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Abstract

Methods for the fast computation of Hamming distance developed for the
case of large number of pairs of words are presented and discussed in the
paper. The connection of this subject to some questions about intersecting
sets and Hadamard designs is also considered.
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1 Introduction and notation

Let Zn
q denote the set of all n-tuples (x1, x2, . . . , xn), where Zq = {0, 1, . . . , q − 1}.

The elements of the set Zn
q are called words, and the Hamming distance d(x, y)

between two words x, y ∈ Zn
q is defined as the number of coordinates in which they

differ.
One may encounter the problem of determining the Hamming distance for a

large number of pairs of words in the same space. This is, for example, the case
when the minimum distance or the covering radius for a lot of codes Ci ⊆ Zn

q

are to be determined. (See also Section 6.) The Hamming distance and Hamming
weight find many applications also in cryptography [5]. For problems like this there
emerges the need for faster computation.

In the paper a general method is presented and discussed for the fast computa-
tion of the Hamming distance. This method is related to a problem of intersecting
sets.

We emphasize that the suggested (and applied) method is not faster than the
direct method if the Hamming distance is to be determined for only a small number
of pairs of words. It is proposed for application only if the number of pairs is large
enough.

The notation & is used for the bitwise “and” operation, XOR for the bitwise
“exclusive or” operation. The wgt function counts the number of 1-s in a binary
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integer; it can be given by formula as

wgt(a) =
∞∑

k=0

(⌊
a/2k

⌋
(mod 2)

)
.

The symmetric difference of two sets is denoted by �:

A�B = (A ∩ B) ∪ (A ∩ B).

2 Hamming distance of q-ary vectors and
q-ary distance of integers

Clearly, there is a one-to-one correspondence between a word x = (x1, x2,
. . . , xs) ∈ Zs

q and a nonnegative integer n in the interval 0 ≤ n ≤ qs − 1:

x ←→ n =
s∑

i=1

xiq
s−i.

We define the q-ary distance dq(a, b) of two nonnegative integers as the Hamming
distance of the corresponding words in any space Zs

q where

s ≥ max
(
logq(a + 1), logq(b + 1)

)
.

We look for a fast way of computing the Hamming distance of words, stored in
the form of q-ary integers for a large number of pairs of words in the same space.
That means the computing of dq(a, b) for pairs of integers (a, b). This problem
arises, for example, when the minimum distance or the covering radius of many
codes are to be checked.

The minimum distance of a code C ⊆ Zs
q is defined as

min{d(x, y) | x, y ∈ C, x �= y}.

The covering radius of a code C ⊆ Zs
q is the smallest positive integer R such

that for an arbitrary x ∈ Zs
q , there exists one (or more) y ∈ C with d(x, y) ≤ R. In

other words,

R = max{d(x, C) | x ∈ Zs
q},

where

d(x, C) = min{d(x, y) | y ∈ C}.
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3 The binary case (q = 2)

Fast methods to calculate Hamming distances (and Hamming weights) in the binary
case are known from the literature, see e.g. [5] where the theme is discussed within
a more general context. There can be found many communications as well as
computer codes related to the subject also on the web.

Here, we describe in short the substance of the method as follows.
For q = 2, i. e. for binary numbers, clearly

d2(a, b) = wgt(a XOR b).

This fact suggests arranging the weights into an array consisting of the array
elements

wgt(1), wgt(2), . . . , wgt(2L − 1),

where the exponent L depends on the computational environment (available hard-
ware and software, programming language etc.).

The same method can be applied with a slight modification also for numbers
greater than 2L − 1 if we split them into 2 or more parts. If, e.g., n > 2L − 1 but
n ≤ 22L − 1, then – referring to the identity

wgt(n) = wgt
(⌊

n/(2L)
⌋)

+ wgt
(
n (mod 2L)

)
,

– we can use the formula

d2(a, b) = wgt
(�(a XOR b)/(2L)) + wgt

(
(a XOR b) (mod 2L)

)
.

That way, an array of length 2L is enough for treating integers as large as we
want.

Note that the division by 2L can be performed simply by a right shift of the
dividend.

4 Method for the case q > 2

When q > 2, the q-ary distance dq(a, b) of two integers cannot be determined
immediately by the help of the weight function. What can be done is to have a
and b mapped to (longer) integers A and B such that

d2(A, B) = k · dq(a, b) for any a, b ∈ Zs
q ,

where k is a positive integer, depending only on the value of q and the mapping.
For this purpose, let

ϕq : Zq −→ Zt
2

with an appropriate t, a mapping having the property of

wgt (ϕq(α) XOR ϕq(β)) = k (1)
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for any pair α, β ∈ Zq, α �= β for a positive integer k.
Clearly, ϕq generates a mapping of Zs

q to Zst
2 , if we apply ϕq to all q-ary digits

of n ≤ qL − 1. The corresponding mapping for q-ary integers can be written by the
formula

Φq(n) =
L−1∑
j=0

2jt · ϕq

(⌊
n/qj

⌋
(mod q)

)
.

Now, for any a, b ≤ qL − 1, wgt (ϕq(α) XOR ϕq(β)) = k implies
wgt (Φq(a) XOR Φq(b)) = k · dq(a, b).

From the point of view of effectiveness, the value of t should be kept as small
as possible.

The same problem can be translated to a problem with intersecting sets. For
this purpose, consider a set S consisting of t elements:

S = {u1, u2, . . . , ut}.
Consider also the binary representation of ϕq(α) as

ϕq(α) = (b1(α), b2(α), . . . , bt(α))

for any α ∈ Zq, ϕq(α) : Zq −→ Zt
2.

Define the subsets S1, S2, . . . , Sq of S as follows:

ui ∈ Sα+1 if and only if bi(α) = 1.

To find a mapping ϕq(α) having the property (1) is equivalent to find a set S and
q subsets S1, S2, . . . , Sq ⊆ S such that the cardinality of the symmetric differences

Si�Sj = (Si ∩ Sj) ∪ (Si ∩ Sj)

is constant for any pairs of Si and Sj , provided i �= j, where Si is used for S \
Si (i = 1, 2, . . . , q).

For the system of sets S1, S2, . . . , Sq with the property described above, the
following notices can be taken.
1. Consider the sets

Ui = S1�Si+1

for i = 0, . . . , q − 1. Now, we have U0 = ∅, and

|Ui| = k

for i = 1, . . . , q − 1. It is easy to see that Ui�Uj = Si�Sj , thus also |Ui�Uj| = k
holds. Clearly, |Ui�Uj | = |Ui| + |Uj | − 2|Ui ∩ Uj|, consequently,

|Ui ∩ Uj | =
k

2

for every i, j ≥ 1, i �= j. From this, it also follows that k must be even. So, we have
a k-uniform family U1, . . . , Uq−1 on the t-element ground set S, such that any pair
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of sets shares the same number of elements. By using linear algebraic methods,
Bose [2] proved that t ≥ q − 1 for such set-systems. Later in the paper we show
that this bound can be achieved in some cases (cf. Examples 2, 3).
2. Assume now that t = q − 1. Ryser [7] showed that in this case every point in S
is contained in exactly k sets from U1, . . . , Uq−1. By doubly counting the triplets
(u, Ui, Uj), where u ∈ Ui ∩ Uj , i �= j, we get

t

(
k

2

)
=

(
q − 1

2

)
k

2
.

From this, we obtain q = 2k. Since k is even, if q is not divisible by 4, then t ≥ q
must hold. Obviously, this bound can be achieved in any case (cf. Example 1).
3. Suppose that q is divisible by 4. Let q = 4λ, k = 2λ, where λ is a positive
integer. What we want to find is a symmetric block design Sλ(2, 2λ, 4λ − 1), that
is, a 2λ-uniform set-system U1, . . . , U4λ−1 on a t = 4λ − 1-element ground set S,
such that every pair of sets has an intersection of size λ. If we take the complement
sets Vi = S \ Ui, then

|Vi| = 2λ − 1,

and Vi ∩ Vj = S \ (Ui ∪Uj). Since |Ui ∪Uj | = |Ui|+ |Uj | − |Ui ∩Uj | = 3λ, we have

|Vi ∩ Vj | = λ − 1.

So, equivalently, we want to find a so-called Hadamard design Sλ−1(2, 2λ−1, 4λ−1).
It is known that such a system exists if and only if there is a Hadamard matrix
of order 4λ. An Hadamard matrix of order m is an m × m matrix H with entries
{1,−1} such that its row vectors are orthogonal to each other, as well as its column
vectors, i.e., HHT = HT H = mI. It is conjectured that there is an Hadamard
matrix of order 4λ for every positive integer λ, and thus, we can have t = q − 1.

5 Examples

1. For arbitrary q > 2, we may choose t = q and ϕq(α) = 2α.
Then, wgt (ϕq(α) XOR ϕq(β)) = 2 for α �= β.
In the terminology of intersecting sets

S = {u1, u2, u3}, S1 = {u1}, S2 = {u2}, S3 = {u3}.
2. For q = 4, let t = 3 and ϕ4(α) = 0, 3, 5, 6 for α = 0, 1, 2, 3, respectively.

Now, wgt (ϕ4(α) XOR ϕ4(β)) = 2 again for α �= β.
In the terminology of intersecting sets

S = {u1, u2, u3}, S1 = ∅, S2 = {u1, u2}, S3 = {u1, u3}, S4 = {u2, u3}.
3. For q = 2m+1, m ≥ 1, the following recursion can be applied:

ϕ2m+1(2α − 1) = (22m

+ 1) · ϕ2m(α),
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ϕ2m+1(2α) = (22m − 1) · (ϕ2m(α) + 1) .

In this case t = q − 1 = 2m+1 − 1 can be specified. The inequality

ϕ2m+1(α) ≤ 22m+1−1 − 1 for 0 ≤ α ≤ 2m+1 − 1

can be proved by induction. The multiplier k assumes the value 2m.

6 Application of the method for checking the cov-
ering radius of codes

The methods described in the paper found an application in [4] for computing
the covering radii of a huge number of codes. This computation resulted in the
improvement of known lower bounds on the covering radii for several families of
codes. This way, general inequalities (sometimes equalities) were found for the
covering radii of an infinite number of codes; however, to obtain these results, a
finite (but very large) number of codes had to be considered and the covering radii
of more than 150 million codes were checked by using a computer.

This job could not have been completed within a reasonable time by applying
the direct method for the computation of the Hamming distance, i. e. by counting
the number of non-identical coordinates.

By using the weight function and the “exclusive or” operation, the check of
binary codes was completed 6–8 times faster than by the direct method. For ternary
and mixed ternary/binary codes, using the mapping ϕ and applying the weight
function for the transformed vectors resulted in an additional gain in the CPU
time. Thus, finally, the whole job of checking the covering radii of millions of codes
required about 30 days of CPU time (instead of 300 days or more, which would
have been required by applying the direct method).

Finally, we summarize the computational aspects of the method applied for the
case of a mixed ternary/binary Hamming space. The process of the method needs
three initial steps as follows:

1. We start with storing in two arrays the powers of 2 and 3 for exponents
0, 1, . . . until these can be represented as long integers (arrays pow2 and
pow3).

2. The weights of binary integers are stored in another array wgt of long integers:

wgt(n) =
∑
j≥0

sign (n & pow2(j)) .

3. The values of Φ3(n) are stored also in an array of long integers:

Φ3(n) =
L−1∑
k=0

23k + (�n/3k�) (mod 3).
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After these steps of initialization, the computation of Hamming distances is
done as follows.

For arbitrary words x, y of the mixed Hamming space Zn1
3 ⊕ Zn2

2 , these words
can be given as pairs consisting of a ternary and a binary integer:

x = (xt, xb), y = (yt, yb).

Then, the Hamming distance d3,2(x, y) is computed by using the formula

d3,2(x, y) =
wgt(Φ(xt) XOR Φ(yt))

2
+ wgt(xb XOR yb).
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