Relationships Between Closure Operations and Choice Functions - Equivalent Descriptions of a Family of Functional Dependencies

Nghia D. Vu*

Abstract

The family of functional dependencies plays an important role in the relational database. The main goal of this paper is to investigate closure operations and choice functions. They are equivalent descriptions of family of functional dependencies. The main properties of and relationship between closure operations and choice functions are presented in this paper.

1 Introduction

The motivation of this study is equivalent descriptions of family of functional dependencies (FDs). FDs play a significant role in the implementations of relational database model, which was defined by E.F Codd. However, relational database is still one of the most powerful databases. One of the most important branches in the theory of relational database is that dealing with the design of database schemes. This branch is based on the theory of FDs and constraints. Armstrong observed that FDs give rise to closure operations on the set of attributes. And he shows that closure operation is an equivalent description of family of FDs, that is, the family of all FDs satisfying Armstrong axiom stated in next section. That the family of FDs can be described by closure operations on the attributes' set plays a very important role in theory of relational database. Because this representation was successfully applied to find many properties of FDs, studying those properties of closure operations is indirect way of finding that of the family of FDs. Besides closure operations, there are some other representations of family of FDs. Such as, the closed sets of a closure form a semilattice. And the semilattice with greatest elements gives an equivalent description of FDs. The closure operations, and other equivalent descriptions of family of FDs have been studied widely by Armstrong [Ar], Beeri, Dowd, Fagin and Statman [BDFS], and H. Mannila and K.J.Raiha [MR]. More, see [DK2], [DHLM], [DT3], and [Li]. Studying equivalent descriptions of family of FDs helps us to understand deeper the family FDs and widens the

[^0]study of it. Closure operation is widely known and considered the representation of family of functional dependencies most studied. Among equivalent descriptions of functional dependencies, the properties of choice functions are not developed well enough in contrast to those of closure operations. Moreover, a closure operation can be derived from a choice function and vice versa. Thus, by studying properties of choice function satisfying reverse inclusion was studied in connection with the theory of rational behavior of individuals and groups. For the study on choice function and relationship between closure operations and choice functions, see [DHLM] and $[\mathrm{Li}]$.

For relation schemes $s=<U, F>$ and $t=<U, V>$, where U is a set of attributes and F and V sets of FDs over U, we are always able to build a closure $L_{1}(A)$ on F, for every A is a set of attributes on U. However, if we build $L_{2}\left(L_{1}(A)\right)$ on V, we find out that a meet-semilattice can not be formed from this computation. That is, we can not form a relation scheme from this computation. We are going to show in this paper what condition that provide to build the composition $L_{1}\left(L_{2}(A)\right)$ such that a relation scheme can be formed from this composition. In other words, what is necessary and sufficient conditions that make sure $L_{1}\left(L_{2}(A)\right)$ is a closure. We find this result through the studies of choice functions. Besides that, many properties of choice functions will be studies in depth. The interaction of choice functions and closure operations also are investigated widely in this paper. We also study the relationship between choice functions and FDs. Those results can be used to build many algorithm problems related to choice functions and closure operation and family of FDs.

Direct product of decomposition of a closure operation plays an important role in the theory and practice of relational database. If we consider a relation of database as a matrix, a row contains the data of one individual, the estimation of the minimum cardinality of rows of such matrix is very valuable in practice of relational database. The studies of estimation of the minimum cardinality of rows for direct product of decomposition of a closure operation can be found variously in $[\mathrm{DFK}]$, [Li], [DK2]. In this paper we present the new notion and properties of direct product of decomposition of choice function.

In the next section some necessary definitions and facts about relational database, some equivalent descriptions of family of functional dependencies besides choice function and closure operation theory are given.

The result of this paper is presented in the third section. They are organized into six parts as follows.

Part 1 represents necessary and sufficient condition of composition of choice functions to be a choice function. The studies of composition of closure operations has been shown through those of choice functions. The main result of this paper will be presented in depth in Part 1.

The direct product of decomposition of a choice function is in Part 2.
It will be proposed in Part 3 to study some fundamental properties of a composition of closure operations and choice functions. We are giving important properties of intersection, union, and composition of choice functions, which will be fully investigated in depth in Part 1.

In Part 4, we show relationship between and interactive properties of closure operations and choice functions. In this section we consider the closure for which choice function defined in next section satisfies some additional properties.

In Part 5, we are presenting a class of special choice functions, which is very useful in the studying of combinatorial problems related to choice functions and closure operations.

Part 6 gives some special relationship between choice functions and family of FDs, which helps us intensively into algorithm problems on building choice functions and closure operations. Since the theoretical result presented here are preliminary. Thus many open problems in the studies of choice functions and closure operation will be shown in this paper.

2 Basic Definitions

Let us give some formal definitions that are used in the next sections. Those wellknown concepts in relational database given in this section can be found in $[\mathrm{Ar}$, BB, BDFS, DK2, DT1, and U1].

A relational database system of the scheme $R\left(a_{1}, \ldots, a_{n}\right)$ is considered as a table, where columns correspond to the attributes ai 's while the row are n-tuples of relation r. Let X and Y be nonempty sets of attributes in R . We say that instance r of R satisfies the FD if two tuples agree on the values in attributes X, they must also agree on the values in attributes Y. Here is the formal mathematical definition of FDs.

Definition 2.1. Let $U=\left\{a_{1}, \ldots, a_{n}\right\}$ be a nonempty finite set of attributes. A functional dependency is a statement of the form $A \rightarrow B$, where $A, B \subseteq U$. The $F D$ $A B$ holds in a relation $R=\left\{h_{1}, \ldots, h_{m}\right\}$ over U if $\forall h_{i}, h_{j} \in R$ we have $h_{i}(a)=h_{j}(a)$ for all $a \in A$ implies $h_{i}(b)=h_{j}(b)$ for all $b \in B$. We also say that R satisfies the $F D A \rightarrow B$.

Let F_{R} be a family of all FDs that hold in R.
Definition 2.2. Then $F=F_{R}$ satisfies.
(1) $A \rightarrow A \in F$,
(2) $(A \rightarrow B \in F, B \rightarrow C \in F) \Longrightarrow(A \rightarrow C \in F)$,
(3) $(A \rightarrow B \in F, A \subseteq C, D \subseteq B) \Longrightarrow(C \rightarrow D \in F)$,
(4) $(A \rightarrow B \in F, C \rightarrow D \in F) \Longrightarrow(A \cup C \rightarrow B \cup D \in F)$.

A family of FDs satisfying (1)-(4) is called an f-family over U.
Clearly, F_{R} is an f-family over U. It is known [Ar$]$ that if F is an arbitrary f-family, then there is a relation R over U such that $F_{R}=F$.

Given a family F of FDs over U, there exits a unique minimal f-family F^{+}that contains F. It can be seen that F^{+}contains all FDs which can be derived from F by the rules (1)-(4).

Definition 2.3. A relation scheme s is a pair $<U, F>$, where U is a set of attributes, and F is a set of FDs over U.

Denote $A^{+}=\left\{a: A \rightarrow\{a\} \in F^{+}\right\} . A^{+}$is called the closure of A over s. It is clear that $A \rightarrow B \in F^{+}$iff $B \subseteq A^{+}$. Clearly, if $s=<U, F>$ is a relation scheme, then there is a relation R over U such that $F_{R}=F+($ see, $[\mathrm{Ar}])$.

Definition 2.4. Let U be a nonempty finite set of attributes and $P(U)$ its power set. A map $L: P(U) \rightarrow P(U)$ is called a closure operation (closure for short) over U if it satisfies the following conditions:
(1) $A \subseteq L(A),($ Extensiveness Property)
(2) $A \subseteq B$ implies $L(A) \subseteq L(B)$, (Monotonicity Property)
(3) $L(L(A))=L(A)$. (Closure Property)

Let $s=<U, F>$ be a relation scheme. Set $L(A)=\left\{a: A \rightarrow\{a\} \in F^{+}\right\}$, we can see that L is a closure over U.

Theorem 2.1. [Ar] If F is a f-family and if $L_{F}=\{a: a \in U$ and $A \rightarrow\{a\} \in F\}$, then L_{F} is a closure. Inversely, if L is a closure, there exists only a f-family F over U such that $L=L_{F}$, and $F=\{A \rightarrow B: A, B \subseteq U, B \subseteq L(A)\}$.

Let $L \subseteq P(U)$. L is called a meet-irreducible family over U (sometimes it is called a family of members which are not intersection of two other members) if $A, B, C \in L$, then $A=B C$ implies $A=B$ or $A=C$.

Let $I \subseteq P(U), U \in I$, and $A, B \in I \Rightarrow A \cap B \in I . I$ is called a meet-semilattice over U. Let $M \subseteq P(U)$.

Denote $M^{+}=\left\{\cap M^{\prime}: M^{\prime} \subseteq M\right\}$. We say that M is a generator of I if $M^{+}=I$. Note that $U \in M^{+}$but not in M, by convention it is the intersection of the empty collection of sets. Denote $N=\left\{A \in I: A \neq \cap\left\{A^{\prime} \in I: A \subset A^{\prime}\right\}\right\}$. In [DK2] it is proved that N is the unique minimal generator of I.

It can be seen that N is a family of members which are not intersections of two other members.

Let L be a closure operation over U. Denote $Z(L)=\{A: L(A)=A\}$ and $N(L)=\left\{A \in Z(L): A \neq \cap\left\{A^{\prime} \in Z(L): A \subset A^{\prime}\right\}\right\} . Z(L)$ is called the family of closed sets of L. We say that $N(L)$ is the minimal generator of L.

It is shown [DK2] that if N is a meet-irreducible family then there is a closure L such that N is the minimal generator of it.

Theorem 2.2. [Ar] There is an on-to-one correspondence between meet- irreducible families and f-families on U.

Theorem 2.3. [DK2] There is a 1-1 correspondence between meet-irreducible families and meet-semilattices on U.

Definition 2.5. Let $M \subseteq P(U)$. M is called a Sperner system over U if $A, B \in M$, then A is not a subset of B.

Definition 2.6. Let U be a nonempty finite set of attributes. A family $M=$ $\{(A,\{a\}): A \subset U, a \in U\}$ is called a maximal family of attributes over R iff the following conditions are satisfied:
(1) $a \notin A$,
(2) For all $(B,\{b\}) \in M, a \notin B$ and $A \subseteq B$ imply $A=B$.
(3) $\exists(B,\{b\}) \in M: a \notin B, a \neq b$, and $L_{a} \cup B$ is a Sperner system over R, where $L_{a}=\{A:(A,\{a\}) \in M\}$.

Remark 2.1.

- It is possible that there are $(A,\{a\}),(B,\{b\}) \in M$ such that $a \neq b$, but $A=B$.
- It can be seen that by (1) and (2) for each $a \in U, L_{a}$ is a Sperner system over U. It is possible that L_{a} is an empty Sperner system.
- Let U be a nonempty finite set of attribute and $P(U)$ its power set. According to Definition 2.6 we can see that given a family $Y \subseteq P(U) \times P(U)$ there is a polynomial time algorithm deciding whether Y is a maximal family of attribute over U.

Let L be a closure over R. Denote $Z(L)=\{A: L(A)=A\}$ and $M(L)=\{(A,\{A\})$: $A \notin A, A \in Z(L)$ and $B \in Z(L), A \subseteq B, A \notin B$ imply $A=B\}$.
$Z(L)$ is called the family of closed sets of L. It can be seen that for each $(A,\{a\}) \in M(L)$.Ais a maximal closed set which doesn't contain a.

It is possible that there are $(A,\{a\}),(B,\{b\}) \in M(L)$ such that $a \neq b$, but $A=B$.

The following theorem which shows that closure operations and maximal families of attributes determine each other uniquely.

Theorem 2.4. [DT4] LetL be a closure operation over U. Then $M(L)$ is a maximal family of attributes over U. Conversely, if M is a maximal family of attributes over U, then there exists exactly one closure operation L over U so that $M(L)=M$, where for all $B \in P(U)$

$$
H(B)=\left\{\begin{array}{c}
\bigcap_{\mathrm{B} \subseteq A} \mathrm{~A} \text { if } \exists A \in \mathrm{~L}(\mathrm{M}): \mathrm{B} \subseteq A, \\
\mathrm{R} \text { otherwise },
\end{array}\right.
$$

and $L(M)=\{a:(a,\{a\}) \in M\}$.
Now, we introduce the following concept.
Definition 2.7. Let $Y \in P(U) \times P(U)$. We say that Y is a minimal family over U if the following conditions are satisfied:
(1) $\forall(A, B),\left(A^{\prime}, B^{\prime}\right) \in Y: A \subset B \subseteq U, A \subset A^{\prime}$ implies $B \subset B^{\prime}, A \subset B^{\prime}$ implies $B \subseteq B^{\prime}$,
(2) Put $U(Y)=\{B:(A, B) \in Y\}$. For each $B \in U(Y)$ and C such that $C \subset B$ and there is no $B^{\prime} \in U(Y): C \subset B^{\prime} \subset B$, there is an $A \in L(B): A \subseteq C$, where $L(B)=\{A:(A, B) \in Y\}$.

Remark 2.2.

- $U \in U(Y)$.
- From $A \subset B^{\prime}$ implies $B \subseteq B^{\prime}$ there is no a $B^{\prime} \in U(Y)$ such that $A \subset B^{\prime} \subset B$ and $A=A^{\prime}$ implies $B=B^{\prime}$.
- Because $A \subset A^{\prime}$ implies $B \subset B^{\prime}$ and $A=A^{\prime}$ implies $B=B^{\prime}$, we can be see that $L(B)$ is a Sperner system over R and by (2) $L(B) \neq \emptyset$.

Let I be a meet-semilattice over R. Put $M^{*}(I)=\{(A, B): \exists C \in I$ such that $A \subset C, A \neq \cap\{C: C \in I, A \subset C\}, B=\cap\{C: C \in I, A \subset C\}\}$. Set $M(I)=$ $\left\{(A, B) \in M^{*}(I)\right.$: there does not exist $\left(A^{\prime}, B\right) \in M^{*}(I)$ such that $\left.A^{\prime} \subset A\right\}$.

Theorem 2.5. [DT4] Let I be a meet-semilattice over U. ThenM (I) is a minimal family overU. Conversely, if Y is a minimal family over U, then there is exactly one meet-semilattice I so that $M(I)=Y$, where $I=\{C \subseteq R: \forall(A, B) \in Y: A \subseteq$ C implies $B \subseteq C\}$.

Let Z be an intersection semilattice on U and suppose that $H \subset U, H \not \subset Z$ hold and $Z \cup\{H\}$ is also closed under intersection. Consider the sets A satisfying $A \in Z, H \subset A$. The intersection of all of these sets is in Z therefore it is different form H. Denote it by $L(H)$. $H \subset L(H)$ is obvious. Let $H(Z)$ denote the set of all pairs $(H, L(H))$ where $H \subset U, H \notin Z$, but $Z \cup\{H\}$ is closed under intersection. The following theorem characterize the possible sets $H(Z)$:

Theorem 2.6. [DK1] The set $\left\{\left(A_{i}, B_{i}\right) \mid i=1, \ldots, m\right\}$ is equal to $H(Z)$ for some intersection semilattice Z iff the following conditions are satisfied:

$$
A_{i} \subset B_{i} \subseteq U, A_{i} \neq B_{i}
$$

$A_{i} \neq A_{j}$ implies either $B_{i} \subseteq A_{j}$, or $A_{j} \subseteq B_{i}$,
$A_{i} \subseteq B_{j}$ implies $B_{i} \subseteq B_{j}$,
for any i and $C \subset U$ satisfying $A_{i} \subset C \subset B_{i}\left(A_{i} \neq C \neq B_{i}\right)$.
There is a j such that either $C=A_{j}$ or $A_{j} \subset C, B_{j} \not \subset C, C \not \subset B_{j}$ all hold.
The set of pair $\left(A_{i}, B_{i}\right)$ satisfying those condition above is called an extension. Its definition is not really beautiful but it is needed in some application. On the other hand it is also an equivalent notion to the closures:

Theorem 2.7. [DK1] $Z \rightarrow H(Z)$ is a bijection between the set of intersection semilattices and the set of extensions.

Definition 2.8. Let U be a nonempty finite set of attributes and $P(U)$ its power set. A map $C: P(U) \rightarrow P(U)$ is called a choice function, if every $A \in P(U)$, then $C(A) \subseteq A$.
U is interpreted as a set of alternatives, A as a set of alternatives given to the decision-maker to choose the best and $C(A)$ as a choice of the best alternatives among A.

Let L be a closure operation, we define C and H associated with L as follows:

$$
\begin{equation*}
C(A)=U-L(U-A) \tag{*}
\end{equation*}
$$

and

$$
\begin{equation*}
H(A)=A \cap L(U-A) \tag{**}
\end{equation*}
$$

We can easily prove that $C(A)$ and $H(A)$ are two choice functions. And we name $C(A)$ choice function - I (for short, CF-I), and $H(A)$ choice function - II (for short, CF-II).

Theorem 2.8. The relationship like (*) is considered as a 1-1 correspondence between closures and choice functions, which satisfies the following two conditions: For every $A, B \subseteq U$,
(1) If $C(A) \subseteq B \subseteq A$, then $C(A)=C(B)$ (Out Casting Property),
(2) If $A \subseteq B$, then $C(A) \subseteq C(B)$ (Monotonicity Property).

Theorem 2.9. The relationship like $\left(^{* *}\right)$ is considered as a 1-1 correspondence between closures and choice functions, which satisfies the following two conditions: For every $A, B \subseteq U$,
(1) If If $H(A) \subseteq B \subseteq A$, then $H(A)=H(B)$ (Out Casting Property),
(2) If $A \subseteq B$, then $H(B) \cap A \subseteq H(A)$ (Heredity Property).

We also note that both C and H uniquely determine the closure L as the following

$$
L(A)=U-C(U-A) \text { and } H(A)=A \cup L(U-A)
$$

For every $A \subseteq U$, the sets $C(A)$ and $H(A)$ form a partition of A, that is, $C(A) \cup$ $H(A)=A$, and $C(A) \cap H(A)=\emptyset$.

Theorem 2.10. There is a 1-1 correspondence between CFs - I and closure operations on U.

Theorem 2.11. There is a 1-1 correspondence between CFs - II and closure operations on U.

3 Results

3.1 Properties of and Relationship between Composition of Closure Operations and CFs - I and - II

First of all, we are giving the formal definition of composition of functions.
Definition 3.1. Let f and g be two functions (e.g. closure operations, CFs - I, or II) on U, and we determine a map T as a composition of f and g the following:

$$
T(X)=f(g(X))=f \cdot g(X)=f g(X) \text { for every } X \subseteq U
$$

In this section we are going to answer two questions. The first one is: given many CFs - I (or II), what can be said about the composition of those CFs - I (or II). In other words, what is necessary and sufficient conditions that provide that composition to be a CF - I (or II). The second one is: what is the relationship between that composition of CFs - I(or II) and that of closure operations. And if we can find the necessary and sufficient conditions that provide that composition of closure operations to be closure operation through those of CFs - I(or II).

With the same questions, however, first we are going to investigate problems with two choice functions. For convenient, we show the results of CFs - II. We will soon see that

Theorem 3.1. Let H_{1} and H_{2} be $C F s-I I$ on U, then composition $H_{1} H_{2}$ and $H_{2} H_{1}$ are a CFs-II on U, and $H_{1} H_{2}=H_{2} H_{1}=H_{1} \cap H_{2}$.

However, to achieve this result, we necessarily prove those following Lemmas and Propositions. First we need to prove the following Proposition:

Proposition 3.1. Let H_{1} and H_{2} be $C F s$ - II on U, then for all $X \subseteq U$,

$$
H_{1}(X) \cap H_{2}(X) \text { is a } C F-I I \text { on } U .
$$

To prove $H_{1} \cap H_{2}$ is a CF - II, we need to prove the following.
Lemma 3.1. Let L_{1} and L_{2} be closure operations on U, then for all $X \subseteq U$,

$$
L_{1}(X) \cap L_{2}(X) \text { is a closure operation on } U .
$$

Proof. Assume L_{1} and L_{2} be two closure operations on U, then for all $X \subseteq U$, it is easy to obtain that $X \subseteq L_{1}(X) \cap L_{2}(X)$ since $X \subseteq L_{1}(X)$ and $X \subseteq L_{2}(X)$. Now, to prove the Monotonicity Property of $L_{1}(X) \cap L_{2}(X)$, for every $X \subseteq Y$, we have $L_{1}(X) \subseteq L_{1}(Y)$ and $L_{2}(X) \subseteq L_{2}(Y)$. Therefore, $L_{1}(X) \cap L_{2}(X) \subseteq L_{1}(Y) \cap L_{2}(Y)$, so $L_{1} \cap L_{2}$ satisfies Monotonicity Property. Then, we have to prove Closure Property of $L_{1} \cap L_{2}$. We always have $X \subseteq L_{1}(X) \cap L_{2}(X) \subseteq L_{1}(X)$. Using Monotonicity Property of L_{1}, we attain $L_{1}(X) \subseteq L_{1}\left(L_{1}(X) \cap L_{2}(X)\right) \subseteq L_{1}\left(L_{1}(X)\right)=L_{1}(X)$. That means $L_{1}(X)=L_{1}\left(L_{1}(X) \cap L_{2}(X)\right)$. Similarly, we attain that $L_{2}(X)=$ $L_{2}\left(L_{1}(X) \cap L_{2}(X)\right)$. Therefore, $L_{1}(X) \cap L_{2}(X)=L_{1}\left(L_{1}(X) \cap L_{2}(X)\right) \cap\left(L_{2}\left(L_{1}(X) \cap\right.\right.$ $\left.L_{2}(X)\right)$. That is, $L_{1} \cap L_{2}$ satisfies Closure Property, so $L_{1} \cap L_{2}$ is a closure on U. The proof is completed.

Now we are moving on proving Proposition 3.1.
Proof of Proposition 3.1. Assume H_{1} and H_{2} be CFs - II on U, then for all $X \subseteq$ U, we have $H_{1}(X)=X \cap L_{1}(U-X)$, and $H_{2}(X)=X \cap L_{2}(U-X)$, with L_{1} and L_{2} two closure operations corresponding to H_{1} and H_{2} respectively. Thus $H_{1}(X) \cap H 2(X)=\left(X \cap L_{1}(U-X)\right) \cap\left(X \cap L_{2}(U-X)\right)=X \cap L_{1}(U-X) \cap L_{2}(U-X)$. However, due to Lemma 3.1, $L_{1}(U-X) \cap L_{2}(U-X)$ is a closure operation, that is, there exists a closure operation L_{3} such that $L_{3}(U-X)=L_{1}(U-X) \cap L_{2}(U-X)$. Thus, $C_{1}(X) \cap C_{2}(X)=X \cap L_{3}(U-X)=C_{3}(X)$, with C_{3} is a CF - II corresponding to L_{3}. The proof is completed.

Before proving Theorem 3.1, we need to prove the follows.
Lemma 3.2. Let H_{1} and H_{2} be CFs - II on U, then

1) $H_{1} H_{2}=H_{2} H_{1} H_{2}$.
2) $H_{2} H_{1}=H_{1} H_{2} H_{1}$

Proof. Assume H_{1} and H_{2} be CFs - II on U. Then for all $X \subseteq U, H_{1}(X)=$ $X \cap L_{1}(U-X)$ and $H_{2}(X)=X \cap L_{2}(U-X)$, with L_{1} and L_{2} two closure operations corresponding to H_{1} and H_{2} respectively. $H_{1} H_{2}(X)=H_{1}\left(H_{2}(X)\right)=$ $X \cap L_{2}(U-X) \cap L_{1}\left(U-X \cap L_{2}(U-X)\right) \subseteq X$. Due to Heredity Property of CFs - II for H_{2}, we obtain $H_{2}(X) \cap H_{1} H_{2}(X) \subseteq H_{2}\left(H_{1} H_{2}(X)\right)$. By using $H_{1} H_{2}(X)=$ $H_{1}\left(H_{2}(X)\right) \subseteq H_{2}(X)$, we attain $H_{1} H_{2}(X) \subseteq H_{2}\left(H_{1} H_{2}(X)\right) \subseteq H_{1} H_{2}(X)$. Hence $H_{1} H_{2}(X)=H_{2}\left(H_{1} H_{2}(X)\right)$, that is, $H_{1} H_{2}=H_{2} H_{1} H_{2}$. Similarly, we obtain $H_{2} H_{1}=H_{1} H_{2} H_{1}$. The proof is completed.

Lemma 3.3. Let H_{1} and H_{2} be CFs - II on U, then following is equivalence:

1) $H_{1} \subseteq H_{2}$
2) $H_{1} H_{2}=H_{1}$

Proof.
$(1 \rightarrow 2)$. Assume H_{1} and H_{2} be CFs-II on U and $H_{1} \subseteq H_{2}$. Since H_{1} is a CF-II, H_{1} must satisfy Out Casting property: if $H_{1}(X) \subseteq Y \subseteq X$, then $H_{1}(X)=H_{1}(Y)$. Therefore, we have $H_{1} \subseteq H_{2}$ or $H_{1}(X) \subseteq H_{2}(X) \subseteq X$ for every $X \subseteq U$, so $H_{1}\left(H_{2}(X)\right)=H_{1}(X)$ or we conclude that $H_{1} H_{2}=H_{1}$.
$(2 \rightarrow 1)$. Assume H_{1} and H_{2} be CFs - II on U and $H_{1} H_{2}=H_{1}$. Since H_{1} and H_{2} are CFs - II, according to Definition of choice function, we have $H_{1} H_{2} \subseteq H_{2}$, but $H_{1} H_{2}=H_{1}$, so we have $H_{1} \subseteq H_{2}$. The proof is completed.

Easily, we obtain the following Corollary.
Corollary 3.1. If H is a $C F-I I$ on U, then $H H=H$.
Proof of Theorem 3.1. Assume H_{1} and H_{2} be CFs - II on U. Then for all $X \subseteq$ $U, H_{2}(X) \subseteq X$. Due to Heredity Property of CF - II for H_{1}, we obtain $H_{1}(X) \cap$ $H_{2}(X) \subseteq H_{1}\left(H_{2}(X)\right)$. Besides that, $H_{1}\left(H_{2}(X)\right) \subseteq H_{2}(X) \subseteq X$, we obtain $H_{1} \cap$ $H_{2}(X) \subseteq H_{1} H_{2}(X) \subseteq X$. By Proposition 3.1, $H_{1}(X) \cap H_{2}(X)$ is a CF - II. Using

Out Casting Property for $H_{1} \cap H_{2}$, we achieve $H_{1} \cap H_{2}\left(H_{1} H_{2}(X)\right)=H_{1} \cap H_{2}(X)$ or $H_{1}\left(H_{1} H_{2}(X)\right) \cap H_{2}\left(H_{1} H_{2}(X)\right)=H_{1} \cap H_{2}(X)$. Due to Corollary 3.1, we obtain $H_{1}\left(H_{1} H_{2}(X)\right)=H_{1} H_{2}(X)$, and Lemma 3.2, we obtain $H_{1} H_{2}(X)=H_{2} H_{1} H_{2}(X)$. Therefore, we attain that $H_{1} H_{2}(X)=H_{1} \cap H_{2}(X)$, that is $H_{1} H_{2}=H_{1} \cap H_{2}$. That means $H_{1} H_{2}$ is a CF-II. Similarly, we obtain $H_{2} H_{1}=H_{1} \cap H_{2}$ and $H_{2} H_{1}$ is a CF-II. The proof is completed.

We can generalize Theorem 3.1 by the following
Generalization 3.1. Let H_{i} be CFs - II on U with $i=1 \rightarrow n$, then $H_{i 1} H_{i 2} \ldots H_{i(n-1)} H_{i n}$ is a CFs - II on U, and

$$
H_{i 1} H_{i 2} \ldots H_{i n}=\bigcap_{i=1}^{n} H_{i}
$$

with $\left\{H_{i 1}, H_{i 2 .}, \ldots, H_{i(n-1)}, H_{i n}\right\}$ be permutations of $\left\{H_{1}, H_{2}, . ., H_{(n-1)}, H_{n}\right\}$.
Thus, for CFs - II, a composition of CFs - II is always a CF - II. Now we move on the composition of CFs - I before investigating on closure operations.

Theorem 3.2. Let C_{1} and C_{2} be CFs - I on U. A composition of C_{1} and C_{2}, denoted as $C_{1} C_{2}$, is a CF - I if and only if

$$
C_{1} C_{2} C_{1}=C_{1} C_{2}
$$

However, before proving Theorem 3.2, we need to have the following Lemmas.
Lemma 3.4. Let C_{1} and C_{2} be $C F-I s$ on U. Then

1) $C_{1} C_{2} \subseteq C_{1}$,
2) $C_{1} C_{2} \subseteq C_{2}$,
3) $C_{2} C_{1} \subseteq C_{1}$,
4) $C_{2} C_{1} \subseteq C_{2}$.

Due to Definition of choice function, and Monotonicity Property of CFs - II, clearly we obtain that Lemma.

Lemma 3.5. Let C_{1} and C_{2} be $C F s$ - I on U, then following is equivalence:

1) $C_{1} \subseteq C_{2}$,
2) $C_{1} C_{2}=C_{1}$.

Proof. The proof of this Lemma is similar to that of Lemma 3.3.
Easily, we obtain the following Corollary.
Corollary 3.2. If C is a $C F-I$ on U, then $C C=C$.
Now we move on proving Theorem 3.2.

Proof Theorem 3.2. Assume C_{1} and C_{2} be CFs-I on U and the composition $C_{1} C_{2}$ also a CF - I. Due to Lemma 3.4, we have $C_{1} C_{2}(X) \subseteq C_{1}(X) \subseteq X$. Due to Out Casting Property of composition $C_{1} C_{2}$, we have $C_{1} C_{2} C_{1}(X)=C_{1} C_{2}(X)$.

Inversely, assume C_{1} and C_{2} be CFs-I on U and the composition $C_{1} C_{2}$ satisfying that $C_{1} C_{2} C_{1}=C_{1} C_{2}$. For all $X \subseteq U$, it is clear to obtain that $C_{1}\left(C_{2}(X)\right) \subseteq$ $C_{2}(X) \subseteq X$. It means $C_{1} C_{2}$ is a choice function. Now, to prove the Monotonicity Property of the composition $C_{1} C_{2}$. For every $X \subseteq Y$, using Monotonicity Property of C_{1} and C_{2}, we have $C_{2}(X) \subseteq C_{2}(Y)$, then $C_{1}\left(C_{2}(X)\right) \subseteq C_{1}\left(C_{2}(Y)\right)$. That means that $C_{1} C_{2}$ satisfies Monotonicity Property. Then, we have to prove Out Casting Property of the composition $C_{1} C_{2}$. For all X and $Y \subseteq U, C_{1} C_{2}(X) \subseteq Y \subseteq X$, we need to prove that $C_{1} C_{2}(X)=C_{1} C_{2}(Y)$. Using Monotonicity Property of C_{1}, we obtain that $C_{2}\left(C_{1} C_{2}(X)\right) \subseteq C_{2}(Y) \subseteq C_{2}(X)$. Applying Monotonicity Property of C_{1} once again, we have $C_{1}\left(C_{2} C_{1} C_{2}(X)\right) \subseteq C_{1}\left(C_{2}(Y)\right) \subseteq C_{1}\left(C_{2}(X)\right)$. However, $C_{1} C_{2} C_{1}=C_{1} C_{2}$. Therefore, $C_{1} C_{2} C_{2}(X) \subseteq C_{1} C_{2}(Y) \subseteq C_{1} C_{2}(X)$. Due to Corollary 3.2, we obtain that $C_{1} C_{2}(X) \subseteq C_{1} C_{2}(Y) \subseteq C_{1} C_{2}(X)$ That means $C_{1} C_{2}(X)=C_{1} C_{2}(Y)$. That is, $C_{1} C_{2}$ satisfies Out Casting Property, so $C_{1} C_{2}$ is a CF-I on U. The proof is completed.

We generalize the Theorem above.
Generalization 3.2. Let $C_{1}, C_{2}, .$. , and C_{n} be CFs-I on U. A composition of C_{1}, C_{2}, \ldots, and C_{n}, denoted as $C_{1} C_{2} \ldots C_{n-1} C_{n}$, is a CF-I if and only if

$$
C_{1} C_{2} \ldots C_{n-1} C_{n} C_{1} C_{2} \ldots C_{n-1}=C_{1} C_{2} \ldots C_{n-1} C_{n}
$$

Proof. We prove this Generalization by induction. It is obvious for $n=1$. The Theorem 3.2 proves the case that $n=2$.

For $n=k$, we assume that $C_{1}, C_{2}, .$. , and C_{k} be CFs-I on U, and the composition of C_{1}, C_{2}, \ldots, and C_{k}, denoted as $C_{1} C_{2} \ldots C_{k-1} C_{k}$, is a CF - I. We need to prove that, for $n=k+1$, the composition $C_{1} C_{2} \ldots C_{k} C_{k+1}$ is a CF - I iff $C_{1} C_{2} \ldots C_{k} C_{k+1} C_{1} C_{2} \ldots C_{k}=C_{1} C_{2} \ldots C_{k} C_{k+1}$. Surely, since $C_{1} C_{2} \ldots C_{k-1} C_{k}$ is a CF - I, by using Theorem 3.2, we obtain that the composition $C_{1} C_{2} \ldots . C_{k} C_{k+1}$ is a CF - I iff $C_{1} C_{2} \ldots C_{k} C_{k+1} C_{1} C_{2} \ldots C_{k}=C_{1} C_{2} \ldots C_{k} C_{k+1}$. The proof is completed.

Now we move on the relationship between the composition of closure operations and CFs - I. We have the following Theorem.

Theorem 3.3. Let L_{1} and L_{2} be closure operations and C_{1} and C_{2} be CF-Is corresponding to L_{1} and L_{2} respectively on U. The following are equivalent:

1) $C_{1} C_{2}$ is a $C F-I$,
2) $L_{1} L_{2}$ is a closure operation.

Proof. $(1 \rightarrow 2)$. Assume L_{1} and L_{2} be closure operations, and C_{1} and C_{2} be CFIs corresponding to L_{1} and L_{2} respectively on U and $C_{1} C_{2}$ is a closure operation. Then for all $X \subseteq U$, we have $L_{1}(X)=U-C_{1}(U-X)$, and $L_{2}(X)=U-C_{2}(U-X)$. Thus, $L_{1} L_{2}(X)=L_{1}\left(L_{2}(X)\right)=U-C_{1}\left(U-\left(U-C_{2}(U-X)\right)\right)=U-C_{1}\left(C_{2}(U-\right.$ $X))=U-C_{1} C_{2}(U-X)$. However, $C_{1} C_{2}$ is a closure operation. Therefore,
there exists a closure operation C_{3} such that $C_{3}(U-X)=C_{1} C_{2}(U-X)$. Thus, $L_{1} L_{2}(X)=U-C_{3}(U-X)=L_{3}(X)$, with L_{3} a closure operation corresponding to C_{3}. That is $L_{1} L_{2}$ is a closure operation. The proof is completed.
$(2 \rightarrow 1)$. Assume L_{1} and L_{2} be closure operations and C_{1} and C_{2} be CFIs corresponding to L_{1} and L_{2} respectively on U and $L_{1} L_{2}$ is a closure operation. Then for all $X \subseteq U$, we have $C_{1}(X)=U-L_{1}(U-X)$, and $C_{2}(X)=U-L_{2}(U-X)$. Thus, $C_{1} C_{2}(X)=C_{1}\left(C_{2}(X)\right)=U-L_{1}\left(U-\left(U-L_{2}(U-X)\right)\right)=U-L_{1}\left(L_{2}(U-\right.$ $X))=U-L_{1} L_{2}(U-X)$. However, $L_{1} L_{2}$ is a closure operation. Therefore, there exists a closure operation L_{3} such that $L_{3}(U-X)=L_{1} L_{2}(U-X)$. Thus, $C_{1} C_{2}(X)=U-L_{3}(U-X)=C_{3}(X)$, with C_{3} a choice function-I corresponding to L_{3}. That is $C_{1} C_{2}$ is a CF-I. The proof is completed.

It can be seen that.
Generalization 3.3. Let L_{i} be closure operations and $\left\{C_{i}\right\}$ be CFs - I corresponding to L_{i} respectively on U, with $i=1 \rightarrow n$. The following are equivalent:

1) $L_{1} L_{2} \ldots L_{n}$ is a closure operation
2) $C_{1} C_{2} \ldots C_{n}$ is a CF-I

And we also have $L_{1} L_{2} \ldots L_{n}(X)=U-C_{1} C_{2} \ldots C_{n}(U-X)$ and $C_{1} C_{2} \ldots C_{n}(X)=$ $U-L_{1} L_{2} \ldots L_{n}(U-X)$.

Through Theorem 3.2 and 3.3, it is easy to obtain the following Theorem.
Theorem 3.4. Let L_{1} and L_{2} be closure operations on U. A composition of L_{1} and L_{2}, denoted as $L_{1} L_{2}$, is a closure operation if and only if

$$
L_{1} L_{2} L_{1}=L_{1} L_{2}
$$

For generalization, we have the same conclusion for following Generalization as Generalization 3.2.
Generalization 3.4. Let $L_{1}, L_{2}, .$. , and L_{n} be closure operations on U. A composite function of L_{1}, L_{2}, \ldots, and L_{n}, denoted as $L_{1} L_{2} \ldots L_{n-1} L_{n}$, is a closure operation if and only if

$$
L_{1} L_{2} \ldots L_{n-1} L_{n} L_{1} L_{2} \ldots L_{n-1}=L_{1} L_{2} \ldots L_{n-1} L_{n}
$$

3.2 Direct Product of CFs - I and - II

The direct product of closure operations plays very important role in theory of relational database, especially in combinatorial problems. Plenty of properties related to direct product of closure operation can be found in [DFK] and [Li]. By relationship and interaction between closure operations and choice functions, we introduce the new definitions of direct product of choice function-Is as well as -IIs. First of all, we have the following.

Theorem 3.5. [Li] Let L_{1} and L_{2} be closure operations on the disjoint ground sets U_{1} and U_{2} respectively. The direct product of closure operations $L_{1} \times L_{2}$ is defined as following

$$
\left(L_{1} \times L_{2}\right)(X)=L_{1}\left(X \cap U_{1}\right) \cup L_{2}\left(X \cap U_{2}\right), \quad X \subseteq U_{1} \cup U_{2}
$$

Then $\left(L_{1} \times L_{2}\right)(X)$ is a closure operations on $U_{1} \cup U_{2}$.
Here we give the Generalization of above Theorem.
Generalization 3.5. Let $\left\{L_{i} \mid i=1 \rightarrow n\right\}$ be closure operations on the disjoint ground sets U_{i} respectively. The direct product of those closure operations $L_{1} \times$ $L_{2} \times \ldots \times L_{n}$ is defined as following

$$
\left(L_{1} \times L_{2} \times \ldots \times L_{n}\right)(X)=\bigcup_{i=1}^{n} L_{i}\left(X \cap U_{i}\right)
$$

with $X \subseteq U_{1} \cup U_{2} \cup \ldots \cup U_{n}$.
Then $\left(L_{1} \times L_{2} \times \ldots \times L_{n}\right)(X)$ is a closure operation on $U_{1} \cup U_{2} \cup \ldots \cup U_{n}$.
Theorem 3.6. Let C_{1} and C_{2} be CFs - I on the disjoint ground sets U_{1} and U_{2} respectively. The direct product of CFs $-I, C_{1} \times C_{2}$, is defined as following

$$
\left(C_{1} \times C_{2}\right)(X)=C_{1}\left(X \cap U_{1}\right) \cup C_{2}\left(X \cap U_{2}\right), \quad X \subseteq U_{1} \cup U_{2}
$$

Then $\left(C_{1} \times C_{2}\right)(X)$ is a $C F-I$ on $U_{1} \cup U_{2}$.
Proof. For all $X \subseteq U_{1} \cup U_{2},\left(C_{1} \times C_{2}\right)(X)=C_{1}\left(X \cap U_{1}\right) \cup C_{2}\left(X \cap U_{2}\right) \subseteq(X \cap$ $\left.U_{1}\right) \cup\left(X \cap U_{2}\right) \subseteq X \cap\left(U_{1} \cup U_{2}\right)=X$. Thus, $\left(C_{1} \times C_{2}\right)(X) \subseteq X$. For every X and $Y \subseteq U_{1} \cup U_{2}$ and $X \subseteq Y$, then $X \cap U_{1} \subseteq Y \cap U_{1}$, and $X \cap U_{2} \subseteq Y \cap U_{2}$. By using Monotonicity Property of C_{1} and C_{2}, we obtain $C_{1}\left(X \cap U_{1}\right) \subseteq C_{1}\left(Y \cap U_{1}\right)$ and $C_{2}\left(X \cap U_{2}\right) \subseteq C_{2}\left(Y \cap U_{2}\right)$. Hence $C_{1}\left(X \cap U_{1}\right) \cup C_{2}\left(X \cap U_{2}\right) \subseteq C_{1}\left(Y \cap U_{1}\right) \cup C_{2}\left(Y \cap U_{2}\right)$, that is, $\left(C_{1} \times C_{2}\right)(X) \subseteq\left(C_{1} \times C_{2}\right)(Y)$ or $\left(C_{1} \times C_{2}\right)$ satisfies Monotonicity Property. Now we need to show that $\left(C_{1} \times C_{2}\right)(X)$ satisfies the Out Casting Property also. That is, for every $X, Y \subseteq U_{1} \cup U_{2}$ and $\left(C_{1} \times C_{2}\right)(X)=C_{1}\left(X \cap U_{1}\right) \cup C_{2}\left(X \cap U_{2}\right) \subseteq$ $Y \subseteq X$, we need to show that $\left(C_{1} \times C_{2}\right)(X)=\left(C_{1} \times C_{2}\right)(Y)$. Since $Y \subseteq X$, we have $\left(C_{1} \times C_{2}\right)(Y) \subseteq\left(C_{1} \times C_{2}\right)(X)$. And it is obvious that $C_{1}\left(X \cap U_{1}\right) \subseteq C_{1}\left(X \cap U_{1}\right) \cup$ $C_{2}\left(X \cap U_{2}\right) \subseteq Y$. Thus, we have $C_{1}\left(X \cap U_{1}\right) \cap U_{1} \subseteq Y \cap U_{1}$ or $C_{1}\left(X \cap U_{1}\right) \subseteq Y \cap U_{1}$. Using Monotonicity Property of C_{1}, we have $C_{1}\left(C_{1}\left(X \cap U_{1}\right)\right) \subseteq C_{1}\left(Y \cap U_{1}\right)$ or $C_{1}\left(X \cap U_{1}\right) \subseteq C_{1}\left(Y \cap U_{1}\right)$ due to Corollary 3.2. Similarly, we obtain $C_{2}\left(X \cap U_{1}\right) \subseteq$ $C_{2}\left(Y \cap U_{1}\right)$. Therefore $C_{1}\left(X \cap U_{1}\right) \cup C_{2}\left(X \cap U_{2}\right) \subseteq C_{1}\left(Y \cap U_{1}\right) \cup C_{2}\left(Y \cap U_{2}\right)$ or $\left(C_{1} \times C_{2}\right)(X) \subseteq\left(C_{1} \times C_{2}\right)(Y)$. Hence $\left(C_{1} \times C_{2}\right)(X)=\left(C_{1} \times C_{2}\right)(Y)$. The proof is completed.

Generalization 3.6. Let $\left\{C_{i} \mid i=1 \rightarrow n\right\}$ be CFs - I with on the disjoint ground sets $\left\{U_{i}\right\}$ respectively. The direct product of CFs - I, $C_{1} \times C_{2} \times \ldots \times C_{n}$, is defined as following

$$
\left(C_{1} \times C_{2} \times \ldots \times C_{n}\right)(X)=\bigcup_{i=1}^{n} C_{i}\left(X \cap U_{i}\right)
$$

with $X \subseteq U_{1} \cup U_{2} \cup \ldots \cup U_{n}$.
Then $\left(C_{1} \times C_{2} \times \ldots \times C_{n}\right)(X)$ is a CF - I on $U_{1} \cup U_{2} \cup \ldots \cup U_{n}$.

Theorem 3.7. Let H_{1} and H_{2} be CFs - II on the disjoint ground sets U_{1} and U_{2} respectively. The direct product of CFs - II, $\mathrm{H}_{1} \times \mathrm{H}_{2}$, is defined as following

$$
\left(H_{1} \times H_{2}\right)(X)=H_{1}\left(X \cap U_{1}\right) \cup H_{2}\left(X \cap U_{2}\right), \quad X \subseteq U_{1} \cup U_{2}
$$

Then $\left(H_{1} \times H_{2}\right)(X)$ is a $C F-I I$ on $U_{1} \cup U_{2}$.
Proof. For all $X \subseteq U_{1} \cup U_{2},\left(H_{1} \times H_{2}\right)(X)=H_{1}\left(X \cap U_{1}\right) \cup H_{2}\left(X \cap U_{2}\right) \subseteq(X \cap$ $\left.U_{1}\right) \cup\left(X \cap U_{2}\right) \subseteq X \cap\left(U_{1} \cup U_{2}\right)=X$. Thus, $\left(H_{1} \times H_{2}\right)(X) \subseteq X$. For every X and $Y \subseteq U_{1} \cup U_{2}$ and $X \subseteq Y$, we need to prove that $\left(H_{1} \times H_{2}\right)$ satisfies Heredity Property. Since $X \subseteq Y$, we have $X \cap U_{1} \subseteq Y \cap U_{1}$, and $X \cap U_{2} \subseteq Y \cap U_{2}$. By using Heredity Property of H_{1} and H_{2}, we obtain $H_{1}\left(Y \cap U_{1}\right) \cap\left(X \cap U_{1}\right) \subseteq H_{1}\left(X \cap U_{1}\right)$ or $H_{1}\left(Y \cap U_{1}\right) \cap X \subseteq H_{1}\left(X \cap U_{1}\right)$. Similarly, we have $H_{2}\left(Y \cap U_{2}\right) \cap X \subseteq H_{2}\left(X \cap U_{2}\right)$. Hence, $\left(H_{1}\left(Y \cap U_{1}\right) \cap X\right) \cup\left(H_{2}\left(Y \cap U_{2}\right) \cap X\right) \subseteq H_{1}\left(X \cap U_{1}\right) \cup H_{2}\left(X \cap U_{2}\right)$, then $\left(H_{1}\left(Y \cap U_{1}\right) \cup H_{2}\left(Y \cap U_{2}\right)\right) \cap X \subseteq H_{1}\left(X \cap U_{1}\right) \cup H_{2}\left(X \cap U_{2}\right)$ that is, $\left(H_{1} \times H_{2}\right)(Y) \cap X \subseteq$ $\left(H_{1} \times H_{2}\right)(X)$ or $\left(H_{1} \times H_{2}\right)$ satisfies Heredity Property.

Now we need to show that $\left(H_{1} \times H_{2}\right)(X)$ satisfies the Out Casting Property also. That is, for every X and $Y \subseteq U_{1} \cup U_{2}$ and $\left(H_{1} \times H_{2}\right)(X)=H_{1}\left(X \cap U_{1}\right) \cup$ $H_{2}\left(X \cap U_{2}\right) \subseteq Y \subseteq X$, we need to show that $\left(H_{1} \times H_{2}\right)(X)=\left(H_{1} \times H_{2}\right)(Y)$. It is obvious that $\bar{H}_{1}\left(X \cap U_{1}\right) \subseteq H_{1}\left(X \cap U_{1}\right) \cup H_{2}\left(X \cap U_{2}\right) \subseteq Y \subseteq X$. Then $H_{1}\left(X \cap U_{1}\right) \cap U_{1} \subseteq Y \cap U_{1} \subseteq X \cap U_{1}$ or $H_{1}\left(X \cap U_{1}\right) \subseteq Y \cap U_{1} \subseteq X \cap U_{1}$. Using Out Casting Property of H_{1}, we obtain $H_{1}\left(X \cap U_{1}\right)=H_{1}\left(Y \cap U_{1}\right)$. Similarly, we attain $H_{2}\left(X \cap U_{2}\right)=H_{2}\left(Y \cap U_{2}\right)$. Therefore $H_{1}\left(X \cap U_{1}\right) \cup H_{2}\left(X \cap U_{2}\right)=H_{1}(Y \cap$ $\left.U_{1}\right) \cup H_{2}\left(Y \cap U_{2}\right)$ or $\left(H_{1} \times H_{2}\right)(X)=\left(H_{1} \times H_{2}\right)(Y)$. The proof is completed.

Generalization 3.7. Let $\left\{H_{i} \mid i=1 \rightarrow n\right\}$ be CFs - II with on the disjoint ground sets U_{i} respectively. The direct product of CFs - II, $H_{1} \times H_{2} \times \ldots \times H_{n}$, is defined as following

$$
\left(H_{1} \times H_{2} \times \ldots \times H_{n}\right)(X)=\bigcup_{i=1}^{n} H_{i}\left(X \cap U_{i}\right)
$$

with $X \subseteq U_{1} \cup U_{2} \cup \ldots \cup U_{n}$.
Then $\left(H_{1} \times H_{2} \times \ldots \times H_{n}\right)(X)$ is a CF - II on $U_{1} \cup U_{2} \cup \ldots \cup U_{n}$.

3.3 Properties of CFs - I and - II and Closure Operations

Proposition 3.2. Let C_{1} and C_{2} be $C F s-I$ on U, then for all $X \subseteq U$,

$$
C_{1}(X) \cup C_{2}(X) \text { is a CF-I on } U .
$$

Proof. Assume C_{1} and C_{2} be CFs-I on U, then for all $X \subseteq U$, it is easy to obtain that $C_{1}(X) \cup C_{2}(X) \subseteq X$ since $C_{1}(X) \subseteq X$ and $C_{2}(X) \subseteq X$. Now, to prove the Monotonicity Property of $C_{1} \cup C_{2}$, for every $X \subseteq Y$, we have $C_{1}(X) \subseteq C_{1}(Y)$ and $C_{2}(X) \subseteq C_{2}(Y)$. Therefore, $C_{1}(X) \cup C_{2}(X) \subseteq C_{1}(Y) \cup C_{2}(Y)$, so $C_{1} \cup C_{2}$ satisfies Monotonicity Property. Then, we have to prove Out Casting Property of $C_{1} \cup C_{2}$. We always have $C_{1}(X) \subseteq C_{1}(X) \cup C_{2}(X) \subseteq Y \subseteq X$. Using Out Casting Property
of C_{1}, we attain $C_{1}(X)=C_{1}(Y)$. Similarly, we attain that $C_{2}(X)=C_{2}(Y)$ from $C_{2}(X) \subseteq C_{1}(X) \cup C_{2}(X) \subseteq Y \subseteq X$. Therefore, $C_{1} \cup C_{2}(X)=C_{1} \cup C_{2}(Y)$. That is, $C_{1} \cup C_{2}$ satisfies Out Casting Property, so $C_{1} \cup C_{2}$ is a CF-I on U. The proof is completed.

Proposition 3.3. Let H_{1} and H_{2} be $C F s-I I$ on U, then for all $X \subseteq U$,

$$
H_{1}(X) \cup H 2(X) \text { is a } C F-I I \text { on } U \text {. }
$$

Proof. Assume H_{1} and H_{2} be CFs-II on U. Similarly to above proof, for all $X \subseteq U$ it is clear to obtain that $H_{1}(X) \cup H_{2}(X) \subseteq X$ since $H_{1}(X) \subseteq X$ and $H_{2}(X) \subseteq X$. Now, to prove the Heredity Property of $H_{1} \cup H_{2}$, for every $X \subseteq Y$, we have $H_{1}(Y) \cap X \subseteq H_{1}(X)$ and $H_{2}(Y) \cap X \subseteq H_{2}(X)$. Therefore, $X \cap\left(H_{1}(Y) \cup H_{2}(Y)\right) \subseteq$ $H_{1}(X) \cup H_{2}(X)$, so $H_{1} \cup H_{2}$ satisfies Heredity Property. For Out Casting Property of $H_{1} \cup H_{2}$, we prove the same as the proof of Proposition 3.2. The proof is completed.

From Proposition 3.3, we lead to the following Lemmas.
Lemma 3.6. Let L_{1} and L_{2} be closure operations on U, then for all $X \subseteq U$,

$$
L_{1}(X) \cup L_{2}(X) \text { is a closure operation on } U .
$$

Proof. Assume L_{1} and L_{2} be closure operations on U, then for all $X \subseteq U$, we have $L_{1}(X)=X \cup H_{1}(U-X), L_{2}(X)=X \cup H_{2}(U-X)$, with H_{1} and H_{2} two choice function-IIs corresponding to L_{1} and L_{2} respectively. Thus $L_{1}(X) \cup L_{2}(X)=$ $X \cup H_{1}(U-X) \cup H_{2}(U-X)$. However, due to Proposition 3.3, $H_{1}(U-X) \cup H_{2}(U-X)$ is a CF - II, that is, there exists a choice function H_{3} such that $H_{3}(U-X)=$ $H_{1}(U-X) \cup H_{2}(U-X)$. Thus, $L_{1}(X) \cup L_{2}(X)=X \cup H_{3}(U-X)=L_{3}(X)$, with L_{3} a closure operation corresponding to H_{3}. The proof is completed.

Using similar method of above proof, we can achieve two following.
Lemma 3.7. Let C_{1} and C_{2} be $C F s$ - I on U, then for all $X \subseteq U$,

$$
C_{1}(X) \cap C_{2}(X) \text { is a } C F-I \text { on } U .
$$

Proof. Assume C_{1} and C_{2} be CFs - I on U, then for all $X \subseteq U$, we have $C_{1}(X)=$ $U-L_{1}(U-X)$, and $C_{2}(X)=U-L_{2}(U-X)$, with L_{1} and L_{2} two closure operations corresponding to C_{1} and C_{2} respectively. Thus $C_{1}(X) \cap C_{2}(X)=\left(U-L_{1}(U-\right.$ $X)) \cap\left(U-L_{2}(U-X)\right)=U-L_{1}(U-X) \cup L_{2}(U-X)$. However, due to Lemma 3.6, $L_{1}(U-X) \cup L_{2}(U-X)$ is a closure operation, that is, there exists a closure operation L_{3} such that $L_{3}(U-X)=L_{1}(U-X) \cup L_{2}(U-X)$. Thus, $C_{1}(X) \cup C_{2}(X)=$ $U-L_{3}(U-X)=C_{3}(X)$, with C_{3} a CF - I corresponding to L_{3}. The proof is completed.

Proposition 3.4. Let H be a $C F-I I$ on U. Then for all $X \subseteq U$, we have

$$
H(X) \cap H(Y) \subseteq H(X \cap Y)
$$

Proof. For all X and $Y \subseteq U$, due to Monotonicity Property of closure operations, we easily obtain $L(X) \cap L(Y) \subseteq L(X \cup Y)$. Therefore, $L(U-X) \cap L(U-Y) \subseteq$ $L((U-X) \cup(U-Y))$. Using $L((U-X) \cup(U-Y))=L(U-X \cap Y)$, we have $L(U-X) \cap L(U-Y) \subseteq L(U-X \cap Y)$. Hence, $(X \cap Y) \cap L(U-X) \cap L(U-Y) \subseteq$ $(X \cap Y) \cap L((U-X \cap Y)$ or $H(X) \cap H(Y) \subseteq H(X \cap Y)$. The proof is completed.

Similarly, we obtain the follow
Proposition 3.5. Let H be a $C F-I I$ on U. Then for all $X \subseteq U$, we have $H(X \cup$ $Y) \subseteq H(X) \cup H(Y)$.

Proof. For all X and $Y \subseteq U$, due to Monotonicity Property of closure operations, we easily obtain $L(X \cap \bar{Y}) \subseteq L(X) \cap L(Y)$. Therefore, $L((U-X) \cap(U-Y)) \subseteq$ $L(U-X) \cap L(U-Y)$. Using $L((U-X) \cap(U-Y))=L(U-X \cup Y)$, we have $L(U-X \cup Y) \subseteq L(U-X) \cap L(U-Y)$. Hence, $(X \cup Y) \cap L((U-X \cup Y) \subseteq$ $(X \cup Y) \cap L(U-X) \cap L(U-Y)$ or $H(X \cap Y) \subseteq(X \cap L(U-X) \cap L(U-Y)) \cup$ $(Y \cap L(U-X) \cap L(U-Y)) \subseteq(X \cap L(U-X)) \cup(Y \cap L(U-Y))=H(X) \cup H(Y)$. The proof is completed.

Lemma 3.8. Let H_{1} and H_{2} be $C F s-I I$ on U. Then

1) $H_{1} H_{2} \subseteq H_{2}$
2) $H_{2} H_{1} \subseteq H_{1}$

Since H_{1} and H_{2} are a CFs-II, it is obvious to have above Lemma.
Lemma 3.9. Let H_{1} and H_{2} be CFs - II on U, then

1) $H_{1} \cap H_{2} \subseteq H_{1} H_{2}$
2) $H_{1} \cap H_{2} \subseteq H_{2} H_{1}$

Proof. Assume H_{1} and H_{2} be CFs - II on U. Then for all $X \subseteq U, H_{2}(X) \subseteq X$. Due to Heredity Property of CFs-II, we obtain $H_{1}(X) \cap H_{2}(X) \subseteq H_{1}\left(H_{2}(X)\right)$, that is, $H_{1} \cap H_{2} \subseteq H_{1} H_{2}$. Similarly, we achieve $H_{1} \cap H_{2} \subseteq H_{2} H_{1}$.

Proposition 3.6. Let H_{1} and H_{2} be $C F s$ - II on U, then $H_{1} \cap H_{2}=H_{1} \cap H_{1} H_{2}=$ $H_{2} \cap H_{2} H_{1}$.

In order to prove this Proposition, we need to have the following Lemma.
Lemma 3.10. Let H_{1} and H_{2} be CFs - II on U, then $H_{1} \cap H_{2}=H_{1}\left(H_{1} \cap H_{2}\right)=$ $H_{2}\left(H_{1} \cap H_{2}\right)$.

Proof. Assume H_{1} and H_{2} be CFs - II on U. Then for all $X \subseteq U$, we always have $H_{1}(X) \cap H_{2}(X) \subseteq H_{2}(X)$. Due to Heredity Property of CF-IIs, we obtain $H_{1}\left(H_{2}(X)\right) \cap H_{1}(X) \cap H_{2}(X) \subseteq H_{1}\left(H_{1}(X) \cap H_{2}(X)\right)$. According to Lemma 3.9, we obtain $H_{1}(X) \cap H_{2}(X) \subseteq H_{1}\left(H_{1}(X) \cap H_{2}(X)\right)$. However, $H_{1}\left(H_{1}(X) \cap H_{2}(X)\right) \subseteq$ $H_{1}(X) \cap H_{2}(X)$. Hence, $H_{1}\left(H_{1}(X) \cap H_{2}(X)\right)=H_{1}(X) \cap H_{2}(X)$, that is, $H_{1} \cap$ $H_{2}=H_{1}\left(H_{1} \cap H_{2}\right)$. Similarly, we achieve $H_{1} \cap H_{2}=H_{2}\left(H_{1} \cap H_{2}\right)$. The proof is completed.

Proof of Proposition 3.6. Assume H_{1} and H_{2} be CFs - II on U. For all $X \subseteq$ U due to Proposition 3.4 and Corollary 3.1, we obtain $H_{1}(X) \cap H_{1}\left(H_{2}(X)\right) \subseteq$ $H_{1}\left(H_{1}(X) \cap H_{2}(X)\right)$. However, $H_{1} \cap H_{2}=H_{1}\left(H_{1} \cap H_{2}\right)$ according to Lemma 3.10, and $H_{1} \cap H_{2} \subseteq H_{1} H_{2}$ due to Lemma 3.9. Therefore, $H_{1}(X) \cap H_{1}(X) \cap H_{2}(X) \subseteq$ $H_{1}(X) \cap H_{1}\left(H_{2}(X)\right) \subseteq H_{1}(X) \cap H_{2}(X)$. Then, $H_{1}(X) \cap H_{1}\left(H_{2}(X)\right)=H_{1}(X) \cap$ $H_{2}(X)$, that is, $H_{1} \cap H_{2}=H_{1} \cap H_{1} H_{2}$. Similarly, we obtain $H_{1} \cap H_{2}=H_{2} \cap H_{2} H_{1}$. The proof is completed.

From Proposition 3.6, it is clear to obtain the follow.
Corollary 3.3. Let H_{1} and H_{2} be CFs - II on U, then $H_{1} \cap H_{2}=H_{1} \cap H_{2}\left(H_{1} \cap H_{2}\right)$.

3.4 Interaction between Closure Operations and CFs - I

Let L be a closure and Σ a corresponding full family of FDs. We recall that an FD $X \rightarrow Z \in \Sigma$ iff $Z \subseteq L(X)$. In this section, we consider the closures for which CF I and -II defined in section 0 satisfy some additional properties. We are now going to give some properties.

Proposition 3.7. Let L and C be a closure operation and a CF-I corresponding to Lrespectively on U. The following are equivalent:

1) $C(X \cup Y)=C(X) \cup C(Y)$,
2) $L(X \cap Y)=L(X) \cap L(Y)$,
3) $X \rightarrow Z$ and $Y \rightarrow Z$ are $F D$ s from Σ iff $X \cap Y \rightarrow Z$.

Proof. (1 \rightarrow 2). Let C satisfies 1). Then for all $X, Y \subseteq U: L(X \cap Y)=U-$ $C(U-X \cap Y)=U-C((U-X) \cup(U-Y))=U-C(U-X) \cup C(U-Y)=$ $(U-C(U-X)) \cap(U-C(U-Y))=L(X) \cap L(Y)$. That is, L satisfies 2).
$(2 \rightarrow 1)$ Let L satisfies 2). Then for all $X, Y \subseteq U: C(X \cup Y)=U-L(U-X \cup Y)=$ $U-L((U-X) \cap(U-Y))=U-L(U-X) \cap L(U-Y)=(U-L(U-X)) \cup(U-$ $L(U-Y))=C(X) \cup C(Y)$. That is, C satisfies 1).
$(2 \leftrightarrow 3)$ Let L satisfies 2). Then for all $X, Y \subseteq U: L(X \cap Y)=L(X) \cap L(Y)$. For $Z \in L(X \cap Y)$ iff $X \cap Y \rightarrow Z$. And $Z \in L(X) \cap L(Y)$, that means $Z \in L(X)$ and $Z \in L(Y)$ iff $X \rightarrow Z$ and $Y \rightarrow Z$.

Proposition 3.8. Let L and C be a closure operation and a CF-I corresponding to L respectively on U. The following are equivalent:

1) $C(X \cap Y)=C(X) \cap C(Y)$,
2) $L(X \cup Y)=L(X) \cup L(Y)$.

Proof. (1 \rightarrow 2). Let C satisfies 1). Then for all $X, Y \subseteq U: L(X \cup Y)=U-$ $C(U-X \cup Y)=U-C((U-X) \cap(U-Y))=U-C(U-X) \cap C(U-Y)=$ $(U-C(U-X)) \cup(U-C(U-Y))=L(X) \cup L(Y)$. That is, L satisfies 2).
$(2 \rightarrow 1)$ Let L satisfies 2). Then for all $X, Y \subseteq U: C(X \cap Y)=U-L(U-X \cap Y)=$ $U-L((U-X) \cup(U-Y))=U-L(U-X) \cup L(U-Y)=(U-L(U-X)) \cap(U-$ $L(U-Y))=C(X) \cap C(Y)$. That is, C satisfies 1).

Proposition 3.9. Let L_{1} and L_{2} be closure operations and C_{1} and C_{2} be $C F-I s$ corresponding to L_{1} and L_{2} respectively on U. The following are equivalent:

1) $C_{1}(X) \cap C_{2}(X) \subseteq C_{1} C_{2}(X)$
2) $L_{1} L_{2}(X) \subseteq L_{1}(X) \cup L_{2}(X)$

Proof. $(1 \rightarrow 2)$. Let C_{1} and C_{2} satisfy 1). Then for all $X \subseteq U: L_{1} L_{2}(X)=U-$ $C_{1} C_{2}(U-X) \subseteq U-C_{1}(U-X) \cap C_{2}(U-X)=\left(U-C_{1}(U-X)\right) \cup\left(U-C_{2}(U-X)\right)=$ $L_{1}(X) \cup L_{2}(X)$. That is, L_{1} and L_{2} satisfy 2$)$.
$(2 \rightarrow 1)$. Let L_{1} and L_{2} satisfy 2). Then for all $X \subseteq U: C_{1}(X) \cap C_{2}(X)=$ $\left(U-L_{1}(U-X)\right) \cap\left(U-L_{2}(U-X)\right)=U-L_{1}(U-X) \cup L_{2}(U-X) \subseteq U-L_{1} L_{2}(U-X)=$ $C_{1} C_{2}(X)$. That is, C_{1} and C_{2} satisfy 1).

3.5 Special cases of Choice Function-Is and -IIs

Theorem 3.8. Let consider a partition $V:\left\{V_{1}, V_{2}, V_{3}, \ldots, V_{n}\right\}$, that is, $V_{i} \cap V_{j}=\emptyset$, with $i \neq j$. Let construct a set

$$
W(A)=A \cap \bigcup_{i=1}^{n} V_{i}
$$

for all $A \subseteq U$. Then, $W(A)$ is a $C F-I$ on U.
Proof. For all $A \subseteq U$, it is clear that $W(A) \subseteq A$. Now we need to prove that W satisfies Monotonicity and Out Casting Property. We have

$$
\begin{gathered}
W(A)=A \cap \bigcup_{i=1}^{n} V_{i}=\bigcup_{i=1}^{n}\left(A \cap V_{i}\right) \\
\Rightarrow W(W(A))=\bigcup_{j=1}^{n}\left(A \cap \bigcup_{i=1}^{n} V_{i}\right) \cap V_{j}=\bigcup_{j=1}^{n}\left(\bigcup_{i=1}^{n}\left(A \cap V_{i} \cap V_{j}\right)\right) \\
=\bigcup_{i=1}^{n}\left(A \cap V_{i}\right)=W(A)
\end{gathered}
$$

since $V_{i} \cap V_{j}=\emptyset$, for $i \neq j$. For $A \subseteq B$, it is obvious that $A \cap V_{i} \subseteq B \cap V_{i}$, then

$$
\bigcup_{i=1}^{n}\left(A \cap V_{i}\right) \subseteq \bigcup_{i=1}^{n}\left(B \cap V_{i}\right)
$$

Thus, $W(A) \subseteq W(B)$, so W satisfies Monotonicity Property.
To prove Out Casting Property of W, let assume $W(A) \subseteq B \subseteq A$, we have show that $W(A)=W(B)$. Using Monotonicity Property of W, we attain $W(W(A)) \subseteq$ $W(B) \subseteq W(A)$. However, $W(W(A))=W(A)$, we lead to that $W(A)=W(B)$. The proof is completed.

We can illustrate $W(A)$ as the sum of all intersections of A and V_{i}, for $i=1 \rightarrow$ n. Here is a property of W.

Proposition 3.10. Let consider partition of $V:\left\{V_{1}, V_{2}, V_{3} \ldots, V_{n}\right\}$, that is, $V_{i} \cap V_{j}=$ \emptyset, with $i \neq j$, and partition of $T:\left\{T_{1}, T_{2}, T_{3} \ldots, T_{m}\right\}$, that $i s, T_{i} \cap T_{j}=\emptyset$, with $i \neq j$. For all $A \subseteq U$, let construct two $C F-I$ as the following:

$$
\begin{aligned}
& C_{1}(A)=A \cap \bigcup_{i=1}^{n} V_{i} \\
& C_{2}(A)=A \cap \bigcup_{j=1}^{m} T_{j}
\end{aligned}
$$

Then, $C_{1}(A) \cap C_{2}(A)=C_{1} C_{2}(A)$, and both also are $C F-I s$.
Proof. For all $A \subseteq U$, we have

$$
\begin{aligned}
C_{1}(A) \cap C_{2}(A) & =\left(A \cap \bigcup_{i=1}^{n} V_{i}\right) \cap\left(A \cap \bigcup_{j=1}^{m} T_{j}\right)=A \cap\left(\bigcup_{i=1}^{n} V_{i} \cap \bigcup_{j=1}^{m} T_{j}\right) \\
& =\left(A \cap \bigcup_{j=1}^{m} T_{j}\right) \cap \bigcup_{i=1}^{n} V_{j}=C_{1} C_{2}(A)
\end{aligned}
$$

However,

$$
C_{1}(A) \cap C_{2}(A)=A \cap\left(\bigcup_{i=1}^{n} V_{i} \cap \bigcup_{j=1}^{m} T_{j}\right)=A \cap \bigcup_{i=1}^{n}\left(\bigcup_{j=1}^{m} T_{j} \cap V_{i}\right)
$$

It is easy to see that, for every $x \neq y$,

$$
\left(\bigcup_{j=1}^{m} T_{j} \cap V_{x}\right) \cap\left(\bigcup_{j=1}^{m} T_{j} \cap V_{y}\right)=\emptyset .
$$

That is, $\left\{\left(\bigcup T_{j} \cap V_{i}\right) \mid i=1 \rightarrow n, j=1 \rightarrow m\right\}$ is a partition. Due to Theorem 3.10, we conclude that $C_{1}(A) \cap C_{2}(A)$ as well as $C_{1} C_{2}(A)$ is a CF-I. The proof is completed.

Let us define $W_{c}(A)$, the complementary set of $W(A)$, as $W_{c}(A)=A-W(A)$, that is

$$
W_{c}(A)=A-A \cap \bigcup_{i=1}^{n} V_{i}=(A-A) \cup\left(A-\bigcup_{i=1}^{n} V_{i}\right)=A-\bigcup_{i=1}^{n} V_{i}=\bigcap_{i=1}^{n}\left(A-V_{i}\right)
$$

Since $W(A)$ is a CF-I, and CF-I and CF-II of A form a partition of A, for every $A \subseteq U$, we lead to the following Theorem.

Theorem 3.9. Let consider partition of $V:\left\{V_{1}, V_{2}, V_{3} \ldots, V_{n}\right\}$, that is, $V_{i} \cap V_{j}=\emptyset$, with $i \neq j$. Let construct a set

$$
W_{c}(A)=\bigcap_{i=1}^{n}\left(A-V_{i}\right)
$$

for all $A \subseteq U$. Then, $W_{c}(A)$ is a $C F-I I$ on U.

3.6 Discussion and Open Problems

Given a set of F of functional dependencies over U and the attribute set $X \subseteq U$, so the functional dependencies closure of $X, L(X)$, is the set $\{A \subseteq U \mid X \rightarrow A \in F\}$. It turns out that this set is independent of the underlying attribute set U. We have known that two types of choice function -I and -II associated with L as follows:

$$
C(A)=U-L(U-A), \text { and } H(A)=A \cap L(U-A)
$$

Thus, given a set of F of functional dependencies, we define, $X \subseteq U$, choice-I and -II of X as follows:

$$
\begin{align*}
& H_{F}(X)=X \cap\{A \subseteq U \mid(U-X) \rightarrow A \in F\} \tag{1}\\
& C_{F}(X)=U-\{A \subseteq U \mid(U-X) \rightarrow A \in F\} \tag{2}
\end{align*}
$$

It can be seen the following Propositions.
Proposition 3.11. Let F be a set of functional dependencies and $X \rightarrow Y$ an functional dependency. Then $X \rightarrow Y \in F$ iff $Y \not \subset C_{F}(U-X)$.

Proposition 3.12. Let F be a set of functional dependencies and $X \rightarrow Y$ an functional dependency. Then $X \rightarrow Y \in F$ and $Y \notin X$ iff $Y \subseteq H_{F}(U-X)$.

Now we move to compute $C_{F}(X)$ and $H_{F}(X)$. First of all, we now mention about the Algorithm of computing a closure from a set of functional dependencies and X a set of attributes.

In $[\mathrm{BB}]$, we were known the Algorithm to computing closure operation, by using relation between choice functions and closure operation, we can easily build Algorithm to compute choice functions.

Even though we already have an algorithm to compute closure of X, from the Theorem 3.4 above as follows: Let L_{1} and L_{2} be closure operations on U. A composite function of L_{1} and L_{2}, denoted as $L_{1} L_{2}$, is a closure operation if and only if

$$
L_{1} L_{2} L_{1}=L_{1} L_{2}
$$

Open problems are set up as following:

Open Problem 1. Let $s=\langle U, F>$ and $t=\langle U, V>$ two relation schemes, where U is a set of attributes and F and V are two different sets of FDs over U. We define F^{+}and V^{+}be a set of all FDs that can be derived from F and V respectively.

1) Is it possible build a closure L_{1} and a closure L_{2} from F^{+}and V^{+}respectively such that $L_{1} L_{2}=L_{1} L_{2} L_{1}$?
2) If so, how can we design $L_{1} L_{2}$? In other word, how can we design a relation scheme $w=<U, H>$ from which we can build H^{+}, from which we can design the closure $L_{1} L_{2}=L_{1} L_{2} L_{1}$?
3) If so, is it possible to generalize this design for more than two closure operations?

Open Problem 2. A similar problem as above, but for choice -I and -II of X.
Open Problem 3. Algorithm problems related to union and intersection for choice -I and -II and closures.

Open Problem 4. Generalize those theories presented in this paper to mutilvalued dependencies.

References

[Ar] Armstrong W.W., Dependency Structures of Database Relationships. Information Processing 74, Holland Publ. Co., 1974, 580-583.
[BB] Beeri C., Bernstein P. A., Computational problems related to the design of normal form relation schemes. ACM Trans. on Database Syst. 4, 1, 1979, 30-59.
[BDFS] Beeri C., Dowd M., Fagin R., Staman R., On the Stucture of Armstrong relations for Functional Dependencies. J. ACM 31, 1, 1984, 30-46.
[DFK] Demetrovics J., Furedi Z., Katona G.O.H., Minimum matrix representation of closure operations. Discrete Applied Mathematics, North Holland $11,1985,115-128$.
[DK1] Demetrovics J., Katona G.O.H., Extremal combinatorial problems of databases. In: MFDBS'87, 1st Symposium on Mathematical Fundamental of Database Systems, Dresden, GDR, January, 1987, Lecture Notes in Computer Science, Berlin: Spinger 1987, 99-127.
[DK2] Demetrovics J., Katona G.O.H., A survey of some combinatorial results concerning functional dependencies in database relations. Annals of Mathematics and Artificial Intelligence, 7, 1993, 63-82.
[DLM] Demetrovics J., Libkin L., Muchnik I.B. Functional dependencies in relational databases: A lattice point of view. Discrete Applied Mathematics, North Holland, 40, 1992, 155-185.
[DHLM] Demetrovics J., Hencsey G., Libkin L., Muchnik I.B., Normal Form Relation Schemes: A New Charaterization. Acta Cybernetica, Hungary, 10, 3, 1992, 141-153.
[DT1] Demetrovics J., Thi V.D., On algorithms for generating Armstrong relations and inferring functional dependencies in the Relational datamodel. Computers and Mathematics with Applications , Greate Britain, 26, 4, 1993, 43-55.
[DT2] Demetrovics J., Thi V.D., Some results about normal forms for functional dependencies in the relational data model. Discrete Applied Mathematics, North Holland, 69, 1996, 61-74.
[DT3] Demetrovics J., Thi V.D., Describing Candidate Keys by Hypergraphs. Computer and Artificial Intelligence, V.18, N. 2, 1999, 191-207.
[DT4] Demetrovics J., Thi V.D., Family of functional dependencies and its equivalent descriptions. J. Computer and Math with Application, Great Britain, 29, 4, 1995, 101-109.
[Li] Libkin L., Direct Product Decomposition of Lattices, Closures and Relation Schemes. Discrete Mathematics, North Holland, 112, 1993, 119-138
[MR] Mannila H., Raiha K. J., On The Complexity of Inffering Functional Dependencies. Discrete Applied Mathematics, North Holland, 40, 1992, 237-243.
[RG] Ramakrishnan R., Gehrke J., Database Management Systems. The McGraw - Hill, 2000.
[Ul] Ullman J., Principles of Database and Knowledge Base Systems, VoL 1. Computer Science Press, 1988.

[^0]: *Institute of Information Technology of Vietnam, Department of Database Management System, 18 Hoang Quoc Viet, Hanoi, Vietnam, email: nghiavu@cse.buffalo.edu

