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Abstract

We investigate classes of tree functions which are closed under composition
and primitive recursion or selection (a restricted form of recursion). The main
result is the characterization of those finitary relations � (on the set of all trees
of a fixed signature) for which the clone of tree functions preserving � is closed
under selection. Moreover, it turns out that such clones are closed also under
primitive recursion.

Introduction

Classes of tree functions and primitive recursion for such functions were inves-
tigated, e.g., in [FülHVV93], [EngV91], [Hup78], [Kla84]. In this paper a tree
function will be an operation f : T n → T on the set T of all trees of a given finite
signature (in general one allows trees of different signature).

If a class of operations is a clone (i.e. if it contains all projections and is closed
with respect to composition), then it can be described by invariant relations (cf.
e.g. [PösK79], [Pös80], [Pös01]).

In this paper we apply such results from clone theory and ask which finitary
relations characterize clones of tree functions that in addition are closed under
primitive recursion. The answer is given in Theorem 2.1 and shows that such
relations are easy to describe: they are direct products of order ideals of trees (an
order ideal contains with a tree also all its subtrees). Moreover it turns out that for
such clones the closure under primitive recursion is equivalent to a much weaker
closure (the so-called selection or S-closure, cf. 1.5) for which no real recursion is
necessary.
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1 Notions and Notation

Let N := {0, 1, 2, . . .} denote the set of natural numbers and let N+ := N \ {0}.

1.1. Clone theoretic notions and notation. Let T be an arbitrary set (later
we shall use only the set T of trees) and let Op(T ) denote the set of all finitary
operations on T , i.e. functions of the form f : T n → T (n ∈ N+). A set F ⊆ Op(T )
is called a clone if F contains all projections en

i (n ∈ N+, i ∈ {1, . . . , n}) defined by

en
i (x1, . . . , xn) = xi (1.1.1)

(for every x1, . . . , xn ∈ T ) and if F is closed with respect to composition, i.e. for
every n-ary f ∈ F and m-ary g1, . . . , gn ∈ F the m-ary composition f(g1, . . . , gn)
defined by

f(g1, . . . , gn)(x1, . . . , xm) := f(g1(x1, . . . , xm), . . . , gn(x1, . . . , xm)) (1.1.2)

also belongs to F , n, m ∈ N+. For technical reasons 0-ary operations will not be
considered in clones; they are replaced by unary constant operations, i.e., a constant
t ∈ T is replaced by the unary constant operation T → T : x �→ t.

The least clone containing a given set F of operations over T will be denoted
by 〈F 〉. The projection e1

1 : T → T : x �→ x is the identity mapping and will be
denoted simply by e. The clone 〈e〉 generated by e is the least clone: it consists
exactly of all projections.

We say that an n-ary operation f : T n → T preserves an m-ary relation � ⊆ T m

(or, equivalently, that � is invariant for f) if c1, . . . , cn ∈ � implies f(c1, . . . , cn) ∈ �,
where

f(c1, . . . , cn) := (f(c11, . . . , c1n), . . . , f(cm1, . . . , cmn)) (1.1.3)

for m-tuples c1 = (c11, . . . , cm1), . . . , cn = (c1n, . . . , cmn) (see Fig.1).

f

fcm1

...

c11

cmn

...

c1n f(c11, . . . , c1n)

f(cm1, . . . , cmn)cmj

...

c1j. . .

. . . . . .

. . .

...

cncjc1 f(c1, . . . , cn)
∈ � ∈ � ∈ � ∈ �=⇒
Figure 1: The operation f preserves the relation �
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The set of all operations preserving a given relation � (so-called polymorphisms)
will be denoted by

Pol � := {f | f : T n → T preserves �, n ∈ N+} . (1.1.4)

It is well-known from clone theory (but also easy to see) that Pol� is always
a clone (e.g. [PösK79, 1.1.15]), moreover every clone on a finite set T can be
characterized as PolQ for some set Q of finitary relations ([PösK79, 1.2.1]), where

PolQ :=
⋂

�∈Q

Pol � .

For infinite T this remains true either if one considers so-called locally closed clones
or if infinitary relations are allowed. We do not go into details here and refer to
e.g. [Pös80], [Pös01].

We say that the i-th and j-th component of an m-ary relation � ⊆ T m coincide
(i, j ∈ {1, . . . , m}) if ai = aj for all elements (a1, . . . , am) ∈ �. A relation � is called
reduced if no two of its components coincide. A relation can always be reduced with-
out changing the set of polymorphisms: if the i-th and j-th component of � coincide
then Pol� = Pol�′ where �′ := {(a1, . . . , aj−1, aj+1, . . . , am) | (a1, . . . , am) ∈ �} is
obtained from � by deleting the j-th component. Thus we may consider reduced
relations only.

1.2. Trees and subtrees. This is a well-known concept in mathematics and
computer science; nevertheless we shall repeat it here in order to fix notions and
notation. Let Σ be a finite signature (or ranked alphabet), i.e. a finite set of symbols
such that to every symbol σ ∈ Σ a rank (or arity) rσ ∈ N is assigned. Let
Σn := {σ ∈ Σ | rσ = n} denote the set of all symbols of rank n (n ∈ N). We
assume that Σ0 	= ∅. A tree (or ground term) over Σ is an expression which can be
obtained inductively by the following rules:

(0) Every σ ∈ Σ0 is a tree.

(1) If σ ∈ Σr (r ∈ N+) and if s1, . . . , sr are trees, then the expression σ(s1, . . . , sr)
is also a tree.

If t is a tree of the form σ(s1, . . . , sr) (according to (1)), then the trees s1, . . . , sr

are called maximal subtrees of t, and we write s<· t if s is a maximal subtree of t.
A tree s is called subtree of a tree t, notation s ≤ t, if s = t or if there is a finite
sequence s0, . . . , sl of trees with

s = s0<· s1<· . . . <· sl = t

(i.e., ≤ is the transitive and reflexive closure of <· ). Note that a tree t ∈ Σ0 has no
proper subtrees. As usual we write s < t if s ≤ t and s 	= t.

From now on T will always denote the set of all trees over a fixed signature
Σ = (Σr)r∈N.
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A subset I ⊆ T of trees is an order ideal (down-set) if it is closed with respect
to subtrees, i.e. if s ≤ t and t ∈ I, then s ∈ I.

The height h(t) of a tree t is defined inductively on the structure of trees
(according to the above rules): h(t) := 0 for t ∈ Σ0, and h(σ(s1, . . . , sr)) :=
1 + max{h(s1), . . . , h(sr)} for σ ∈ Σr (r ∈ N+) and s1, . . . , sr ∈ T . For k ∈ N let
Tk denote the set of all trees in T of height ≤ k.

1.3. Primitive recursion for tree functions. An operation f : T n → T will
also be called tree function. Let n ∈ N+ and for every σ ∈ Σ let gσ : T n+2rσ → T
be an (n + 2rσ)-ary tree function. The (n + 1)-ary tree function h : T n+1 → T
defined recursively (in its last argument) by

h(a1, . . . , an, σ) := gσ(a1, . . . , an) for σ ∈ Σ0 , a1, . . . , an ∈ T , (1.3.1)

h(a1, . . . , an, σ(t1, . . . , tr)) :=
gσ(a1, . . . , an, t1, . . . , tr, h(a1, . . . , an, t1), . . . , h(a1, . . . , an, tr))

for σ ∈ Σr, r ≥ 1, and a1, . . . , an, t1, . . . , tr ∈ T ,

(1.3.2)

will be denoted by PR(gσ)σ∈Σ; we say that h is obtained from (gσ)σ∈Σ by primitive
recursion (PR). By convention, equation 1.3.1 is considered as the special case
of 1.3.2 for r = 0.

A set F ⊆ Op(T ) of tree functions is called PR-closed if PR(gσ)σ∈Σ ∈ F
whenever gσ ∈ F for all σ ∈ Σ. For F ⊆ Op(T ), by

〈〈F 〉〉
PR

we shall denote the least set of tree functions which contains F and which is both, a
clone and PR-closed. The existence of 〈〈F 〉〉

PR
is guaranteed because the intersection

of PR-closed clones is again a PR-closed clone. Obviously, 〈F 〉 ⊆ 〈〈F 〉〉
PR

.

1.4 Examples. a) The least PR-closed clone is 〈〈∅〉〉
PR

; by definition it must con-
tain all projections and we shall denote this clone also by 〈〈e〉〉

PR
. Lemma 2.4 and

Proposition 2.5 shall describe some further operations which also belong to 〈〈e〉〉
PR

.
b) Let Fbase consist of all the constant tree functions constt : T n → T :

(t1, . . . , tn) �→ t (t ∈ T ), and all the top concatenations topσ : T r → T :
(t1, . . . , tr) �→ σ(t1, . . . , tr) (σ ∈ Σr, r ∈ N+). Then 〈〈Fbase〉〉PR

is the class PRECΣ

of all primitive recursive tree functions over Σ (cf. e.g. [EngV91, 4.6]).

We are particularly interested in the following very special form of primitive
recursion.

1.5. S-closure for tree functions. For a family (g′σ)σ∈Σ of (n + rσ)-ary tree
functions g′σ (σ ∈ Σ) we define

S(g′σ)σ∈Σ := PR(gσ)σ∈Σ (1.5.1)
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where gσ is the (n + 2rσ)-ary tree function defined by

gσ := g′σ(en+2rσ
1 , . . . , en+2rσ

n+rσ
) , (1.5.2)

for every σ ∈ Σ, i.e. we have in particular (for the (n + 1)-ary tree function
h = S(g′σ)σ∈Σ)

h(a1, . . . , an, σ(t1, . . . , trσ)) =
gσ(a1, . . . , an, t1, . . . , trσ , h(a1, . . . , an, t1), . . . , h(a1, . . . , an, trσ))

= g′σ(a1, . . . , an, t1, . . . , trσ ). (1.5.3)

Analogously to the PR-closure and the notation 〈〈F 〉〉
PR

, we introduce the S-
closure of F (using the special primitive recursion S instead of PR) and let

〈〈F 〉〉
S

denote the least S-closed clone containing F . We call this S-closure also selection
closure because the functions gσ just select and there is no real recursion (i.e. h is
not allowed to call itself recursively, see 1.3.2 and 1.5.3). By definition we have

〈〈F 〉〉
S
⊆ 〈〈F 〉〉

PR
(1.5.4)

and this inclusion is proper in general.

1.6 Remarks. a) If we write PR(gσ)σ∈Σ (or S(g′σ)σ∈Σ) we assume that the oper-
ations gσ (or g′σ) are of arity n + 2rσ (or n + rσ) for some fixed n ∈ N+.

b) Usually the definition of primitive recursion also includes the case n = 0
in 1.3. Then however the operations gσ are 0-ary constants for σ ∈ Σ0 (cf. 1.3.1)
which does not fit our convention not to consider 0-ary operations for clones (cf. 1.1).
Nevertheless the restriction to n ≥ 1 is no loss of generality: In fact, let h : T → T
be the unary tree function obtained from (1.3.1) and (1.3.2) in case n = 0 with given
constants gσ ∈ T for rσ = 0 and operations gσ : T 2rσ → T for rσ ≥ 1. Further let
g′σ : T 1+2rσ → T be the operations obtained from gσ by adding a fictitious variable
(at the first place), i.e. g′σ := gσ(e1+2rσ

2 , . . . , e1+2rσ
1+2rσ

) for rσ ≥ 1, and g′σ(a) := gσ for
rσ = 0, a ∈ T . Then, for h′ := PR(g′σ) as given with 1.3, we have h = h′(e, e) and
h′ = h(e2

2). Thus h belongs to a clone F if and only if h′ does.

2 Clones Pol � of tree functions closed under prim-
itive recursion

The following theorem is the main result of this paper. It characterizes finitary
relations � over trees with the property that the clone Pol� of tree functions is
closed with respect to primitive recursion.

2.1 Theorem. Let m ∈ N+ and let � ⊆ T m be a reduced relation. Then the
following conditions are equivalent:
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(i) 〈〈Pol �〉〉
PR

= Pol� ,

(ii) 〈〈Pol �〉〉
S

= Pol� ,

(iii) there exist order ideals I1, . . . , Im ⊆ T such that � = I1 × · · · × Im .

2.2 Remarks. The tree functions in Pol� with � as in 2.1(iii) can easily be de-
scribed:

Pol� =
m⋂

j=1

Pol Ij

where Pol Ij is the set of tree functions preserving the order ideal Ij (considered
as unary relation on T ), i.e. each f ∈ Pol Ij maps trees from Ij to trees which are
again in Ij . By Theorem 2.1, every clone Pol Ij is PR-closed. Thus any intersection
– finite or infinite – of clones of the form Pol I for some order ideal I ⊆ T gives
a PR-closed clone. Consequently the implication (iii) =⇒ (i) of Theorem 2.1 can
be generalized to infinitary relations � =

∏
j∈J Ij (J being an infinite index set)

because Pol� =
⋂

j∈J Pol Ij . However, the converse (i) =⇒ (iii) does not remain
true for infinitary relations (cf. 3.3).

As mentioned in 1.1 the restriction to reduced relations is not a loss of generality,
however it is crucial for the formulation of Theorem 2.1. If � is not reduced then
it is no longer a direct product of order ideals (note I1 × I1 	= {(x, x) | x ∈ I1}).

In clone theory usually relations are even further reduced to relations without
“fictitious components”. In the context of Theorem 2.1 we have: the j-th compo-
nent of � = I1 × · · · × Im is fictitious iff the order ideal Ij is trivial, i.e., Ij = T .
Relations which differ only in fictitious components determine the same clone Pol�.

In the remainder of this section we shall prove Theorem 2.1. Note that
2.1(i) =⇒ (ii) is trivial because Pol� ⊆ 〈〈Pol �〉〉

S
⊆ 〈〈Pol �〉〉

PR
(cf. 1.5.4). We start

with the following more or less straightforward part:

Proof of 2.1 (iii) =⇒ (i).

Let � = I1 × · · · × Im where I1, . . . , Im ⊆ T are order ideals. Then Pol� =⋂m
j=1 Pol Ij (cf. 2.2) and (iii) =⇒ (i) of Theorem 2.1 follows from the following

lemma.

2.3 Lemma. Let I ⊆ T be an order ideal. Then 〈〈Pol I〉〉
PR

= Pol I.

Proof. We have to show that Pol I is PR-closed. Let n ∈ N+ and, for every σ ∈ Σ,
let gσ be an (n + 2rσ)-ary operation in Pol I. We must show h ∈ Pol I for the
(n + 1)-ary operation h := PR(gσ)σ∈Σ, i.e., s1, . . . , sn, s ∈ I implies

h(s1, . . . , sn, s) ∈ I . (2.3.1)

Thus let s1, . . . , sn, s ∈ I. We show 2.3.1 for s ∈ Tk by induction on k:
For s = σ ∈ Σ0 (i.e. k = 0) we have

h(s1, . . . , sn, s) = gσ(s1, . . . , sn) ∈ I
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because gσ ∈ Pol I by assumption and s1, . . . , sn ∈ I.
Now assume that 2.3.1 holds for every s ∈ Tk−1 (k ≥ 1). Let s ∈ Tk

be of the form s = σ(t1, . . . , trσ), rσ ≥ 1. Then t1, . . . , trσ ∈ Tk−1 and we
get h(s1, . . . , sn, tj) ∈ I for j ∈ {1, . . . , rσ} by induction hypothesis. Note that
t1, . . . , trσ ∈ I because I is an order ideal and σ(t1, . . . , trσ ) = s ∈ I by assumption.
Consequently

h(s1, . . . , sn, s)
= gσ(s1, . . . , sn, t1, . . . , trσ , h(s1, . . . , sn, t1), . . . , h(s1, . . . , sn, trσ)) ∈ I

because gσ ∈ Pol I and every argument of gσ belongs to I.

The part (ii) =⇒ (iii) is crucial for the proof of Theorem 2.1. It is based on
Proposition 2.5 which might be of independent interest (as well as Lemma 2.4):
here we describe properties of the least S-closed clone 〈〈e〉〉

S
.

2.4 Lemma. Let s, t ∈ T and s ≤ t. Then there exists an operation ft,s ∈ 〈〈e〉〉
S

such that ft,s(t) = s.

Proof. The case t = s is trivial (take ft,s := e). Thus assume s < t.
At first we consider the case s<· t, i.e. t has the form t = δ(s1, . . . , sk) with

si = s and δ ∈ Σk for some k ≥ 1 and i ∈ {1, . . . , k}. We construct a binary
operation h ∈ 〈〈e〉〉

S
with h(t, t) = s. Define (g′σ)σ∈Σ as follows:

g′σ :=

{
e for σ ∈ Σ0

e1+r
1+min{i,r} for σ ∈ Σr, r ∈ N+

.

In particular we have g′δ := e1+k
1+i . We note that for σ ∈ Σ \ {δ} the operations g′σ

will play no essential role in the following and could be chosen arbitrarily in 〈〈e〉〉
S
.

Let h := S(g′σ)σ∈Σ (cf. 1.5.1 and 1.3 with n = 1). Since all g′σ are projections (and
therefore belong to 〈e〉) we have h ∈ 〈〈e〉〉

S
. Further we have

h(t, t) = h(t, δ(s1, . . . , si, . . . , sk))
= g′δ(t, s1, . . . , si, . . . , sk)
= si = s .

Choosing ft,s := h(e, e) ∈ 〈〈e〉〉
S

we have ft,s(t) = h(t, t) = s and consequently
ft,s ∈ 〈〈e〉〉

S
exists for s<· t.

Finally, if s is not a maximal subtree of t, then there exists a chain

s = sl<· . . . <· s1<· s0 = t

and as shown above for every j ∈ {0, 1, . . . , l − 1}, there exists fsj ,sj+1 ∈ 〈〈e〉〉
S

with
fsj ,sj+1(sj) = sj+1; thus the composition

f := fsl−1,sl
(. . . (fs1,s2(fs0,s1)) . . . )

satisfies f(t) = s and belongs to 〈〈e〉〉
S
.
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2.5 Proposition. For every k ∈ N, n, r ∈ N+ and every family (fb1,...,br |
(b1, . . . , br) ∈ T r

k ) of n-ary operations in 〈〈e〉〉
S
, there exists an (n + r)-ary oper-

ation h ∈ 〈〈e〉〉
S

such that for all a1, . . . , an ∈ T and all b1, . . . , br ∈ Tk we have

h(a1, . . . , an, b1, . . . , br) = fb1,...,br (a1, . . . , an) . (2.5.1)

Proof. In order to get h we construct (by double induction and using S-closure)
auxiliary operations hbi+1,...,br ∈ 〈〈e〉〉

S
satisfying the following statement R(k, n, r, i)

for i ∈ {0, 1, . . . , r}:

R(k, n, r, i) : ⇐⇒

⎡
⎢⎢⎢⎢⎢⎣

for every bi+1, . . . , br ∈ Tk, there is an (n + i)-ary operation
hbi+1,...,br ∈ 〈〈e〉〉

S
such that for every ã ∈ T n and b1, . . . , bi ∈

Tk:

hbi+1,...,br(ã, b1, . . . , bi) = fb1,...,br (ã) , (2.5.2)

where

(fb1,...,br | (b1, . . . , br) ∈ T r
k ) is an

arbitrary family of n-ary operations in 〈〈e〉〉
S
.

(*)

We shall use the convention that bi+1, . . . , br is the empty sequence for i = r (i.e.,
hbi+1,...,br means h and g

bi+1,...,br
σ below will mean gσ in case i = r). Therefore,

R(k, n, r, r) is nothing else than the statement of Proposition 2.5, and we are done
if we can prove

∀k ∈ N ∀n ∈ N+ ∀r ∈ N+ ∀(fb1,...,br)satisfying (*) ∀i ∈ {0, 1, . . . , r} : R(k, n, r, i) .
(2.5.3)

We prove 2.5.3 by induction on k.
k = 0 Let n, r ∈ N+ and (fb1,...,br | (b1, . . . , br) ∈ T r

0 ) be a family of n-
ary operations in 〈〈e〉〉

S
. Note that T0 = Σ0. We prove R(0, n, r, i) for every i ∈

{0, 1, . . . , r} by induction on i.
i = 0 R(0, n, r, 0) trivially holds by defining

hb1,...,br := fb1,...,br ∈ 〈〈e〉〉
S
. (2.5.4)

i − 1 → i Let i ∈ {1, . . . , r} and assume that R(0, n, r, i−1) holds, i.e., for
every bi, bi+1, . . . , br ∈ T0 there exists hbi,bi+1,...,br ∈ 〈〈e〉〉

S
fulfilling 2.5.2 for every

ã ∈ T n and b1, . . . , bi−1 ∈ T0.
Now, let bi+1, . . . , br be arbitrary elements in T0. For every σ ∈ Σ we define the
(n + i − 1 + rσ)-ary operation g

bi+1,...,br
σ as follows:

gbi+1,...,br
σ :=

{
hσ,bi+1,...,br if σ ∈ Σ0

en+i−1+rσ
1 otherwise

. (2.5.5)
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All these operations are in 〈〈e〉〉
S

(for σ ∈ Σ0 by induction hypothesis and otherwise
by definition). Then the (n + i)-ary operation hbi+1,...,br is defined by selection
closure as follows:

hbi+1,...,br := S(gbi+1,...,br
σ )σ∈Σ . (2.5.6)

Thus hbi+1,...,br ∈ 〈〈e〉〉
S
, too. Moreover, condition 2.5.2 is satisfied because for every

b1, . . . , bi ∈ T0 and ã ∈ T n we have

hbi+1,...,br (ã, b1, . . . , bi) = g
bi+1,...,br

bi
(ã, b1, . . . , bi−1) by 2.5.6 (cf. 1.5.3)

= hbi,bi+1,...,br(ã, b1, . . . , bi−1) by 2.5.5
= fb1,...,br (ã) by R(0, n, r, i − 1).

Thus R(0, n, r, i) holds for all n, r ∈ N+ and i ∈ {0, 1, . . . , r}.
We can continue the induction on k.
k − 1 → k Let k ≥ 1. By induction we assume that R(k − 1, n′, r′, i′)

holds for every n′, r′ ∈ N+, every family (fb1,...,br′ | (b1, . . . , br′) ∈ T r′
k−1) of n′-

ary operations in 〈〈e〉〉
S

and every i′ ∈ {0, 1, . . . , r′}. Now, let n, r ∈ N+ and let
(fb1,...,br | (b1, . . . , br) ∈ T r

k ) be a family of n-ary operations in 〈〈e〉〉
S
. We prove

R(k, n, r, i) for every i ∈ {0, 1, . . . , r} by induction on i.
i = 0 R(k, n, r, 0) trivially holds as in case k = 0 and i = 0 (cf. 2.5.4).

i − 1 → i Let i ∈ {1, . . . , r} and assume that R(k, n, r, i − 1) holds. We
prove R(k, n, r, i). Thus let bi+1, . . . , br be arbitrary elements in Tk. Let σ ∈ Σ
and consider the family (fσ

t1,...,trσ
| t1, . . . , trσ ∈ Tk−1) of (n + i− 1)-ary operations

given by

fσ
t1,...,trσ

:= hσ(t1,...,trσ ),bi+1,...,br
. (2.5.7)

(Let us agree to include the case rσ = 0 just by deleting all t1, . . . , trσ whenever
they appear, i.e. fσ := hσ,bi+1,...,br .) According to 2.5.7, all operations in this
family exist and belong to 〈〈e〉〉

S
by induction hypothesis R(k, n, r, i − 1) (note that

σ(t1, . . . , trσ) ∈ Tk for t1, . . . , trσ ∈ Tk−1). Now, by induction hypothesis R(k −
1, n + i − 1, rσ, rσ), there exists an (n + i − 1 + rσ)-ary operation g

bi+1,...,br
σ ∈ 〈〈e〉〉

S

such that

gbi+1,...,br
σ (a1, . . . , an+i−1, t1, . . . , trσ ) = fσ

t1,...,trσ
(a1, . . . , an+i−1) (2.5.8)

for every a1, . . . , an+i−1 ∈ T and t1, . . . , trσ ∈ Tk−1 (by our convention, it follows
from 2.5.7 and 2.5.8 that g

bi+1,...,br
σ is defined for rσ = 0 as in 2.5.5). Now, by S-

closure, we define the (n+ i)-ary operation hbi+1,...,br = S(gbi+1,...,br
σ )σ∈Σ as in 2.5.6.

Thus hbi+1,...,br ∈ 〈〈e〉〉
S
. Moreover, let b1, . . . , bi−1, bi ∈ Tk and let bi be of the form

bi = σ(t1, . . . , trσ) for some σ ∈ Σ, then t1, . . . , trσ ∈ Tk−1 and we have for every
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ã ∈ T n

hbi+1,...,br (ã, b1, . . . , bi) = gbi+1,...,br
σ (ã, b1, . . . , bi−1, t1, . . . , trσ ) by 2.5.6

= fσ
t1,...,trσ

(ã, b1, . . . , bi−1) by 2.5.8

= hσ(t1,...,trσ ),bi+1,...,br
(ã, b1, . . . , bi−1) by 2.5.7

= fb1,...,br(ã) by R(k, n, r, i − 1).

Thus R(k, n, r, i) also holds. Both inductions (on i and on k) are done and 2.5.3 is
proved. As mentioned before 2.5.3, this finishes the proof of Proposition 2.5.

2.6 Remark. From the proofs it follows that 2.4 and 2.5 remain true if 〈〈e〉〉
S

is
substituted by 〈〈e〉〉

PR
.

Now we can proceed with the

Proof of 2.1 (ii) =⇒ (iii).

Let � be an m-ary reduced relation (m ∈ N+) and 〈〈Pol�〉〉
S

= Pol�. We have to
show that � is of the form as indicated in 2.1(iii). For j ∈ {1, . . . , m} let

Ij := {tj ∈ T | ∃ t1, . . . , tm : (t1, . . . , tj , . . . , tm) ∈ �} (2.6.1)

be the set of all j-th components of �.
At first we show that every Ij is an order ideal. In fact, let s < t and t ∈ Ij ,

then by Lemma 2.4 there exists an operation ft,s ∈ 〈〈e〉〉
S
⊆ 〈〈Pol �〉〉

S
with ft,s(t) = s.

Applying ft,s to an m-tuple in � with t in its j-th component we get an m-tuple in
� with s in its j-th component, i.e. s ∈ Ij . Thus Ij is an order ideal.

Now we are going to show that � = I1 × · · · × Im which will finish the proof of
2.1(ii) =⇒ (iii) (and thus finish the proof of Theorem 2.1).

Let t11 ∈ I1, . . . , tmm ∈ Im. We have to show (t11, . . . , tmm) ∈ �. By 2.6.1
there exist elements (t1j , . . . , tjj , . . . , tmj) ∈ � with tjj as j-th component (j ∈
{1, . . . , m}), which we represent as columns of an (m × m)-matrix. If not all rows
are different then we can add some further, say r − m, columns, which we denote
by (t1j , . . . , tmj) ∈ �, j = m + 1, . . . , r, such that now all rows of the corresponding
matrix A are pairwise different (this is possible because � is a reduced relation):

A =

⎛
⎜⎝ t11 . . . t1m . . . t1r

...
. . .

... · · · ...
tm1 . . . tmm . . . tmr

⎞
⎟⎠ .

Let k be the maximal height of all trees tij (i = 1, . . . , m, j = 1, . . . , r). By
Proposition 2.5 there exists a 2r-ary operation h ∈ 〈〈e〉〉

S
such that

h(a1, . . . , ar, ti1, . . . , tir) = ai (2.6.2)
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for every i ∈ {1, . . . , m} and a1, . . . , ar ∈ T . In fact, in 2.5 take n = r, and let
fb1,...,br = er

i for (b1, . . . , br) = (ti1, . . . , tir), i ∈ {1, . . . , m}, and arbitrary in 〈〈e〉〉
S

otherwise (e.g. fb1,...,br := er
1). Consequently, the operation f defined by

f(a1, . . . , ar) := h(a1, . . . , ar, a1, . . . , ar) (2.6.3)

(i.e. f = h(er
1, . . . , e

r
r, e

r
1, . . . , e

r
r)) also belongs to 〈〈e〉〉

S
⊆ 〈〈Pol �〉〉

S
= Pol�.

Applying f to the matrix A row-wise we obtain (cf. 2.6.2 and 2.6.3) the m-tuple
(t11, . . . , tmm); it must belong to � because all columns of A are in � and f preserves
�.

3 Further research and remarks

3.1. Connections between closure operators. For F ⊆ Op(T ), let PR(F )
denote the set which contains F and all tree functions h = PR(gσ)σ∈Σ with gσ ∈ F .
Further let PRn(F ) :=

⋃n
i=1 PRi(F ), where PR1(F ) := PR(F ) and PRi+1(F ) :=

PR(PRi(F )) (i ∈ N+). Then

PR∗ F :=
∞⋃

i=1

PRi(F )

is the least PR-closed set of tree functions containing F . The mapping F �→ PR∗ F
is a closure operator as well as F �→ 〈F 〉 and F �→ 〈〈F 〉〉

PR
. By definition (cf. 1.3) we

have

〈〈〈F 〉〉
PR
〉 = 〈〈F 〉〉

PR
〈〈〈F 〉〉〉

PR
= 〈〈F 〉〉

PR

PR∗ 〈〈F 〉〉
PR

= 〈〈F 〉〉
PR

〈〈PR∗ F 〉〉
PR

= 〈〈F 〉〉
PR

.

It is still an open question how the iterations of the operators PR∗ or PR and 〈.〉
behave in general. E.g. do we have

〈〈F 〉〉
PR

= PR∗〈. . . 〈PR∗〈PR∗〈F 〉〉〉 . . . 〉︸ ︷︷ ︸
n

(3.1.1)

or 〈〈F 〉〉
PR

= PR〈. . . 〈PR〈PR〈F 〉〉〉 . . . 〉︸ ︷︷ ︸
n

(3.1.2)

for a fixed finite number n of iterations of PR∗ or PR and 〈.〉? Or, if the answer is
negative, for which F does this iteration stabilize after a finite number of steps?

For instance, if F = PRECΣ (cf. 1.4b), then obviously 〈〈F 〉〉
PR

= F . On the other
hand, if F = Fbase (cf. 1.4b), then 〈〈F 〉〉

PR
=

⋃∞
n=1〈PR〉n(F ) =

⋃∞
n=1〈PR∗〉n(F )

where 〈PR〉n(F ) and 〈PR∗〉n(F ) is an abbreviation of the right side of 3.1.2
and 3.1.1, respectively. Here, in general, we really need the union over all n ∈ N+

(the first union reflects the Grzegorczyk-hierarchy).
Analogous questions arise with the closure 〈〈F 〉〉

S
instead of 〈〈F 〉〉

PR
.
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3.2. Specialization to N. Let us specialize the signature Σ to the signature of the
natural numbers 〈N; succ, 0〉 with successor function n �→ succ n (succ n = n + 1)
and the constant 0. Then Σ = {succ, 0} and the set T of trees over σ (cf. 1.2) can be
identified with N. Primitive recursion (as defined in 1.3) is just the usual primitive
recursion for operations on natural numbers. This case was studied in detail in,
e.g., [Pét57]. In [Sem02] Theorem 2.1 has been proved for this particular signature.
Then an order ideal in N is either a principal ideal or the whole set N. Thus
(cf. Remark 2.2), in order to describe PR-closed clones of the form Pol�, one can
restrict to relations � that are the product of principal ideals Ij = {0, 1, . . . , aj}
of N. Moreover, in [Sem02], it was proved that if Q is a set of finitary reduced
relations such that 〈〈PolQ〉〉

PR
= PolQ, then 〈〈Pol �〉〉

PR
= Pol� for each relation

� ∈ Q. Further, the partially ordered set of clones of the form PolQ, where Q is
as above, is isomorphic to the lattice of all subsets of N ordered by inclusion. In
addition, it was shown what happens if one considers only recursive or primitive
recursive polymorphisms instead of all possible polymorphisms.

It is still unknown how these results can be generalized to arbitrary tree func-
tions.

3.3. Generalization to infinitary relations. Theorem 2.1 shows that PR-closed
classes of tree functions characterizable by a finitary relation have a very simple
structure (cf. 2.2).

However, it was also mentioned in 2.2 that for infinitary relations �, 〈〈Pol �〉〉
PR

=
Pol� in general does not imply that � is the direct product of order ideals. To
give an example, consider the signature Σ = {succ, 0} as in 3.2 and the infinitary
(|N|-ary) relation � ⊆ N

N defined by

� := {g ∈ N
N | g is a unary primitive recursive function} .

Claim: Pol � is the set of all primitive recursive functions over N.
Proof of the claim:

At first recall that an operation f : N
n → N preserves � iff g1, . . . , gn ∈ � implies

f(g1, . . . , gn) ∈ � where f(g1, . . . , gn) : N → N is the composition defined by

f(g1, . . . , gn)(x) := f(g1(x), . . . , gn(x)) (3.3.1)

for x ∈ N; this is the obvious generalization of 1.1.3 to the infinitary case.
By definition, the composition f(g1, . . . , gn) of primitive recursive functions

f, g1, . . . , gn is again primitive recursive. Thus every primitive recursive f : N
n → N

preserves �, i.e., Pol� contains the set of all primitive recursive functions on N.
Conversely, every f ∈ Pol � is primitive recursive.
Indeed, let f ∈ Pol � be unary, then f(e) ∈ � because e ∈ �; thus f = f(e) is

also primitive recursive.
Now suppose that f ∈ Pol� is n-ary, where n > 1. In this case, we use the

fact (see, for example, [Pét57]) that there exist unary primitive recursive functions
g1, g2 and a binary primitive recursive function h such that g1(h(x1, x2)) = x1 and
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g2(h(x1, x2)) = x2 for all x1, x2 ∈ N. Now define the functions

c2(x1, x2) := h(x1, x2), ci+1(x1, . . . , xi+1) := h(ci(x1, . . . , xi), xi+1) for i > 1,
l1(x) := g1(x), lj+1(x) := g1(lj(x)) for j ∈ N+,
r1(x) := g2(x), rj+1(x) := g2(lj(x)) for j ∈ N+.

Clearly, the functions cj+1, lj , and rj are primitive recursive for j ∈ N+. It can
easily be checked that

rj(ci(x1, . . . , xi)) = xi−j+1 for j ∈ N+ and i > j, (3.3.2)
lj(cj+1(x1, . . . , xj+1)) = x1 for j ∈ N+. (3.3.3)

Since f ∈ Pol � and ln−1, rn−1, rn−2, . . . , r1 ∈ � we have

g := f(ln−1, rn−1, rn−2, . . . , r1) ∈ � ,

i.e., g is primitive recursive. Using 3.3.2 and 3.3.3, we get f(x1, . . . , xn) =
g(cn(x1, . . . , xn)). Hence f is primitive recursive because it is a composition of
the primitive recursive functions g and cn.

From the above claim we know 〈〈Pol�〉〉
PR

= Pol�. On the other hand, � is not
the direct product of order ideals of N.

Thus � is a counterexample to the straightforward generalization of Theorem 2.1
to infinitary relations and there arises the problem how this theorem could be
extended appropriately to infinitary relations.

3.4. C-closed clones. A clone F of tree functions shall be called C-closed if it
is PR-closed (i.e. 〈〈F 〉〉

PR
= F ) and closed under iteration. The latter means (cf.

e.g. [Hup78]) that if f, h, g1, . . . , gn are n-ary tree functions in F then every tree
function k : T n → T , which is definable by a program of the following form for
some t ∈ T , must also belong to F .

while f(x1, . . . , xn) 	= t
do x1 := g1(x1, . . . , xn);

...
xn := gn(x1, . . . , xn)

od;
output h(x1, . . . , xn)

Note that here we consider only total operations k defined by iteration (while
in [Hup78] also partial operations are allowed). The C-closure is stronger than the
PR-closure, e.g., let 〈〈F 〉〉

C
denote the smallest C-closed clone containing F , then,

as shown in [Hup78], 〈〈Fbase〉〉C is the set of all computable tree functions (for Fbase

see 1.4b).
Nevertheless, as it was pointed out by the referee, clones of the form Pol� with

� as in Theorem 2.1(iii) are C-closed. Thus Theorem 2.1 can be extended by an
additional equivalent condition
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(iv) 〈〈Pol �〉〉
C

= Pol� .

Obviously 〈〈F 〉〉
S
⊆ 〈〈F 〉〉

PR
⊆ 〈〈F 〉〉

C
. It is an open question to characterize the

least and (if it exists) the largest closure which agrees with 〈〈F 〉〉
PR

(or equivalently
with 〈〈F 〉〉

S
, 〈〈F 〉〉

C
) for clones of the form Pol�. More precisely, let K be the class

of all closure operators K : P(Op(T )) → P(Op(T )) on tree functions such that
K(Pol�) = 〈〈Pol �〉〉

PR
for all finitary relations � ⊆ T m (m ∈ N+). Then

K0 : F �→
⋂

K∈K
K(F )

is the least closure operator in K, but it is not clear how it could be characterized
internally. Moreover, does there exist a largest closure operator in K?

3.5. Further generalizations. The preservation (or invariance) property (cf. 1.1)
constitutes a Galois connection between sets of operations and relations. There
are many generalizations and modifications of this Galois connection changing the
operations and/or relations under consideration (see e.g. [Pös01]). A systematic
investigation of operations, their invariant relations and various closures, which are
of special interest for computer science, would be desirable. In connection with
tree functions and primitive recursion the class of partial tree functions may be
of particular interest. Then the C-closure (cf. 3.4) might play the role of the PR-
closure in Theorem 2.1. However note that the C-closure still can be extended
further: the condition that the operation f used in the iteration program in 3.4
belongs to F can be dropped (without changing the property that k preserves �
whenever h, g1, . . . , gn do).

Acknowledgements. The authors thank the referee for valuable hints and re-
marks, e.g. for drawing our attention to the S-closure and C-closure (discussed
in 1.5 and 3.4).
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[Pös80] R. Pöschel. A general Galois theory for operations and relations and con-
crete characterization of related algebraic structures. Report R-01/80, Zen-
tralinstitut für Mathematik und Mechanik, Akademie der Wissenschaften
der DDR, Berlin, 1980. (with German and Russian summaries), 101 pp.
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