
Two-Way Metalinear PC Grammar Systems and

Their Descriptional Complexity

Alexander Meduna∗

Acta Cybernetica 16 (2004) 385–397.

Abstract

Besides a derivation step and a communication step, a two-way PC gram-
mar system can make a reduction step during which it reduces the right-hand
side of a context-free production to its left hand-side. This paper proves
that every non-unary recursively enumerable language is defined by a cen-
tralized two-way grammar system, Γ, with two metalinear components in a
very economical way. Indeed, Γ’s master has only three nonterminals and
one communication production; furthermore, it produces all sentential forms
with no more than two occurrences of nonterminals. In addition, during ev-
ery computation, Γ makes a single communication step. Some variants of
two-way PC grammar systems are discussed in the conclusion of this paper.

1 Introduction

Over the past few years, the formal language theory has intensively investigated
many variants of PC grammar systems (see [12]), which consist of several simulta-
neously working and communicating components, represented by grammars. This
paper introduces another variant of this kind, called two-way PC grammar sys-
tems, which make three kinds of computational steps—derivation, reduction, and
communication. More precisely, a two-way PC grammar system, Γ, makes a deriva-
tion step as usual; that is, it rewrites the left-hand side of a production with its
right-hand side. During a reduction step, however, Γ rewrites the right-hand side
with the left hand-side. Finally, Γ makes a communication step in a usual PC-
grammar-system way; in addition, however, after making this step, it changes the
computational way from derivations to reductions or vice versa.

As reduction steps represent a mathematically natural modification of deriva-
tion steps, a discussion of two-way PC grammar systems surely deserves our atten-
tion from a theoretical viewpoint. From a practical viewpoint, this discussion is
important as well. Indeed, two-way PC grammar systems actually formalize com-
putational units combining both reduction and derivation steps, which frequently
occur in applied computer science. To give some specific examples, consider, for

∗Department of Information Systems, Faculty of Information Technology, Brno University of
Technology, Božetěchova 2, Brno 61266, Czech Republic

385

386 Alexander Meduna

instance, compilers. A parser is often written so it actually represents a combi-
nation of a bottom-up parser for expressions and a top-down parser for general
program flow. While the former makes reductions, the latter makes derivations; as
a whole, the parser thus makes both. To give another example in this area, the
three-address code generation often consist of top-down syntax-directed generation
of abstract syntax tree followed by a bottom-up translation of this tree to the de-
sired three-address code. Again, both reductions and derivations take part in this
translation process as a whole. As a result, there surely exist both theoretically
and pragmatically sound reasons for investigating two-way PC grammar systems.

This paper narrows its attention to the centralized two-way metalinear PC
grammar systems working in a non-returning mode. That is, since they are cen-
tralized, only their first components, called the masters, can cause these systems
to make a communication step. Since they are metalinear, all their components
are represented by metaliner grammars. Finally, as they work in a non-returning
mode, after communicating, their components continue to process the current string
rather than return to their axioms. Regarding these systems, the present paper con-
centrates its discussion on their descriptional complexity because this complexity
represents an intensively studied area of today’s formal language theory.

As its main result, this paper proves that the centralized two-way metalinear PC
grammar systems characterize the family of non-unary recursively enumerable lan-
guages in a very economical way. Indeed, every non-unary recursively enumerable
language is defined by a centralized two-way grammar system with two metalinear
components so that during every computation Γ makes a single communication
step. In addition, Γ’s three-nonterminal master has only one production with a
communication symbol and each of its sentential forms contains no more than two
occurrences of nonterminals. In the conclusion of this paper, some terminating and
parallel variants of these two-way systems are introduced and analogical results to
the above characterization are achieved.

2 Preliminaries

This paper assumes that the reader is familiar with the formal language theory
(see [9], [14]). For a set, Q, card(Q) denotes the cardinality of Q. For an alphabet,
V , V ∗ represents the free monoid generated by V under the operation of concate-
nation. The unit of V ∗ is denoted by ε. Set V + = V ∗ − {ε}; algebraically, V + is
thus the free semigroup generated by V under the operation of concatenation. For
every w ∈ V ∗, |w| denotes the length of w. Furthermore, for every 0 ≤ i ≤ |w| and
L ∈ V ∗, we introduce the following denotation:

• length(L) = {|w| : w ∈ L}
• reversal(w) denotes the reversal of w
• reversal(L) = {reversal(w) : w ∈ L}
• alph(w) denotes the set of letters occurring in w
• alph(L) = {a : a ∈ alph(w) with w ∈ L}
• sym(w, i) denotes the ith symbol in w

Two-Way Metalinear PC Grammar Systems . . . 387

• prefix(w, i) denotes the set of w’s prefixes of length i or less
• prefix(w) = prefix(w, |w|)
• suffix(w, i) denotes the set of w’s suffixes of length i or less
• suffix(w) = suffix(w, |w|)
• prefix(L) = {x : x ∈ prefix(w) for some w ∈ L}
• suffix(L) = {x : x ∈ suffix(w) for some w ∈ L}

For every W ⊆ V , del(w, W) denotes the word resulting from w by the deletion
of all symbols from W in w; more formally, del(w, W) = ρ(w), where ρ is the
weak identity over V ∗ defined as ρ(b) = ε for every b ∈ W and ρ(a) = a for every
a ∈ V − W . Let keep(w, W) denote the word resulting from w by the deletion
of all symbols from V − W in w; more formally, keep(w, W) = θ(w), where θ is
the weak identity over V ∗ defined as θ(b) = ε for every b ∈ V − W and θ(a) = a
for every a ∈ W . For instance, for w = abac, alph(w) = {a, b, c},prefix(w, 2) =
{ε, a, ab}, sym(w, 3) = a,del(w, {a}) = bc,keep(w, {a, b}) = aba.

A queue grammar (see [7]) is a sixtuple, Q = (V, T, W, F, s, P), where V and
W are alphabets satisfying V ∩ W = ∅, T ⊆ V, F ⊆ W, s ∈ (V − T)(W − F), and
P ⊆ (V × (W −F))× (V ∗ ×W) is a finite relation such that for every a ∈ V , there
exists an element (a, b, x, c) ∈ P for some b ∈ W − F, x ∈ V ∗, and c ∈ W . If u, v ∈
V ∗W such that u = arb, v = rzc, a ∈ V, r, z ∈ V ∗, b, c ∈ W , and (a, b, x, c) ∈ P ,
then u ⇒ v [(a, b, z, c)] in G or, simply, u ⇒ v. The language of Q, L(Q), is defined
as L(Q) = {w ∈ T ∗ : s ⇒∗ wf where f ∈ F}.

Now, we slightly modify the notion of a queue grammar. A left-extended queue
grammar is a sixtuple, Q = (V, T, W, F, s, P), where V, T, W, F , and s have the same
meaning as in a queue grammar. P ⊆ (V × (W −F))× (V ∗×W) is a finite relation
(as opposed to an ordinary queue grammar, this definition does not require that
for every a ∈ V , there exists an element (a, b, x, c) ∈ P). Furthermore, assume that
�∈ V ∪W . If u, v ∈ V ∗{#}V ∗W so that u = w#arb, v = wa#rzc, a ∈ V, r, z, w ∈
V ∗, b, c ∈ W , and (a, b, x, c) ∈ P , then u ⇒ v[(a, b, z, c)] in G or, simply, u ⇒ v. In
the standard manner, extend ⇒ to ⇒n, where n ≥ 0; then, based on ⇒n, define ⇒+

and ⇒∗. The language of Q, L(Q), is defined as L(Q) = {v ∈ T ∗ : #s ⇒∗ w#vf
for some w ∈ V ∗ and f ∈ F}. Less formally, during every step of a derivation,
a left-extended queue grammar shifts the rewritten symbol over #; in this way, it
records the derivation history, which represents a property fulfilling a crucial role
in the proof of Lemma 4 in the next section.

3 Definitions

As already sketched in Section 1, this paper discusses grammar systems (see [1,
2, 3, 4, 5, 7]), concentrating its attention on PC grammar systems (see [6, 11,
12, 13, 15, 16]). The present section introduces a new version of these systems.
First, based on two-way k-linear PC components, it defines two-way k-linear n-PC
grammar systems. Then, it introduces several notions concerning them. Finally,
two examples are given.

388 Alexander Meduna

Let k and n be two positive integers. A two-way k-linear PC component is a
quadruple, G = (N, T, P, S), where N and T are two disjoint alphabets. Symbols
in N and T are referred to as nonterminal and terminals, respectively, and S ∈ N
is the start symbol of G. Set M = N − {S}. P is a finite set of productions such
that each r ∈ P has one of these forms

• S → x, where x ∈ (T ∪ M)∗ and x contains no more than k occurrences of
symbols from M ,

• A → x, where A ∈ M and x ∈ T ∗MT ∗ ∪ T ∗.
Let u, v ∈ (N∪T)∗. For every A → x ∈ P , write uAv d⇒ uxv and uxv r⇒ uAv;

d and r stand for a direct derivation and a direct reduction, respectively. To express
that G makes uAv d⇒ uxv according to A → x, write uAv d⇒ uxv [A → x];
uxv r⇒ uAv [A → x] have an analogical meaning in terms of r⇒. A two-way
k-linear n-PC grammar system is an n + 1-tuple

Γ = (Q, G1, . . . , Gn),

where Q = {qi : i = 1, . . . , n}, whose members are called query symbols, and for
all i = 1, . . . , n, Gi = (Q ∪ Ni, T, Pi, Si) is a two-way k-linear PC component such
that Q ∩ (Ni ∪ T) = ∅ (notice that each Gi has the same terminal alphabet, T);
let q-Pi ⊆ Pi denote the set of all productions in Pi containing a query symbol. A
configuration is an n-tuple of the form (x1, . . . , xn), where xi ∈ (Q ∪ Ni ∪ T)∗, 1 ≤
i ≤ n. The start configuration, s, is defined as s = (S1, . . . , Sn). Let Θ denote the
set of all configurations of Γ. For every x ∈ Θ and i = 1, . . . , n, i-x denotes its ith
component—that is, if x = (x1, . . . , xi, . . . , xn), then i-x = xi. For every x ∈ Θ,
define the mapping xθ over {i-x : 1 ≤ i ≤ n} as xθ(i-x) = z1z2 . . . z|i-x| where for
all 1 ≤ h ≤ |i-x|,

if for some qj ∈ Q, i = 1, . . . , n, sym(i-x, h) = qj and alph(j-x)∩Q = ∅, then zh =
j-x; otherwise (that is, sym(i-x, h) �∈ Q or alph(j-x) ∩ Q �= ∅), zh = sym(i-x, h).

Let y, x ∈ Θ. Write

• y d⇒ x in Γ if i-y d⇒ i-x in Gi or i-y = i-x with i-y, i-x ∈ T ∗, for all
i = 1, . . . , n;

• y r⇒ x in Γ if i-y r⇒ i-x in Gi or i-y = i-x with i-y, i-x ∈ {Si} ∪ T ∗, for all
i = 1, . . . , n;

• y q⇒ x in Γ if i-x = yθ(i-y) in Gi for all i = 1, . . . , n.

Informally, Γ works in three computational modes—d⇒, r⇒, q⇒, which sym-
bolically represent a direct derivation, reduction, and communication, respectively.
Let l ≥ 1, αj ∈ Θ, 1 ≤ i ≤ l, and α0 l1⇒ α1 l2⇒ α2 . . . αl−1 ll⇒ αl where lm ∈
{d, r, q}, 1 ≤ m ≤ l; write α0 ⇒∗ αl if l1 = d and each lp ∈ {d, r, q}, 2 ≤ p ≤ l − 1,
satisfies:

• if lp = q then lp+1, lp−1 ∈ {d, r} and lp+1 �= lp−1,
• if lp ∈ {d, r} then lp+1 ∈ {q, lp}.

Two-Way Metalinear PC Grammar Systems . . . 389

Informally, after making a communication step, Γ changes the computational
mode from d to r and vice versa; after making a derivation or reduction step, it
does not. Consider α0 ⇒∗ αl that consists of l direct computational steps, α0 l1⇒
α1 l2⇒ α2 . . . αl−1 ll⇒ αl, satisfying the above properties. Set κ(α0 ⇒∗ αl) =
{α0, α1, . . . , αl}; that is, κ(α0 ⇒∗ αl) denote the set of all configurations occurring
in α0 ⇒∗ αl. Furthermore, for each l = 1, . . . , n, set κ(i-α0 ⇒∗ i-αl) = {i-β : β ∈
κ(α0 ⇒∗ αl)}. Finally, for each h = 1, . . . , n, h-computation(i-α0 ⇒∗ i-αl) denote
h-α0 l1⇒ h-α1 l2⇒ h-α2 . . . h-αl−1 ll⇒ h-αl The language of Γ, L(Γ), is defined as

L(Γ) = {z ∈ T ∗ : σ ⇒∗ α in Γ with z = del(1-a, S1), for some α ∈ Θ}.

Informally, L(Γ) contains z ∈ T ∗ if and only if there exists α ∈ Θ such that σ ⇒∗ a
in Γ and the deletion of each S1 in 1-a results in z. A computation σ ⇒∗ a in Γ
with del(1-a, S1) ∈ L(Γ) is said to be successful. By a two-way metalinear n-PC
grammar system, we refer to any two-way k-linear n-PC grammar system, where
k ≥ 1.

Notice that after communicating, the components of the above systems continue
to process the current string rather than return to their axioms. In other words,
they work in the non-returning mode (see [7]). The returning mode is not discussed
in this paper.

For a two-way k-linear PC grammar system, Γ = (Q, G1, . . . , Gn), we next
introduce some special notions.

Finite index. Let σ ⇒∗ x be any successful computation in Γ, where x ∈ Θ,
and let i ∈ {1, . . . , n}. By i-index(σ ⇒∗ x), we denote the maximum number in
length(keep(κ(i-σ ⇒∗ i-x), Ni)). If for every successful computation σ ⇒∗ ξ in
Γ, where ξ ∈ Θ, there exists k ≥ 1 such that i-index(σ ⇒∗ ξ) ≤ k, Gi is of a
finite index. If Gi is of a finite index, index(Gi) denotes the minimum number h
satisfying i-index(σ ⇒∗ ξ) ≤ h, for every successful computation σ ⇒∗
 in Γ,
where
 ∈ Θ. By index(Gi) = ∞, we express that Gi is not of a finite index.
If Gj is of a finite index for all j = 1, . . . , n, Γ is of a finite index and index(Γ)
denotes the minimum number g satisfying index(Gl) ≤ g, for all l = 1, . . . , n. By
index(Γ) = ∞, we express that Γ is not of a finite index.

q-Degree. For σ ⇒∗ x in Γ, where x ∈ Θ, q-degree(σ ⇒∗ x) denotes the number of
communication steps (q⇒) in σ ⇒∗ x. If for every computation σ ⇒∗ ξ in Γ, where
ξ ∈ Θ, there exists k ≥ 1 such that q-degree(σ ⇒∗ ξ) ≤ k, Γ is of a finite q-degree.
If Γ is of a finite q-degree, q-degree(Γ) denotes the minimum number h satisfying
q-degree(σ ⇒∗ ξ) ≤ h, for every computation σ ⇒∗ ξ in Γ; by q-degree(Γ) = ∞,
we express that Γ is not of a finite q-degree.

Centralized Version. Γ is centralized if no query symbol occurs in any production of
Pi in Gi = (Ni, Ti, Pi, Si), for all i = 2, . . . , n. In other words, only P1 can contain
some query symbols, so G1, called the master of Γ, is the only component that can
cause Γ to perform a communication step.

390 Alexander Meduna

This paper concentrates its attention on the centralized version of two-way k-
linear 2-PC grammar systems. Therefore, we conclude this section by two examples
illustrating these systems.

Example 1. Consider the centralized two-way two-linear 2-PC grammar system,
G = ({q1, q2}, G1, G2), where G1 = ({S1, A, B}, T, P1, S1), G2 = ({S2, B, Y }, T,
P2, S2), T = {a, b, c}, P1 = {S1 → A, A → cA, A → cq2, Q2 → B, B → q2, B →
ε, S1 → B}, and P2 = {S2 → Y B, B → B, Y → aY b, Y → ab}.

For instance, Γ generates c3a3b3a3b3a3b3 as (S1, S2) d⇒ (A, Y B) d⇒ (cA,
aY bB) d⇒ (ccA, aaY bbB) d⇒ (cccq2, a

3b3B) q⇒ (c3a3b3B, a3b3B) r⇒ (c3a3b3q2,
a3b3B) q⇒ (c3a3b3a3b3B, a3b3B) d⇒ (c3a3b3a3b3q2, a

3b3B) q⇒ (c3a3b3a3b3a3b3B,
a3b3B) r⇒ (c3a3b3a3b3a3b3S1, a

3b3B) with del(c3a3b3a3b3a3b3S1, S1) =
c3a3b3a3b3a3b3.

Observe that L(Γ) = {cjxi : x ∈ H, j, i ≥ 1, |x| = 2j}, where H = {anbn : n ≥
1}. Furthermore, notice that index(G1) = 1 and index(G2) = 2, so Γ is of a finite
index. On the other hand, q-degree(Γ) = ∞.

Example 2. Consider the centralized two-way one-linear 2-PC grammar system G =
({q1, q2}, G1, G2) where G1 = ({S1, A, B}, T, P1, S1), G2 = ({S2, B}, T, P2, S2), T =
{a, b, c}, P1 = {S1 → A, A → aAa, A → aq2a, B → Bc, S1 → B}, and P2 = {S2 →
B, B → bBc}.

For instance, Γ makes (S1, S2) d⇒ (A, B) d⇒ (aAa, bBc) d⇒ (aaq2aa, bbBcc)
q⇒ (aabbBccaa, bbBcc) r⇒ (aabbBcaa, bBc) r⇒ (aabbS1caa, B).

Notice that L(Γ) = {anbncman : n ≥ m ≥ 0}, index(G1) = 1, index(G2) = 1,
and q-degree(Γ) = 1.

4 Main Result

This section proves that every non-unary recursively enumerable language is defined
by a centralized two-way three-linear 2-PC grammar system, Γ = ({Q2}, G1, G2),
such that index(G1) = 2, index(G2) = 3, and q-degree(Γ) = 1. As a result,
index(Γ) = 3. In addition, its three-nonterminal master, G1, has only one produc-
tion containing a query symbol.

Lemma 1. For every recursively enumerable language, L, there exists a left-
extended queue grammar, Q, satisfying L(Q) = L.

Proof. Recall that every recursively enumerable language is generated by a queue
grammar (see [8]). Clearly, for every queue grammar, there exists an equivalent
left-extended queue grammar. Thus, this lemma holds. �

Lemma 2. Let Q′ be a left-extended queue grammar. Then, there exists a left-
extended queue grammar, Q = (V, T, W, F, s, R), such that L(Q′) = L(Q), W =
X∪Y ∪{1}, where X, Y, {1} are pairwise disjoint, and every (a, b, x, c) ∈ R satisfies
either a ∈ V − T, b ∈ X, x ∈ (V − T)∗, c ∈ X ∪ {1} or a ∈ V − T, b ∈ Y ∪ 1, x ∈
T ∗, c ∈ Y .

Two-Way Metalinear PC Grammar Systems . . . 391

Proof. See Lemma 1 in [10]. �

Consider the left-extended queue grammar Q = (V, T, W, F, s, R) from Lemma 2.
Its properties imply that Q generates every word in L(Q) so that it passes through
state 1. Before it enters 1, it generates only words over (V − T); after entering 1,
it generates only words over T . In greater detail, the next corollary expresses this
property, which fulfills a crucial role in the proof of Lemma 4.

Corollary 3. Q constructed in the proof of Lemma 2 generates every h ∈ L(Q) in
this way

#a0q0

⇒ a0#x0q1 [(a0, q0, z0, q1)]
⇒ a0a1#x1q2 [(a1, q1, z1, q2)]
...
⇒ a0a1 . . . ak#xkqk+1 [(ak, qk, zk, qk+1)]
⇒ a0a1 . . . akak+1#xk+1y1qk+2 [(ak+1, qk+1, y1, qk+2)]
...
⇒ a0a1 . . . akak+1 . . . ak+m−1

#xk+m−1y1 . . . ym−1qk+m [(ak+m−1, qk+m−1, ym−1, qk+m)]
⇒ a0a1 . . . akak+1 . . . ak+m#y1 . . . ymqk+m+1 [(ak+m, qk+m, ym, qk+m+1)]

where k, m ≥ 1, ai ∈ V − T for i = 0, . . . , k + m, xj ∈ (V − T)∗ for
j = 1, . . . , k + m, s = a0q0, ajxj = xj−1zj for j = 1, . . . , k, a1 . . . akxk+1 =
z0 . . . zk, ak+1 . . . ak+m = xk, q0, q1, . . . , qk+m ∈ W−F and qk+m+1 ∈ F, z1, . . . , zk ∈
(V − T)∗, y1, . . . , ym ∈ T ∗, h = y1y2 . . . ym−1ym.

Lemma 4. Let Q be a left-extended queue grammar such that card(alph(L(Q))) ≥
2. Then, there exists a centralized two-way three-linear 2-PC grammar system, Γ =
({Q2}, G1, G2), such that L(Γ) = L(Q), index(G1) = 2, index(G2) = 3, index(Γ) =
3, q-degree(Γ) = 1. In addition, Γ’s master, G1 = ({Q2} ∪ N1, T, P1, S1), satisfies
card(N1) = 3 and q-P1 = {A → Q2}.
Proof. Let Q = (V, T, W, F, s, R) be a left-extended queue grammar such that
card(alph(L(Q))) ≥ 2. Assume that {0, 1} ⊆ alph(L(Γ))) ∩ T . Furthermore,
without any loss of generality, assume that Q satisfies the properties described in
Lemma 2 and Corollary 3. Observe that there exist a positive integer, n, and an
injection, ι, from V W to ({0, 1}n − 1n) so that ι remains an injection when its
domain is extended to (V W)∗ in the standard way (after this extension, ι thus
represents an injection from (V W)∗ to ({0, 1}n − 1n)∗); a proof of this observation
is simple and left to the reader. Based on ι, define the substitution, ν, from V to
({0, 1}n − 1n) as ν(a) = {ι(aq) : q ∈ W} for every a ∈ V . Extend the domain
of ν to V ∗. Furthermore, define the substitution, μ, from W to ({0, 1}n − 1n) as
μ(q) = {reversal(ι(aq)) : a ∈ V } for every q ∈ W . Extend the domain of μ to W ∗.
Set o = 1n.

392 Alexander Meduna

Construction. Introduce the centralized two-way three-linear 2-PC grammar sys-
tem, Γ = ({Q2}, G1, G2), where G1 = (Q ∪ N1, T, P1, S1), G2 = (N2, T, P2, S2),
N1 = {S1, A, Y }, and P1 = {S1 → oAo, S1 → oY o, A → Q2} ∪ {A →
reversal(x)Ax : x ∈ ι(V W)} ∪ {Y → xY x : x ∈ ι(V W)}. P2 is constructed
as follows

1. if s = a0q0, where a0 ∈ V − T and q0 ∈ W − F , then add S2 → Y u 〈q0, 1〉 tY
to P2, for all u ∈ ν(a0) and t ∈ μ(q0),

2. if (a, q, y, p) ∈ R, where a ∈ V −T, p, q ∈ W −F , and y ∈ (V −T)∗, then add
〈q, 1〉 → u 〈p, 1〉 t to P2, for all u ∈ ν(y) and t ∈ μ(p),

3. for every q ∈ W − F , add 〈q, 1〉 → o 〈q, 2〉 to P2,

4. if (a, q, y, p) ∈ R, where a ∈ V − T, p, q ∈ W − F, y ∈ T ∗, then add 〈q, 2〉 →
y 〈p, 2〉 t to P2, for all t ∈ μ(p),

5. if (a, q, y, p) ∈ R, where a ∈ V − T, q ∈ W − F, y ∈ T ∗, and p ∈ F , then add
〈q, 2〉 → yo to P2,

6. add Y → Y to P2,

and N2 contains all symbols occurring in P2 that are not in T .

Basic Idea. Clearly, Γ′s master, G1 = ({Q2}∪N1, T, P1, S1), satisfies card(N1) = 3
and q-P1 = {A → Q2}. Every generation of y ∈ L(Γ) can be expressed as follows

(S1, S2)
d⇒ (oreversal(α0)Aβ0o, Y χ0 〈q1, 1〉 reversal(β0)Y)
d⇒ (oreversal(α1)Aβ1o, Y χ1 〈q2, 1〉 reversal(β1)Y)
...

d⇒ (oreversal(αk)Aβko, Y χk 〈qk+1, 1〉 reversal(βk)Y)
d⇒ (oreversal(αk)Aβko, Y χko 〈qk+1, 2〉 reversal(βk)Y)
d⇒ (oreversal(αk)Aβk+1o, Y χkoy1 〈qk+1, 2〉 reversal(βk+1)Y)
...

d⇒ (oreversal(αk+m)Q2βk+mo, Y χkoy1 . . . ymoreversal(βk+m)Y)
q⇒ (oreversal(αk+m)Y αk+moy1 . . . ymoreversal(βk+m)Y βk+mo), ζ)
r⇒ (oprefix(reversal(αk+m), |αk+m| − n)Y suffix(ak+m, |ak+m| − n)

oy1 . . . ymoreversal(βk+m)Y βk+mo), ζ)
...

r⇒ (oY oy1 . . . ymoY o, ζ)
r⇒2 (S1y1 . . . ymS1, ζ)

where k, m ≥ 1, and for all e = 0, . . . , k + m, αe ∈ ν(a0 . . . ae), βe ∈ μ(q0 . . . qe),
αe = reversal(βe), ai ∈ V − T, qi ∈ W − F, 1 ≤ i ≤ k + m, for all f = 0, . . . , k − 1,
χf ∈ prefix(ν(a0 . . . ae)) ∩ prefix(χf+1), χk = ak+m, s = a0q0, y1, . . . , ym ∈ T ∗,

Two-Way Metalinear PC Grammar Systems . . . 393

ζ = Y χkoy1 . . . ymoreversal(βk+m)Y, y = y1, . . . , ym, and R contains rules
(a0, q0, z0, q1), (a1, q1, z1, q2), . . . , (ak+m, qk+m, ym−1, qk+m+1) according to which Q
can make the generation of y described in Corollary 3. As a result, q-degree(Γ) = 1
and L(Γ) ⊆ L(Q). On the other hand, recall that Q generates every y ∈ L(Q) as
described in Corollary 3. Then, we can easily construct the above generation of y
in Γ, so L(Q) ⊆ L(Γ). Therefore, L(Γ) = L(Q).

Formal Proof (Sketch). For brevity, the following rigorous proof omits some obvious
details, which the reader can easily fill in.

Claim 1. G generates every h ∈ L(Γ) as follows (S1, S2) d⇒∗ (uAv, y) q⇒
(uyv, y) r⇒∗ (h, y), where u, v ∈ {0, 1}∗, y ∈ {Y }(T ∪ {0, 1})∗{Y }.
Proof. In P1, the right-hand side of every production contains a symbol from Q ∪
N1, so during any successful computation, Γ makes at least one q-step. The only
production by which G1 can cause Γ to make a q-step is A → q2. A does not
occurr in N2 at all, and after the first application of A → q2, G1 makes reductions
during which it can never obtain A in a sentential form. Thus, the first application
of A → q2 is also the last application of this production. Therefore, Γ generates
every h ∈ L(Γ) as follows (S1, S2) d⇒∗ (uAv, y) q⇒ (uyv, y) r⇒∗ (h, z),where
u, v ∈ {0, 1}∗, y, z ∈ (T ∪ N)∗. If y contains a symbol from N2 − (T ∪ {Y }), G1

can never remove them during (uyv, y) r⇒∗ (h, z) by any rule from P1, which
leads to a contradiction that h �= L(Γ). Thus, y, z ∈ (T ∪ {Y })∗. Examine P2

to see that y, z ∈ (T ∪ {Y })∗ implies y = z and y ∈ {Y }(T ∪ {0, 1})∗{Y }. As
a result, (S1, S2) d⇒∗ (uAv, y) q⇒ (uyv, y) r⇒∗ (h, y), where u, v ∈ {0, 1}∗, y ∈
{Y }(T ∪ {0, 1})∗{Y }.
The previous claim implies q-degree(Γ) = 1.

Claim 2. Let (S1, S2) d⇒∗ (uAv, y) q⇒ (uyv, y) r⇒∗ (h, y) in Γ, where h ∈
L(Γ), u, v ∈ {0, 1}∗, y ∈ {Y }(T ∪ {0, 1})∗{Y }. Then, v = reversal(u).

Proof. Examine 1-P1. Observe that before the communicational step, G1 can use
only productions from {S1 → oAo}∪{A → reversal(z)Az : z ∈ ι(V W)}; therefore,
v = reversal(u).

Claim 3. Let (S1, S2) d⇒∗ (uAreversal(u), y) q⇒ (uyreversal(u), y) r⇒∗ (h, y),
in Γ, where h ∈ L(Γ), u, v ∈ {0, 1}∗, y ∈ {Y }(T ∪ {0, 1})∗{Y }. Then, y =
Yreversal(u)huY .

Proof. Consider (uyreversal(u), y) r⇒∗ (h, y). During 1-computation((uy
reversal(u), y) r⇒∗ (h, y)), G1 can use only productions from {S1 → oY o}∪{Y →
xY x : x ∈ ι(V W)}. Thus, y = Yreversal(u)huY .

Return to the proof of the lemma. Let

(S1, S2) d⇒∗ (uAreversal(u), Yreversal(u)huY)
q⇒ (uYreversal(u)huYreversal(u), Yreversal(u)huY)
r⇒∗ (h, Yreversal(u)huY)

394 Alexander Meduna

in Γ, where u, v ∈ {0, 1}∗. Examine P1 and P2 to see that in greater detail this
computation can be expressed as

(S1, S2)
d⇒ (oreversal(α0)Aβ0o, Y χ0 〈q1, 1〉 reversal(β0)Y)
d⇒ (oreversal(α1)Aβ1o, Y χ1 〈q2, 1〉 reversal(β1)Y)
...

d⇒ (oreversal(αk)Aβko, Y χk 〈qk+1, 1〉 reversal(βk)Y)
d⇒ (oreversal(αk)Aβko, Y χko 〈qk+1, 2〉 reversal(βk)Y)
d⇒ (oreversal(αk)Aβk+1o, Y χkoy1 〈qk+1, 2〉 reversal(βk+1)Y)
...

d⇒ (oreversal(αk+m)Q2βk+mo, Y χkoy1 . . . ymoreversal(βk+m)Y)
q⇒ (oreversal(αk+m)Y αk+moy1 . . . ymoreversal(βk+m)Y βk+mo), ζ)
r⇒ (oprefix(reversal(αk+m), |αk+m| − n)Ysuffix(ak+m, |ak+m| − n)

oy1 . . . ymoreversal(βk+m)Y βk+mo), ζ)
...

r⇒ (oYoy1 . . . ymoYo, ζ)
r⇒2 (S1y1 . . . ymS1, ζ)

where k, m ≥ 1, and for all e = 0, . . . , k + m, αe ∈ ν(a0 . . . αe), βe ∈ μ(q0 . . . qe),
αe = reversal(βe), ai ∈ V − T, qi ∈ W − F, 1 ≤ i ≤ k + m, for all f =
0, . . . , k − 1, χf ∈ prefix(ν(a0 . . . ae)) ∩ prefix(χf+1), χk = αk+m, s = a0q0,
y1, . . . , ym ∈ T ∗, ζ = Y χkoy1 . . . ymoreversal(βk+m)Y, h = y1, . . . , ym. Thus,
index(G1) = 2, index(G2) = 3, and index(Γ) = 3. Recall that χk = ak+m. Con-
sider the derivation part of the above computation—that is,

2-computation((S1, S2) d⇒∗ (oreversal(αk+m)Q2βk+mo, Y αk+moy1 . . .
ymoreversal(bk+m)Y))

From the construction of P2, the form of this computation implies that R
contains rules (a0, q0, z0, q1), (a1, q1, z1, q2), . . . , (ak+m, qk+m, ym−1, qk+m+1), where
s = a0q0, ajxj = xj−1zj for j = 1, . . . , k, a1 . . . akxk+1 = z0 . . . zk, ak+1 . . . ak+m =
xk, and qk+m+1 ∈ F, z1, . . . , zk ∈ (V − T)∗, y1, . . . , ym ∈ T ∗, h = y1y2 . . . ym−1ym.
As a result,

#a0q0

⇒ a0#x0q1 [(a0, q0, z0, q1)]
⇒ a0a1#x1q2 [(a1, q1, z1, q2)]
...
⇒ a0a1 . . . ak#xkqk+1 [(ak, qk, zk, qk+1)]
⇒ a0a1 . . . akak+1#xk+1y1qk+2 [(ak+1, qk+1, y1, qk+2)]
...
⇒ a0a1 . . . akak+1ak+m−1#xk+m−1y1 . . . ym−1qk+m

[(ak+m−1, qk+m−1, ym−1, qk+m)]
⇒ a0a1 . . . akak+1ak+m#y1 . . . ymqk+m+1 [(ak+m, qk+m, ym, qk+m+1)]

Two-Way Metalinear PC Grammar Systems . . . 395

in Q. As h = y1y2 . . . ym−1ym, h ∈ L(Q). Thus, L(Γ) ⊆ L(Q).
To prove L(Q) ⊆ L(Γ), recall that Q satisfies the properties described in

Lemma 2 and, therefore, generates every h ∈ L(Q) as described in Corollary 3.
Then, we can easily construct the generation of h in Γ that has the form described
above; a detailed version of this construction is left to the reader. Thus, h ∈ L(Γ),
so L(Q) ⊆ L(Γ).

Therefore, L(Γ) = L(Q). Recall that we have already established that
index(G1) = 2, index(G2) = 3, index(Γ) = 3, q − degree(Γ) = 1, card(N1) = 3,
q-P1 = {AQ2}. Thus, Lemma 4 holds. �

Theorem 5. Let L be a recursively enumerable language such that card(alph(L))
≥ 2. Then, there exists a centralized two-way three-linear 2-PC grammar system,
Γ = ({q2}, G1, G2), such that L(Γ) = L, index(G1) = 2, index(G2) = 3, index(Γ) =
3, q-degree(Γ) = 1, and Γ’s master, G1 = (Q ∪ N1, T, P1, S1), satisfies card(N1) =
3, q-P1 = {A → Q2}.
Proof. This theorem follows from Lemmas 1, 2, and 4. �

5 Some Variants

This concluding section discusses some variants of the centralized two-way metalin-
ear grammar systems.

Parallel variant. A parallel variant of a centralized two-way k-linear PC gram-
mar system makes communication steps as defined in Section 4; however, during
derivation and reduction steps, it allows their components to simultaneously rewrite
the word at several places. More formally, let Γ = (Q, G1, . . . , Gn), where for all
i = 1, . . . , n, Gi = (Q ∪ Ni, T, Pi, Si) is a two-way k-linear PC component. As be-
fore, for u, v ∈ (Ni ∪ T)∗ and A → x ∈ Pi, write uAv d⇒ uxv and uxv ⇒ ruAv in
Gi. Let xi, yi ∈ (N ∪ T)∗, where i = 1, . . . , n, for some n ≥ 1. If xi d⇒ yi in Gi

for all i = 1, . . . , n, write x1 . . . xn par-d⇒ y1 . . . yn in Γ. If xi r⇒ yi in Gi for all
i = 1, . . . , n, write x1 . . . xn par-r⇒ y1 . . . yn in Γ. To complete the definition of a
parallel centralized two-way k-linear PC grammar system, modify the correspond-
ing definition given in Section 3 by substituting par-d⇒ and par-r⇒ for d⇒ and
r⇒, respectively. By parL(Γ), denote the language generated by a parallel two-way
k-linear PC grammar system, Γ.

Theorem 6. Let L be a recursively enumerable language such that card(alph(L))
≥ 2. Then, there exists a parallel centralized two-way three-linear 2-PC grammar
system, Γ = ({Q2}, G1, G2), such that parL(Γ) = L, index(G1) = 2, index(G2) =
3, index(Γ) = 3, q-degree(Γ) = 1, and Γ’s master, G1 = (Q∪N1, T, P1, S1), satisfies
card(N1) = 3 and q-P1 = {A → Q2}.
Proof. Establish this theorem by analogy with the demonstration of Theorem 5.

�

396 Alexander Meduna

Terminating mode. The theory of grammar systems has introduced several deriva-
tion modes, such as *-mode or the maximal code for CD grammar systems, and
studied the corresponding families of languages generated in these modes. In terms
of the grammar systems discussed in this paper, we also suggest a new derivation
mode, called the terminating mode. That is, for a centralized 2-PC two-way met-
alinear grammar system, Γ, introduced in Section 3, the language generated by Γ in
the terminating mode, tL(Γ), is defined by this equivalence: L(Γ) contains z ∈ T ∗

if and only if there exists α ∈ Θ such that Γ makes σ ⇒∗ α but cannot make any
further computational step from α and the deletion of each S1 in 1-α results in z.

Theorem 7. Let L be a recursively enumerable language such that
card(alph(L))) ≥ 2. Then, there exists a parallel centralized two-way three-linear
2-PC grammar system, Γ = ({Q2}, G1, G2), such that tL(Γ) = L, index(G1) =
2, index(G2) = 3, index(Γ) = 3, q-degree(Γ) = 1, and Γ’s master, G1 = (Q ∪
N1, T, P1, S1), satisfies card(N1) = 4 and q-P1 = {A → Q2}.
Proof. Return to the centralized two-way metalinear 2-PC grammar system, Γ =
({Q2}, G1, G2), constructed in the proof of Lemma 4. Modify its master, G1 =
(Q ∪ N1, T, P1, S1), as follows. First, add a new nonterminal, X , to N1. Then,
include {X → X} ∪ {X → xY y | x, y ∈ ι(V W), x �= y} into P1. Complete this
proof by analogy with the proofs of Lemma 4 and Theorem 5. �

Returning mode. As stated in Section 1, this paper considers only the non-
returning mode throughout. Reconsider the present study in terms of returning
mode (see [7]).

Acknowledgement

The author thanks the anonymous referee for several useful comments. The author
also gratefully acknowledge support of GAČR grant 201/04/0441.

References

[1] Csuhaj-Varju, E.: Cooperating Grammar Systems. Power and Parameters,
LNCS 812, Springer, Berlin, 67-84, 1994.

[2] Csuhaj-Varju, E.: Grammar Systems: a Multi-Agent Framework for Natural
Language Generation, in Gh. Paun (ed.), Artificial Life: Grammatical Models,
The Black Sea Univer. Press, Bucharest, 1995.

[3] Csuhaj-Varju, E. and Kelemen, J.: On the Power of Cooperation: a Regular
Representation of R.E. Languages, Theor. Computer Sci. 81, 305-310, 1991.

[4] Csuhaj-Varju, E., Dassow, J., Kelemen, J., Paun, Gh.: Grammar Systems: A
Grammatical Approach to Distribution and Cooperation, Gordon and Breach,
London, 1994.

Two-Way Metalinear PC Grammar Systems . . . 397

[5] Csuhaj-Varju, E., Dassow, J., Kelemen, J., Paun, Gh.: Eco-Grammar Systems:
A Grammatical Framework for Life-like Interactions, Artificial Life 3, 27-38,
1996.

[6] Csuhaj-Varju, E. and Salomaa, A.: Networks of Language Processors: Parallel
Communicating Systems, EATCS Bulletin 66, 122-138, 1997.

[7] Dassow, J., Paun, Gh., and Rozenberg, G.: Grammar Systems. In Handbook of
Formal Languages, Rozenberg, G. and Salomaa, A. (eds.), Volumes 2, Springer,
Berlin 1997

[8] Kleijn, H. C. M. and Rozenberg, G.: On the Generative Power of Regular
Pattern Grammars, Acta Informatica 20, 391-411, 1983.

[9] Meduna, A.: Automata and Languages: Theory and Applications, Springer,
London, 2000.

[10] Meduna, A.: Simultaneously One-Turn Two-Pushdown Automata, Interna-
tional Journal of Computer Mathematics 80, 679-687, 2003.

[11] Paun, Gh., Salomaa, A. and S. Vicolov, S.: On the Generative Capacity of
Parallel Communicating Grammar Systems, International Journal of Com-
puter Mathematics 45, 45-59, 1992.

[12] Paun, Gh. and Santean, L.: Parallel Communicating Grammar Systems: the
Regular Case, Ann. Univ. Buc., Ser. Matem.–Inform. 38, 55-63, 1989.

[13] Paun, Gh. and Santean, L.: Further Remarks about Parallel Communicating
Grammar Systems, International Journal of Computer Mathematics 34, 187-
203, 1990.

[14] Salomaa, A.: Formal Languages, Academic Press, New York, 1973.

[15] Santean, L.: Parallel Communicating Systems, EATCS Bulletin, 160-171,
1990.

[16] Vaszil, G.: On simulating Non-returning PC grammar Systems with Returning
Systems, Theoretical Computer Science (209) 1-2, 319-329, 1998.

Received February, 2003

