving the linkage situation
of building blocks also improved the performance of the genetic algorithm. It is
therefore worthwhile to develop techniques that lead to tighter linkage of building
blocks.

It was long assumed that individuals in genetic algorithms would eventually
evolve towards tighter linkage. However, early efforts that used inversion operators
to achieve tight linkage proved that selection is too powerful and thus counteracting
linkage learning [8].

3.1 Messy GA
One of the early approaches that took this observation into account was the so-
called messy genetic algorithm [9]. In addition to a "messy coding" which allowed
for a reordering of the chromosome, linkage learning and selection were separated

212 Tim Fiihner and Gabriella Kókai

into two phases such that selection is prevented from vitiating linkage learning. The
two phases are repeated alternately increasing the order of building blocks that are
processed. In the first phase all possible building blocks of the current order are
generated. This explicit enumeration is very expensive (0 { 2 k i k) , where I is the
chromosome length and k is the highest order of building blocks, i.e., the number of
genes, that define a building block). After this enumeration the threshold operator
tries to select individuals such that only those compete that define the same class
of schemata. For example, 00* and 11*, but not 0*1 and *01. The second phase
resembles to a simple genetic algorithm. A variation of this approach replaces the
expensive enumeration of all building blocks of a specific order by a probabilistic
technique [10]. Instead of generating all order-fc schemata explicitly, this technique
makes use of the fact that one bit string may contain multiple schemata at the
same time, since the bit string is normally longer than the order of the schema.
Thus, only a fraction of the former 0{2klk) individuals had to be created. The
threshold selection operator must then decrease the string lengths, such that only
fit schemata remain. However, the threshold selection operator has proven quite
unfit in this task [11].

3.2 Gene Expression Messy GA

Another messy genetic algorithm was developed by Kargupta [12]. The process
of gene expression as observed in nature inspired his approach. Consequently this
type of algorithm is called gene expression messy genetic algorithm (GEMGA). The
linkage learning is done by induction; the genes that improve the solution's pay-off
are assumed to correlate. In a first transcription phase the contribution of a gene is
to the fitness of the individual is determined. This is done by flipping each gene to
its opposite value if the fitness increases, the original value does not contribute to
the fitness, otherwise it does and is marked such that it cannot be changed in the
future. In the second transcription phase all genes in a chromosome that have been
marked as unchangeable are collected and compared with the same unchangeable
genes of another randomly chosen chromosome. The intersection of the genes is
saved (linkage set) and either is added to a list of the former chromosome or, if
the set is already present, its weight is increased. After some iterations a matrix is
build, which contains the probabilities of the presence of a gene under the condition
that a specific gene is in the linkage set.

Afterwards, the schemata that have been identified as good are manifolded
using class selection: two chromosomes are randomly picked, the fitter of both is
marked, the genes in the linkage set of the marked chromosome are copied to the
other chromosome, provided that the destroy genes exhibit less linkage than the
genes by which they are replaced. Additionally tournament selection is applied.

Recombination is done by randomly picking an individual and selecting its max-
imum weighted linkage set, another individual is selected, and the corresponding
genes are exchanged if the disrupted linkage sets in the latter chromosome have a
smaller weight than the maximum weight of the former.

Incorporating Linkage Learning into the GeLog Framework 213

3.3 Linkage Learning GA

A completely different approach was taken by Harik [13]. Harik showed that a
specific recombination operator, the so-called exchange crossover operator, could
under certain conditions improve the linkage of genes. The chromosomes in Harik's
linkage learning genetic algorithm (LLGA) are declared as rings. Each gene is de-
scribed by its allele (value) and a locus, i.e., the interpretation position of this gene.
By introducing so-called introns, genes that are not interpreted at all, the relative
distance of two genes can be adjusted. In Figure 1 an example of a chromosome
containing three genes is given. One can see that by inserting non-coding genes
(introns) between the coding genes (exons) the distances (yi, y2, and 2/3) can be
varied.

gene 3

gap yi

Figure 1: Chromosome in linkage learning genetic algorithm.

In contrast to most common implementations the exchange crossover operation
is directional, that is, one individual serves as donor, the other one is the recipient.
First some exchange material is randomly chosen from the donor chromosome,
then a random graft point is declared at the recipient. The exchange material is
then inserted within the graft point of the recipient. As one can see in Figure 2
the crossover leaves an over-determined chromosome, that is, some of the genes
appear twice. Therefore an expression step is appended: A starting point and an
interpretation direction are defined. Beginning from the starting point each gene
that has been previously defined on the circle is simply removed, yielding a valid
chromosome.

Harik proved that by applying this operator the individuals evolve towards
tighter linkage. He assumed that the population will eventually consist mostly of
both optimal building blocks and deceptive building blocks (as described earlier).
This assumption can be made as the genetic algorithm eventually rules out all
apparently unfit building blocks. Harik observed two effects:

(1) Linkage Skew: tightly linked building blocks in the donor chromosome have a
higher survival probability than loose linked building blocks. This mechanism
is comparable to fitness-proportional selection.

214 Tim Fiihner and Gabriella Kókai

\.*,\tf ^m (2 , 1)

f > v . f >
:2 ,1) \ (3 , 1) ^ M (4 , 0) (5 ,

l J j X l)
(1,0)^^^(5.1) (3.0J. _U,1)

(a) (b)

í
v /

(3 . 0) (5 - - °

(1,1) ,«B,0)

(c)
.(2,1).

(4 , 0) (3 , 1)

l)
(l . l ^ (5 .1)

(d)

Figure 2: Exchange Crossover Operator: (a) donor, (b) recipient, (c) offspring
before expression, and (d) offspring after expression.

(2) Linkage Shift: if exchange material from the donor is copied onto the
recipient—which contains an optimal building block—the building block is ei-
ther disrupted or its linkage is increased.

However, in order for linkage learning to work selection must be slowed down,
since it counteracts the evolution towards tighter linkage (as shown by Harik).
Harik suggests two different methods to slow down selection:

(1) Restricted tournament selection: In contrast to conventional selection opera-
tors where each individual is competing against one another, with tournament
selection individuals only replace solutions which have a similar bit-string [13].

Thus, this selection operator is not only well suited for multi-modal optimiza-
tion tasks, but will also maintain a high level of diversity within the population.

The main program's pseudo code listing in Section 4.5 comprises a detailed
description of restricted tournament selection.

Incorporating Linkage Learning into the GeLog Framework 215

(2) Probabilistic expression: This approach refers to an alternative way of chromo-
some encoding in which all genes appear twice, exhibiting the actual allele and
its opposite. The starting point of the chromosome interpretation is randomly
changed, resulting in a change of the genes' alleles with some probability. Thus,
even if an allele has leveled out in the population, it might be revived.

3.4 Summary
The messy genetic algorithm and its variant the fast messy genetic algorithm can
be considered early approaches. They have proven to work in limited settings, but
haven proven infeasible for real-world applications. A very promising approach
has been suggested by Kargupta [12]. However, the number of additional fitness
evaluation (in the transcription phase) and the large administration effort, which is
necessary in order to store linkage information, seem to be a remarkable drawback.
Harik's LLGA, on the other hand, proved to work well on exponentially scaled
problems, that is, problems where parts of the genes contribute differently to the
fitness value. As the hard problems for GeLog can be assumed to belong to this
kind of problem class, this approach seems well suited for GeLog.

4 Improving the GeLog Framework
This section introduces the modifications that were applied to the data structures
and the operators, which were implemented in order to achieve linkage learning. We
have chosen the Linkage Learning GA (LLGA) approach to achieve this goal, since it
offers a relatively good scalability and the genotypic representation is appropriate
for GeLog. Moreover, the apparently reasonable theory of the LLGA and the
promising results suggested an application to the GeLog framework.

The probabilistic expression (PE) as suggested by Harik [13] is not incorporated
for the maintenance of diversity. Instead, tournament selection and restricted tour-
nament selection are used. While tournament selection is a standard selection
scheme in genetic algorithms, restricted tournament selection is commonly used for
multi-objective optimization problems [13].

4.1 Chromosome
The genotypes in GeLog are represented by a so-called object graph [1], which allows
for a direct transformation into the data structures used in logic programming.
However, this representation is not ideal for the processing of building blocks in
genetic algorithms. Not only is there evidence [5] that short alphabets have a
positive impact on the implicit parallelism, but also for the linkage learning a
chromosome of fixed length seems more appropriate. It is important that the entire
search space is explicitly represented in one individual.

Except for the necessary changes in the genotype representation, the new ver-
sion tried to stay as close to the original representation as possible. As in the

216 Tim Fiihner and Gabriella Kókai

original work, each individual contains a number of disjunctions. However, in con-
trast to the previous implementation the number of disjunctions is fixed, i.e., each
individual consists of the same number of disjunction. A gene, or bit, in the chromo-
some stands for one conjunction. A conjunction represents one variable assignment
corresponding to the respective predicate.

For example, let the background knowledge, i.e., the pool of valid predicates
which may be used at the right hand side of the individual, be:

f e m a l e / 1 p a r e n t s / 3

with the target predicate: daughter(XO, XI)
In the original work an individual could look as follows:

daughter(XO, X I) - : - f emale (XO) , p a r e n t s (X l , XO, X I) .

parents(XO, XI , X I) .

f e m a l e (X I) , f emale (XO) , p a r e n t s (X I , XI , XO).

The new representation consists of a fixed number of fixed length bit strings.
The individual must hence be transformed into something like this:

1000000100 (1 . d i s j u n c t i o n)
0000000010 (2 . d i s j u n c t i o n)
1100010000 (3 . d i s j u n c t i o n)

How do we achieve an appropriate representation?
First of all, we have to determine the length of the chromosome, since it will be

fixed throughout the entire process. Thus, the chromosome's length must allow for
encoding all valid predicates with all possible assignments:

I = parity (t)arity<-p\
P€B

where B is the background knowledge, p is one of the background knowledge's
predicates, and t is the target predicate.

For the former example the length would be:

I = arity{ daughter) o r i i y (f e m a l e) + aniy (daughter) a r , iy<' larents)

= 21 + 23 = 10

If we introduce a number of additional, unbound variables (v) that the literals
may take as arguments this can be transformed into

I = parity (t) + v)arity(p\
peB

Incorporating Linkage Learning into the GeLog Framework 217

In our example we allow for additional two variables, with the target predicate's
original two variables we obtain variables XO. .X3:

I = (arity (daughter) + w)arI iy (female) + (arity (daughter) + ^ « " i y (parents)

= 41 + 43 = 68

Let pn(x) be the nth predicate of the background knowledge with allocation
x = (xo, • • •,xm); where m = arity(pn) — 1. All variables Xj (with 0 < i < m) must
be one of the target predicate's or of additional variables: 0 < Xi < (arity(t) + v).
The locus of this mapping can be calculated as follows:

n-l arity(pn)-l

locus{pn{x)) = 5 ^ (arity (i) + v) a r i t y ^ + Xi- (arity(t) + v)\
j=0 1 = 0

Let us calculate the locus of the parent /3 predicate of the former example using
allocation parents (X3, XI, XI).

Zocus(parents(X3, XI, XI)) = (arify(daughter) + u) o H i y (f e m a l e)

+ 3 • (arity(daughter) + v)° + 1 • (arity(daughter) + u)1

+ 1 • (arity (daughter) + v)2 = 41 + 3 + 1 • 4 + 1 • 16 = 27

Thus, gene number 27 indicates whether the predicate parents (X3,Xl ,Xl) is
present or not. Its allele (value) is either 1 or 0.

The coding of the genes is messy, that is, their position in the bit string is not
fixed but they may float around. A gene's predicate allocation is not determined
by the gene's position in the bit string but by its locus, which is in general different
from the position.

It is quite obvious that the length of the chromosomes is increasing exponentially
with the arity of the predicates of background knowledge and the arity of the target
predicate. This is problematic since the genes have messy coding, which means
every single gene contains a number as large as the chromosome's length. This is
necessary since the locus—the position of the genes within the chromosome—has
to be stored. For example, for 100 literals in the background knowledge, an average
arity of 10, and a target predicate's arity of 10 the chromosome length is 1012, a
number that must be stored in all 1012 genes of the chromosome.

4.2 Mutation
With the new representation the change of one single bit deletes or adds one map-
ping of a predicate. Thus, a single allocation, a predicate, or even a disjunction may
be erased altogether by the change of one bit. The following example illustrates
this: Let the background knowledge be the same as in the previous example. The
three rows represent the variable numbers within the literal. The columns denote
the subscript of the X variables. There are four variables (X0, XI are arguments of

218 Tim Fiihner and Gabriella Kókai

the target literal daughter; X2, X3 are unbound variables), and we need to be able
to place any of these four variables on any position within each literal. Therefore,
we only need four positions for the female literal, as it takes only one argument
(i.e., XO, XI, X2, or X3). For the second literal, parents , we need 43 positions, since
it requires three arguments.

1. Variable 0123 0123 0123 0123 0123 0123 0123 0123 0123 0123 0123 0123 0123 0123 0123 0123 0123
2. Variable 0000 1111 2222 3333 0000 1111 2222 3333 0000 1111 2222 3333 0000 1111 2222 3333
3. Variable 0000 0000 0000 0000 1111 1111 1111 1111 2222 2222 2222 2222 3333 3333 3333 3333

001010000101001000010100100001000010000101001000010000100101000010000100001000010000

is equivalent to the structure:

f e m a l e (X 2) , p a r e n t s (X I , XI , XO), p a r e n t s (X I , X3, X0) „
p a r e n t s (X I , X3, X I) , parents (X2 , X2, X2).

Two mutations are performed:

H h
001010000101001000010100100001000010000101001000010000100101000010000100001000010000

=> 001010000101001001010100100001000010000101001000010000100001000010000100001000010000

This is equivalent to inserting a new predicate allocation (parents (X2, X2 , X0))
and deleting one (parents (X2 , X2, X2)) :

f e m a l e (X 2) , p a r e n t s (X I , XI , X0) , p a r e n t s (X 2 , X2, X0) ,
p a r e n t s (X I , X3, X0) , p a r e n t s (X I , X3, XI) .

Since the modified version of GeLog aims at maintaining a high level of diversity, it
does not depend on mutation. Compared to the original work, the mutation rates
have therefore been decreased drastically.

4.3 Diversity
In order to make linkage learning work, it is necessary to maintain a large diversity
in the population. It might therefore be desirable to keep solutions in different parts
of the search space and optimize these solutions individually. A better solution
replaces another solution only if both are similar to another, i.e., if their distance
is small.

In order to evaluate the distance of two individuals, their chromosomes have to
be compared. Since the chromosomes are bit strings, the Hamming distance (i.e.,
the sum of all difference bits) is an appropriate distance metric. As individuals
in GeLog do not only consist of one but a number of chromosomes, the Hamming
distances for all chromosomes have to evaluated. One approach is to calculate the
Hamming distance for each pair of chromosomes of the two individuals (x and y),
after which the sum of these chromosome-wise distances yields the distances of the
individuals:

m n

E E ^ - t f i .
c = 0 ¿=0

Incorporating Linkage Learning into the GeLog Framework 219

where m is the number of chromosomes and n is the number of genes. In contrast
to a single chromosome where a gene at a specific locus always encodes the same
trait, it cannot be pre-termined what kind of disjunction one chromosome will be
coding for. Therefore, the distance between two individuals is not as obvious as
in a single chromosome case. One extreme case is, two individuals containing the
same chromosomes yet in a different order.

One solution to this problem is to form the sum of the distances of all chromo-
somes in one solution with all the chromosomes in. the other solution:

where m is the number of chromosomes and n is the number of genes. This distance
metric is referred to as sum/ sum.

This approach, however, does not aim at finding corresponding chromosomes in
the compared individuals. For example, although the sum of all distances might be
large, the distance between certain chromosomes is possibly small. The sum/min
approach takes this into account by identifying matching slots. By finding the
permutation p of disjunctions that maximizes

those disjunctions are identified that exhibit a much smaller distance than the
disjunctions with the second smallest distance.

for all ci :— chromosomes in individual 1 do
find C2 unmarked chromosomes in individual with minimum distance to ci
if two chromosomes have the same minimum distance then

choose one randomly
end if
store distance
mark chromosome C2

end for
sum up all stored distances

The algorithm's complexity is 0(n • n\) in the number of chromosomes. Since
distance comparisons are needed very frequently, GeLog uses a variation of this
procedure. Instead, all distances between all chromosomes are evaluated and those
chromosomes are assumed to match that have the smallest distance. If any chromo-
some has the same distance to more than one chromosome in the other individual,
one of these chromosomes is chosen randomly. Figure 3 demonstrates the algorithm.

m m n

c=0d=0i=0

¿=1

Figure 3: Pseudo code of the sum/min algorithm

220 Tim Fiihner and Gabriella Kókai

4.4 Recombination
The different recombination operators of the original GeLog version, as explained in
Section 2, have been replaced by a single operator. Selection yields two individuals,
a donor and a recipient. First one chromosome is selected in the donor individual
and a corresponding chromosome in the recipient is chosen. After crossover has
been performed a slot for the new recombined chromosome has to be chosen. This
process of choosing chromosomes, recombining them and storing them is repeated
for all chromosomes.

Since it is not obvious how to select chromosomes for recombination, several
strategies have been developed:

(1) ordered: the chromosomes are selected in the order they appear in the indi-
vidual,

(2) shuf f led : the chromosomes are randomly shuffled and selected in this new
order, or

(3) f i t n e s s : the chromosomes are selected fitness proportionally, i.e., by roulette
wheel selection. This scheme is very expensive, as a huge number of fitness
evaluations have to be performed.

The new individual (offspring) is now created by the recombined chromosomes.
However, each chromosome has to go into a different slot in the offspring. Therefore,
a selection strategy is also required for storing:
(1) ordered: the chromosome is stored in the same slot as the recipient's chromo-

some was selected from,
(2) shuf f led : a randomly shuffled list of all chromosomes slots is generated, the

chromosomes are stored in that new order, or
(3) s imi lar i ty : the chromosome is placed into the slot that has the shortest

distance, i.e., the number of the recipients slot which is most similar to the
recombined chromosome.

The most important of the nine possible combinations are explained in the follow-
ing:

(1) ordered/ordered: Each chromosome has its fixed slot, for the whole evolu-
tionary process.

(2) s h u f f l e d / s i m i l a r i t y : The parents are chosen randomly, the offspring, how-
ever, replaces the chromosome, which it is most similar to. This selec-
tion/storing scheme induces a similar distribution on the single individual as
the restricted tournament selection did on the entire population.

(3) shuf f l e d / s h u f f l e d : The parents are selected randomly, the offspring is stored
at a random position. This scheme is suitable if restricted tournament selection
is used and all clauses should be intermixed.

Incorporating Linkage Learning into the GeLog Framework 221

(4) f i t n e s s / s i m i l a r i t y : As s h u f f l e d / s i m i l a r i t y , but holds the danger that
the inner-individual diversity gets lost too fast since only well performing chro-
mosomes are selected.

As introduced by Harik [13] an exchange crossover operator was used to re-
combine two chromosomes. When combined with a harsh control of selection, this
operator induces a tighter linkage on the building blocks.

4.5 Flow of GeLog
In this section, pseudo-code is presented for the fitness evaluation routine and for
the main program.

The fitness evaluation consists of two parts: first the genome of the individual
has to be decoded into a hypothesis, and in a second step it is checked, whether
the hypothesis correctly classifies all training instances. The hypothesis must clas-
sify negative instances as false and positive instances as true. The fitness value
corresponds to the percentage of correctly classified training instances.

Fitness Evaluation
input individual A
hypothesis H := decode A
for all positive training instances EP[j] (j := 0..number of pos. instances) do

if H accepts EP{j] then
increase fitness of A

else
decrease fitness of A

end if
end for
for all negative training instances EN\j] (j := 0..number of neg. instances) do

if H rejects EN[j] then
increase fitness of A

else
decrease fitness of A

end if
end for

The following flow demonstrates that the GA flow differs substantially depend-
ing on the selection operator. With conventional selection operators the fitness of
individuals is evaluated after the new population has been created, whereas with
restricted tournament selection more evaluation steps have to be performed.

The program has been implemented using the programming language C + + ;
all experimental runs have been conducted on Intel /AMD processor based com-
puters running the Linux operating system. As PROLOG interpreting system the
SICStus framework version 3.8.5 was used, which can be easily linked to C / C + +
programs. However, calling the external PROLOG process is expensive and decid-
edly contributes to the time required by fitness evaluations. This circumstance is

222 Tim Fiihner and Gabriella Kókai

especially problematic with restricted tournament selection, for which a number of
additional fitness evaluations have to be performed.

Main Program
initialize prolog interpreter
load background knowledge
randomly initialize start population
for fill individuals A[i] (i := 0..population size) do

evaluate A[i]
end for
while not (termination criterion reached or max. number of generations) do

if selection = restricted tournament then
while not new population complete do

A := select randomly
B := select randomly
A' := exchange crossover A, B
B' := exchange crossover B, A
mutate A' ,B'
W[] := select randomly w individuals
A" := Wb'l, where distance(W[j], A') = min (distance(W[il, A'))
evaluate A!
if fitness A' > fitness A" then

replace A!' with A'
end if
repeat the same for B'

end while
else

while not new population complete do
A := select individual (using any recombination operator)
B := select individual (using any recombination operator)
A' := exchange crossover A, B
B' := exchange crossover B, A
mutate A', B'
place A', B' into the new population

end while
evaluate all individuals in the new population

end if
end while

5 Experimental Results

Two experiments that had proven difficult for the original version of GeLog have
been conducted in order to verify that the performance of GeLog has been improved.

Incorporating Linkage Learning into the GeLog Framework 223

5.1 Tic-Tac-Toe
This experiment was introduced by Aha [14] and is based on the Tic-Tac-Toe game.
It encodes all possible endgame situations where the player using the "X" symbol
has started. The target concept, which takes the nine board squares as variables
with values blank, X, or 0, is to classify the win situation for player "X". For 626
of the 956 possible constellations player "X" wins.

The performance of the concept learning algorithms on this data set varied re-
markably, depending on the used variant of learners: while experiments conducted
with decision tree based learners exhibited errors of 20% or more, other algorithms,
such as rule based learners performed well on it (errors < 2%). With the original
version of GeLog we could not achieve error results below 24%, which were signifi-
cantly improved after the modifications.

individual chromosome chromosome selection lowest average
distance selection storing operator error (%) error (%)
none ordered ordered ts 6.25 9.71
none shuffled similarity ts 5.26 8.66
sum/min shuffled similarity rts " 6.25 10.13
sum/sum shuffled similarity rts 6.25 10.86
original GeLog version 24.95 26.91

Table 1: GeLog test results on 'TicTacToe'

Table 1 shows four tests, each consisting of five test runs. All tests have been
conducted using ten-cross-validation, that is, the example set is divided into 10
disjunctive subsets. One is declared as test set. This procedure is used in order
to avoid over-fitting. The first column indicates the individuals' distance metric.
For tournament selection this column contains the word "none", since this selec-
tion operator does not utilize the individuals' distances. The second and third
columns state the chromosome selection and storing scheme as described in Sec-
tion 4.4. The selection operator appears in the fourth row, "rts" means restricted
tournament selection, whereas "ts" is tournament selection. The depicted settings
have been chosen in order to clarify whether restricted tournament selection is in
any case necessary to maintain a high level of diversity. Therefore, tournament
selection was tested using the ordered selection and storing scheme, thus totally ig-
noring the distance relation. The second experiment was conducted using random
selection but with storage into the slot that exhibits the highest similarity. For re-
stricted tournament experiments the same selection/storing scheme was used with
the two different distance metrics, as this might be a critical factor for restricted
tournament selection. The mutation probability for all experiments was defined
as 0.01, crossover was performed with a probability of 0.6, a population consists
of 150 individuals, and the maximum number of generations was 250, however,
for tournament selection, the lowest error rate was chiefly obtained after 50-100
generations.

224 Tim Fiihner and Gabriella Kókai

Figure 4: Minimal versus average error for "TicTacToe": (a) tournament selection,
(b) restricted tournament selection

The absence of a significant difference in the results of tournament and restricted
tournament selection may indicate that the problem is not difficult enough, i.e., that
plain tournament restriction can maintain large enough a diversity.

For the chromosome selection/storing we see a slight difference between
"ordered/ordered" and "shuffled/similarity", which can be attributed to higher
in-individual diversity, that is, clauses have greater differences.

Figure 4 shows two runs of the same experiment, however only 100 individuals
per population are generated. It becomes clear that restricted tournament selection
is aiming at improving the fitness situation of the entire .population.

individual selection run time
distance operator (25 generations)
none ts w 3m50s
sum/sum rts « 5m
sum/min rts ~ 5m8s
original GeLog version « 2ml0s

Table 2: Durations for different selection operators and distance metrics for 25
generations.

In Table 2 the durations for different operators and distance metrics are demon-
strated. The original version of GeLog is faster, due to faster decoding times and
less fitness evaluations. It is also obvious that restricted tournament selection has
a significantly longer run time, owing to the higher number of fitness evaluations.
The different distance metrics seem to have little influence on the duration.

All experiments have been executed on an Intel Pentium II computer with
450 MHz. The run time experiments only involved 25 generations. The number of
right hand sides (disjunctions) was fixed to three. The length of a chromosome is
27.

Incorporating Linkage Learning into the GeLog Framework 225

5.2 Chess Endgame King-Rook-King

The second experiment we have chosen to validate the performance improvement
of GeLog is a chess endgame variant, the "White King and Rook vs. Black King"
[15]. There are three pieces left on the board: a white king, a white rook, and a
black king. The next player to move is white. The objective is to classify legal and
illegal constellations, where a situation is illegal when either white has already won
or black can capture the rook without being check (draw).

individual chromosome chromosome selection lowest average
distance selection storing operator error (%) error (%)
none ordered ordered ts 0.53 0.71
sum/sum ordered ordered rts 0.53 0.71
sum/sum shuffled shuffled rts 0.53 0.72
sum/min shuffled shuffled rts 0.53 0.72
sum/sum shuffled similarity rts 0.53 0.72
sum/min shuffled similarity rts 0.53 0.74
original GeLog version 4.90 8.02

Table 3: GeLog test results on 'King-Rook-King'

There is a total of 28056 entries, each of which consists of the coordinates of
the pieces and an attribute for the optimal number of moves for white to win. The
attributes are the number of moves (0..17) and "draw".

mutation probability 0.01
crossover probability 0.6
population size 150
number of generations 250
termination criterion -

Table 4: Parameter Settings for the 'King-Rook-King' experiment

With the original GeLog program the minimum error was about 5%. Table
3 shows the experimental results for the modified version of GeLog, each entry
representing five test runs, all of which are conducted using ten-cross-validation.
The experiment settings are summarized in Table 4.

Again, neither the different distance metrics nor the diversity sustaining re-
stricted tournament selection exhibit a remarkable difference with respect to the
objective function values.

Also Figure 5 shows that the average payoff of the population is remarkably
higher for restricted tournament selection.

226 Tim Fiihner and Gabriella Kókai

1 . 1 1 1 Jisd saircwa 1—i
^

_ \

1 1 1 1

(a)
noilawnag

(b)

Figure 5: Best versus average payoff for "King Rook King": (a) tournament selec-
tion, (b) restricted tournament selection

In Table 5 the run times for the different operators and metrics are listed.
The experiments have been conducted with the same settings as in the previous
experiment. However, the number of disjunctions is set to five. The length of
chromosome in the new version is 54.

individual selection run time
distance operator (25 generations)
none ts . « 3m50s
sum/sum rts « 4m50s
sum/min rts « 5ml0s
original GeLog version ~ 2m6s

Table 5: Run times for different selection operators and distance metrics for 25
generations.

6 Conclusion and Future Work
In this article we presented some modifications to the GeLog framework—a genetic
logic programming system—in order to improve its underlying genetic algorithm.
The original GeLog program, linkage learning, and some related approaches were
briefly introduced.

It was demonstrated how linkage learning was incorporated into the GeLog
framework. All necessary changes and the resulting problems were presented. A
distance metric, which was developed for the implemented selection operator, was
also presented.

Finally, the test results showed that the GeLog framework has been significantly
improved. Problems that used to be hard for the original program were solved.

Incorporating Linkage Learning into the GeLog Framework 227

Although these first test results are very promising and already demonstrate
that the modifications do indeed enhance GeLog's performance, further experiments
have to be conducted to quantify the influence of the improvements achieved by the
modified GeLog framework. In particular, it has to be investigated if under certain
conditions linkage learning by the combination of the exchange crossover operator
and standard tournament selection can withstand the force of selection.

References
[1] Gabriella Kokai. GeLog—A System Combining Genetic Algorithm with In-

ductive Logic Programming. In Proc of the International Conference on Com-
putational Intelligence, 7th Fuzzy Days LNCS, pages 326-345, Springer Verlag,
Dortmund, 2001.

[2] Nada Lavrac and Saso Dzeroski. Inductive Logic Programming: Techniques
and Applications. Ellis Horwood, New York, 1994.

[3] David E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine
Learning. Addison-Wesley, Reading, MA, 1989.

[4] Christian Jacob. Illustrating Evolutionary Computation with Mathematica.
Morgan Kaufrriann, San Francisco, CA, 2001.

[5] John H. Holland. Adaptation in Natural and Artificial Systems. PhD thesis,
University of Michigan, Ann Arbor, 1975.

[6] John J. Grefenstette. Deception considered harmful. In D. Whitley, edi-
tor, Proceedings of the Foundations of Genetic Algorithms Workshop, Morgan

. Kauffmann, Vail, CO, 1992.

[7] Stephanie Forrest and Melanie Mitchell. What Makes a Problem Hard for a
Genetic Algorithm? Some Anomalous Results and Their Explanation. Ma-
chine Learning, 13:285-319, 1993.

[8] David E. Goldberg and Clayton L. Bridges. An analysis of a reordering oper-
ator on a GA-hard problem. Biological Cybernetics, 62(5):397-405,1990.

[9] David E. Goldberg, Bradley Korb, and Kalyanmoy Deb. Messy genetic algo-
rithms: Motivation, analysis, and first results. Complex Systems, 3(5):493-530,
1990.

[10] David E. Goldberg, Kalyanmoy Deb, Hillol Kargupta, and Georges Harik.
Rapid accurate optimization of difficult problems using fast messy genetic
algorithms. In Stephanie Forrest, editor, Proc. of the Fifth Int. Conf. on
Genetic Algorithms, pages 56-64, Morgan Kaufmann, San Mateo, CA, 1993.

[11] Hillol Kargupta. SEARCH, polynomial complexity, and the fast messy genetic
algorithm. Technical report, University of Illinois, Illinois Genetic Algorithms
Laboratory, Urbana, H, 1995.

228 Tim Fiihner and Gabriella Kókai

[12] Hillol Kargupta. The gene expression messy genetic algorithm. In Interna-
tional Conference on Evolutionary Computation, pages 814-819, Piscataway,
NJ, 1996.

[13] George Harik. Learning linkage to efficiently solve problems of bounded diffi-
culty using genetic algorithms. PhD thesis, The University of Michigan, Ann
Arbor, Michigan, 1997.

[14] David W. Aha. Incremental constructive induction: An instance-based ap-
proach. In Proceedings of the 8th International Workshop on Machine Learn-
ing, pages 117-121, Morgan Kaufmann, Evanston, IL, 1991.

[15] Micheal Bain. Learning optimal KRK strategies. In S. Muggleton, editor,
ILP92: Proc. Intl. Workshop on Inductive Logic Programming, Report ICOT
TM-1182, Tokyo, 1992.

