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Abstract

Motivated by the Nine Men Morris game, the achievement or hypergraph
games can be prolonged in the following way. After placing a prescribed
number of stones, the players pick some of these up and replace again. We
study the effect of this recycling for the k-in-a-row game and some versions
of the Kaplansky’s game.
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1 Introduction and Results

A large number of combinatorial games were created from the earliest civilizations
up to now; the authors of [7] try the impossible task of introducing a fraction of
these. In a fascinating class of those, two players, I and II (later on M and B),
put marks or move pieces on a board, while the outcome of the game depends on
achieving certain geometrical configurations. The most prominent examples are the
ageless Tic-Tac-Toe, the Nine Men’s Morris, the Go-moku or its western variant,
the 5-in-a-row.

Plenty of interesting games are relatively young, such as the Hex, Bridgit, Shan-
non’s switching game or the Hales-Jewett games. In the case of the so-called po-
sitional or achievement games the rules can be unified. Given a finite or infinite
set X (the “board”), the players alternately take elements of X (by marking or
putting pieces onto it physically), and there is a fixed H ⊂ 2X , the winning sets.
A player wins by taking all the elements of a winning set first. For this sub-class
we have a rich and beautiful theory.

Sometimes the players take p and q elements of X in turns, respectively. If
p �= q, it is a biased game, otherwise it is called accelerated, see [4, 5, 6, 10, 11, 12].
Since I always wins or the game is a draw when p = q (see [7]), it also interesting
to consider the strong or Maker-Breaker version of a game. Here Maker (I) wins
by occupying a winning set, while Breaker (II) wins not by occupying such a set,
but preventing Maker of doing so.
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However, this pattern does not fit for such games as the recently solved Connect-
4 or Nine Men’s Morris, see [1, 2]. In the first case the available moves are restricted,
while the whole static approach of the positional games is abandoned in the second.
We shall address the issue of the second one and make an attempt to capture the
idea of movements for a game. For an arbitrary positional game let us define the
rules of the recycled versions as follows. For a natural number n the players make
the first n steps as before; this is the first phase. Then, in the second phase, they just
make moves with some of their earlier placed pieces in turns, instead of introducing
new ones.

In order to investigate the effect of recycling, let us define some games. The
first is the well-known k-in-a-row game (k ∈ N), which is played by the two play-
ers on the infinite (chess)board, or graph paper. They alternately put their own
marks to previously unmarked squares, and whoever gets k-consecutive marks first
(horizontally, vertically or diagonally) of his own, wins.

An interesting way to alter the k-in-a-row game is to relax the consecutiveness
condition. We shall call the game Lk(p, 1; n) (or line game for short) for which:

1. I and II mark p and 1 squares in every step, respectively.

2. I wins upon getting k, not necessary consecutive, marks in a line (horizontally,
vertically or diagonally), which is free of II’s marks.

3. the game terminates after n steps.

Then let RLk(p, 1; n) be the recycled version of Lk(p, 1; n).
Our third subject is the Kaplansky’s game, where the players put their marks

on the Euclidean plane. Here I wins achieving k marks on a line, provided II
has no mark on that line. Now Kk(p, q) stands for the version in which I and II
marks p and q points, respectively. Let Kk(p, q; n) be the version which ends after
n round, and RKk(p, q; n) be its recycled version.

Before stating our theorems, let us recall some earlier results on these games.
The recycled k-in-a-row (no matter when does the second phase start) turns

out to be easy, because the decomposition methods utilized in [7] still work, and
give the same bounds. That is even the Maker-Breaker version of the recycled
k-in-a-row game is a draw if k ≥ 8.

Bounds for the games Lk(p, 1; n) and RLk(1, 1; n) are less obvious, we shall
prove:

Theorem 1. In the Maker-Breaker Lk(p, 1; n) game, Breaker wins if k ≥ p log2 n+
p log2 p + 3p. On the other hand, Maker wins if p > 1 and k ≤ c log2 n for some
c > 0.

Theorem 2. Breaker wins the Maker-Breaker RLk(1, 1; n) game if k ≥ 32 log2 n+
224.

In the version of Kleitman and Rothschild (see in [3]) I (II) wins by getting
k (l) points of a line while the opponent has none of that line, respectively. They
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prove that, given any k ≥ 1, there is an l(k) such that II has a winning strategy
whenever l ≥ l(k). Beck in [4] considers little different games; here I wins with k
points on a line, II with l, and I may mark p points on each turn, while II only
one per turn. Here II wins if l < ckp log(p + 1), for some c > 0. He has also shown
there exist C > c > 0, such that in Kk(1, 1; n): Maker wins if k < c log2 n and
Breaker wins if k > C log2 n. For its recycled version we have the following result.

Theorem 3. Breaker wins the Maker-Breaker RKk(1, 1; n) game if k > cn1/3.

2 Proofs

2.1 Weight functions

In the proof of the Theorems 1, 2 and 3 we heavily use the weight function method,
which was developed in [5] and developed in [6] and [8]. First let us recall some
earlier definitions and results.

A pair of (X, H) is called a hypergraph if H ⊂ 2X . If (X, H) is a hypergraph,
then a (p, q, H) − game (or simply hypergraph game) is a game in which I selects
p and II select q previously unselected elements of X . The first, who takes all
elements of an A ∈ H , wins. A (p, q, H)-game has a so-called Maker-Breaker
version in which I wins taking an edges of the hypergraph any time. One of the
most important result on such games is the Erdős-Selfridge theorem; one of its
generalization is due to József Beck.

Theorem 4 ([5]). Breaker wins the (p, 1, H) − game if
∑

A∈H 2−
|A|
p < 1

2 .

In our cases this theorem cannot be applied directly, since the hypergraphs
involved are infinite, and it is not known if Theorem 4 holds for recycled games.
The following lemma is also due to Beck (see [5]). We repeat the proof in order to
see the properties of the used weight function.

An edge A ∈ H is active if Breaker has not taken any of its elements.

Lemma 1. Playing a (p, 1, H) game, Breaker can assure that no active edge con-
tains more than p + p log2 |H | elements taken by Maker.

Proof of Theorem 4. We may assume Maker starts the game. For any A ∈ H let
Ak(M) and Ak(B) be the number of elements in A, after Makers kth move, selected
by Maker and Breaker, respectively. Now, for an A ∈ H

wk(A) =
{

λAk(M) if Ak(B) = 0
0 otherwise

where λ > 0, and for any x ∈ X let wk(x) =
∑

x∈A wk(A). The numbers wk(A)
and wk(x) are called the weight of A and x (in the kth step), respectively. When
it does not cause confusion we may suppress the lower index.

Now selecting an element in the kth step Breaker uses the greedy algorithm, i.e.
chooses an unselected element yk ∈ X of maximum weight. Let xk+1

1 , ..., xk+1
p be
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the elements selected by Maker in the (k + 1)st step and wk =
∑

A∈H wk(A) be
the total sum or potential. For k ≥ 0, following inequality holds for the potential:

wk − wk(yk) + (λp − 1)wk(yk) ≥ wk+1.

Indeed, wk decreases by wk(yk) upon selecting yk. The elements selected by I in the
(k + 1)st step cause the biggest increase if wk(xk+1

l ) is maximal for 1 ≤ l ≤ p, and
for all A such that wk(A) �= 0 we have xk+1

l ∈ A iff xk+1
m ∈ A, 1 ≤ l, m ≤ p. Since

the increase in this case is just (λp − 1)wk(yk), the inequality is proved. Setting
λ = 21/p, we get wk ≥ wk+1, k ≥ 0, which justifies that wk is called potential.

Particularly w1 ≤ (λp − 1)|H | + |H | ≤ 2|H |. Since q = 1 and the elements of
H are the same size, the inequality

∑
A∈H 2−|A|/p < 1/2 leads to the inequality

2|H | < 2|A|/p. Assume that Maker wins the game in the kth step. This would imply
wk ≥ λ|A| = 2|A|/p, which contradicts the monotonicity of the potential.

Proof of Lemma 1. Just take the logarithm of the inequality λAk(M) = wk(A) ≤
wk ≤ w1 ≤ 2|H | that holds for any active edge A ∈ H .

2.2 Proof of Theorem 1.

Let us recall that a line L means consecutive squares along an infinite line here
(horizontally, vertically or diagonally). Now we have infinitely many interacting
sets, so the weight function method does not seem to be helpful. The way to
overcome the difficulties is to change the definition of the weights. The price of
this is that the potential is no longer a decreasing function, but an increasing one.
However, we can control the growth, since the game lasts only n steps.

Let H be the set of all lines, and Lj(M) and Lj(B) the number of squares of
line L marked by Maker and Breaker after the jth step, respectively. Now the
weight function of L at the jth step:

wj(L) =
{

λLj(M) if Lj(M) ≥ 1 and Lj(B) = 0
0 otherwise

where λ = 2
1
p .

For a square q,
wj(q) =

∑
L∈H,q∈L

wj(L)

is the weight of q, and
wj =

∑
L∈H

wj(L)

is the total weight at the jth step.
Breaker applies the greedy selection. For the weight functions, similarly to the

proof of Theorem 4, we have
∑

Lj(M)≥1

wj+1(Lj+1) ≤
∑
L∈H

wj(Lj).
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On the other hand, in each step the number of lines whose weight becomes positive
is at most 4p, and the weight of such a line is no more than λp = 2. That is

wj+1 ≤ wj + 8p

holds for 0 ≤ j ≤ n, where w0 = 0. That is if the line L is unblocked at step j
(i.e. Lj(B) = 0) and Lj = i than

λi ≤ 8pj ⇔ i ≤ p(log2 j + log2 p + 3).

Since 0 ≤ j ≤ n, the first part of Theorem 1 follows.
The second part is fairly standard, we give just the sketch of its proof. In

fact, one (say vertical) winning direction is enough. Maker divides the game into
phases. For the sake of simplicity we omit to write the integer parts. In the first
phase Maker places n(p− 1)/p element in a row. Call a column i-free if it contains
i marks of Maker, but none of Breaker. At the end of the first phase the number of
1-free columns is at least n((p−1)/p)2. In the ith phase Maker uses up n((p−1/p))i

new mark, each is placed to an i − 1-free column. It is easy to check that Maker
can reach the ith phase if n((p− 1)/p)i ≥ 1, and uses up at most n marks. That is
an i-free column appears if i ≤ c log2 n, where c is about (log2 p − log2(p − 1))−1.

2.3 Proof of Theorem 2.

Breaker divides the game into sub-phases. The first sub-phase is the first phase
of the game, then a sub-phase consists of n pair of moves. Defining the weight
function as before, but λ =

√
2, Breaker places every second mark (the active

marks) according to the greedy strategy and deposits the others arbitrarily, i.e.
in reserve). It may happen that one of Breakers reserved marks is already on the
square q, which is to be occupied by an active mark of Breaker. In that case Breaker
places the new mark arbitrarily (sends it into reserve), and the mark on the square
q becomes active.

Considering only the effect of Breakers active marks, the game reduces to the
game Lk(2, 1, n). That is Lemma 1 applies, and for any line L if Lj(M) = i and
Lj(B) = 0, then i ≤ 2(log2 j + 4) if 0 ≤ j ≤ n.

In the other sub-phases Breaker plays a fictitious game, and keeps the status
of his marks (active or reserved) strictly. The marks of Maker are indexed by the
numbers 1, 2, . . . , n. At the beginning of a sub-phase Breaker cannot see Makers
marks, and in the jth step Makers new mark and the mark indexed by j become
visible for Breaker as new moves. (If Maker moved the jth mark, only one mark
becomes visible.)

However Breaker responds only in every second step, using the marks from the
reserve. (Breaker does nothing in the odd steps. If picking up a mark and putting
back to the same place is permitted, it is easy. If it is not, Breaker designates a
mark at the very beginning, which is neither active nor reserved, and moves this
mark arbitrarily in the odd steps.)
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Trying the previous greedy strategy another difficulty arises. Breaker may not
occupy the square q of maximum weight because q has been already taken (by one
of Makers invisible marks or one of Breakers own reserve). Then, Breaker blocks
the lines going through q, using four marks. (See a similar idea in [12].) Now,
looking only Makers visible marks, if for a line L, Lj(M) = i and Lj(B) = 0 then
i ≤ 16(log2 j + 7), since after at most 16 moves of Makers, Breaker may reply, and
Theorem 1 applies.

By the end of a sub-phase Makers all marks become visible, and a line L, which
contain more than 16(log2 n + 7) of them, is blocked by Breakers reserve. Finally,
Breaker starts the next sub-phase renaming his marks, the active ones become
reserved and vice versa.

Since the active marks control the invisible marks during a sub-phase, if for
a line L the sum of visible and invisible marks of Maker on L is i, and L is not
blocked (by the active marks or by the reserve), then i ≤ 32(log2 n + 7).

2.4 Proof of Theorem 3.

The most natural idea is to mimic the proof of Theorem 2.
Unfortunately it breaks down irreparably at the point where Breaker wants to

occupy, or at least block the point q, which is already taken. The problem is that
q can be the element of many lines, so Breaker cannot cancel the weight of q by
using only constantly many points.

To overcome this difficulty, we change the weight function and give a more
sophisticated analysis of it.

Let the weight of a line L after Maker jth move be

wj(L) =
{

λLj(M) if Lj(M) ≥ c1n
1/3 and Lj(B) = 0

0 otherwise

where λ =
√

2 and c1 > 0 will be specified later.
As before, for a point x, wj(x) =

∑
L∈H,x∈L wj(L) is the weight of x, and

wj =
∑

L∈H wj(L) is the total weight at the jth step.
However, Breaker uses not only the greedy strategy, the recycled point also

have to be designated. When Breaker removes a point y, the total weight function
may grow. It grows iff there is a line L containing y such that Lj(M) ≥ c1n

1/3

and Lj(B) = 1. Obviously the number of such points cannot be bigger than the
number of lines containing at least c1n

1/3 points of Maker. To estimate this, we
need a definition and a theorem of Szemerédi and Trotter.

An incidence of a point and a line is a pair (p, L), where p is a point, L is a line,
and p lies on L.

Theorem 5 ([14]). Let I denote the number of incidences of a set on n points
and m lines. Then I ≤ c(n + m + (nm)2/3).

Let us note that László Székely published a new, more accessible proof of The-
orem 5, see in [13].
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An easy corollary of Theorem 5 is that there is a constant c2 such that the
number of lines containing at least k points of S is less than c2n

2/k3 whenever
k ≤ √

n.
That is if c1 > c

1/3
2 , then the number of lines containing at least c1n

1/3 points
of Maker is less than n. It means Breaker can always find a mark y such that its
removal does not affect the value of the total weight function. The steps of Maker
and Breaker are x1, x2, . . . xi and y1, y2, . . . yi, respectively.

As before, for the weight function we have

wj+2 ≤ wj − wj(yj) − wj+1(yj+1) + wj(xj+1) + wj+1(xj+1) +
2
c1

n2/3λn1/3
λn1/3+1.

Here the term f(n) := 2
c1

n2/3λn1/3
+ λn1/3

bounds the growth caused by the
lines that of weight becoming positive in the jth and (j + 1)th steps. By the
argument of Theorem 4, wj(yj) ≥ wj(xj+1) + wj+1(xj+1), since λ =

√
2. We also

have wj+1(yj+1) > wj+1/n, since the number of positive weighted lines is less than
n, giving

wj+2 ≤ wj − wj+1

n
+ f(n).

On the other hand, wj+2 ≤ wj+1 + f(n), or equivalently wj+1 ≥ wj+2 − f(n).
That is the value of wj+2 is bounded, since if wj+1

n ≥ f(n), and then we have
wj+2 ≤ wj . From here one gets that wj+2 ≤ (n + 1)f(n). It means that if for a
line L, Lj+2(M) = s and Lj+2(B) = 0, then (n + 1)f(n) ≥ wj+2 ≥ λs. Taking the
logarithm of both sides, s ≤ 2 log2 wj+2 ≤ 2n1/3, provided n is big enough.

2.5 Remarks and Open Questions

As we have seen, there is a large gap between the logarithmic lower and O(n1/3)
upper bound what Maker can achieve in the recycled Kaplansky’s game.

Question 1. Can the upper or lower bounds of Theorem 3 improved?

Even less is known about recycled hypergraph games in general. It is easy to
give example for which Breaker wins the first phase of the game, while Maker wins
the recycled version.

Question 2. Is there a hypergraph game won by Breaker, but Maker wins its re-
cycled version?

It is also interesting if the Erdős-Selfridge theorem extends to the recycled
games.

Question 3. Is it true if
∑

A⊂H 2−|A|+1 < 1, then Breaker wins the recycled version
of the (X, H) game?
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[8] P. Erdős and J. L. Selfridge, On a combinatorial game, J. Combinatorial
Theory Series B 14 (1973) 298-301.

[9] A.W. Hales and R.I. Jewett, Regularity and positional games, Trans. Amer.
Math. Soc. 106 (1963) 222-229; M.R. # 1265.

[10] A. Pluhár, Generalizations of the game k-in-a-row, Rutcor Research Reports
15-94 (1994).

[11] A. Pluhár, Generalized Harary Games, Acta Cybernetica 13 (1997) 77-84.

[12] A. Pluhár, The accelerated k-in-a-row, Theoretical Comp. Sci. 271 (1-2)
(2002) 865-875.
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