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Abstract

The purpose of this paper is to give an outline of phonetic level annotation
and segmentation of Hungarian speech databases at the levels of definition
and speech technology. In addition to giving guidance to the definition of
the content of a database, the technique of annotation and the procedure
of manual segmentation, we also discuss mathematical models of computer-
aided semi-automatic and automatic segmentation. Finally, we are summing
up our observations about the application of the procedures we gained during
the processing of the MTBA Hungarian Telephone Speech Database.

1 Designing a Speech Database

Statistics based speech processing, particularly automatic speech recognition, re-
quires well-organized, large speech databases. Training a speech recognition pro-
gram is based on statistical parameter estimation. Accurate parameter tuning re-
quires training on a large number of samples. A proper training database is made
up of collections of such samples accompanied with the necessary notes, labels and
transcriptions. The databases should include the observations that are required by
the parameter estimation and all the samples that cover the variability of speech
(and noises of the environment).

A speech database is a large set of sound data which can be organized by
several grouping conditions. The size and internal structure of a database is usually
determined by the area of use. To achieve a reliable level of accurate recognition,
the material should contain every typical variation that is likely to occur during
recognition.
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1.1 Defining the Content of the Database

The first task is to define the content and standards of the database. According
to its purpose, the database may contain sounds uttered individually, words or
sentences or spontaneous speech. The second task is to create reading sheets which
contain the linguistic units uttered by the informants.

1.2 Quantitative Indices of the Database

The number of necessary records and informants should be determined before start-
ing the recording process. The amount of data required largely depends on the
planned application of the speech corpus.

2 Annotation

2.1 The notion of annotation

Annotation means that every sound file is accompanied with a label file which
contains descriptor fields related to the sound file’s parameters and content [16].

2.2 Criteria for Selecting the Description Information

During the annotation of speech material, informatic, linguistic and social informa-
tion is attached to every sound record. We bring examples of these accompanying
information blocks from the SpeechDat-E [11] corpora and The Budapest Soci-
olinguistic Interview [9]. SpeechDat is a collection of databases, created by an
international expert committee initiated by the European Community. The struc-
ture of these databases follows a rule system designed as a guideline for creating
databases for training speaker-independent speech recognition programs [16]. This
rule system guarantees that the databases created according to the specifications
will be similar to each other, therefore they can be used in several speech technology
projects.

The Budapest Sociolinguistic Interview (Budapesti szociolingvisztikai interjú)
contains the material (with English description) of a sociolinguistic research carried
out in the Linguistic Institute of the Hungarian Academy of Sciences.

Based on the above criteria, we suggest using the following variables in anno-
tating databases:

• Informatic: the number of the record, the type of the microphone, subjective
level of noise, SAMPA transcript (labeling during recording: beginning, end,
obtained data, min, max, stimulus by spelling, labeling by spelling: beginning,
end, orthographic record).

• Linguistic: expected lexical material, uttered lexical material, first language
and dialect of the informant.
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Figure 1: A possible user interface of the annotation program

• Social: circumstances (place, date and time of recording), environment, data
related to the informant (gender, age, education, place of birth, occupation,
state of health, knowledge of foreign languages, speech impediment, time
spent abroad).

As an example, Fig. 1 shows the user interface of the software annotation tool
developed and used by the Laboratory of Speech Acoustics at the Technical Uni-
versity of Budapest. The descriptor data fields applied in the case of this database
can be seen at the bottom-left corner.

3 Segmentation

Many speech databases also contain segmentation information. Segmentation
means that, taken as a function of time, the physically observable speech sounds
and their boundaries are delimited by start and ending time markers. The purpose
of the segmentation is to assign a relation between the speech signal and the pho-
netic transcript, i.e. which symbol refers to which interval of time. The units of
the segmentation are the speech sounds of which phonemes are abstracted [16].

3.1 Methods of Phonetic Level Segmentation and Labeling

The goal of phonetic level segmentation and labeling is to delimit phonetically
observable speech sounds and their boundaries as a function of time manually or
possibly with the help of an automatic segmentation routine. In this so-called
“audio-visual phonetic transcription” of the MTBA database we followed the rec-
ommendations of BABEL, an international project dating back to 1997 [17]. The
transcription is done by listening to the text and analyzing the time function and/or
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Figure 2: The user interface of the segmentation program

the spectrum. For that task, we have developed a special program called the “Seg-
mentation Assistant” (its interface is illustrated in Fig. 2).

The top panel of the program displays the waveform of the speech signal, while
the bottom panel shows its spectrogram. In addition to listening, these two visual
representations also help the segmentation. The series of phonetic symbols which
should be assigned to the given record are displayed in the middle. This phonetic
transcript may of course be corrected if the speaker has said something different
from what the software has guessed (based on the ortographic transcript). Pho-
netic symbols and portions of the speech signal are mapped onto each other with
boundary markers which automatically align phonetic symbols with sound sections
after they have been insterted.

3.1.1 Proposed Labeling Rules

Here we give the labeling rules followed by our team during the processing of the
MTBA database:

• SAMPA characters are used for labeling. IPA symbols, widely used by pho-
neticians and phonologists, are not trivial to map onto computer keyboards.
SAMPA, a transcription system developed for computational purposes [1, 18],
is convenient in both typing and transmission.

• Characters are positioned between boundary marks.

• Transcription should represent what was actually said.

• Pauses made during an utterance are marked with ∼.
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• Co-articulatory noises or coughing is marked with {spk}.

• Filled pauses (schwas) are marked with {fil}.

• Noises are marked if they are unambiguously identifiable and do not belong to
environmental noises. Transient noise is marked with {int}, stationary noise
with {sta}.

3.2 Automatic Methods of Segmentation

Phoneme-level segmentation and labeling is a tedious manual task that requires
great care and attention. This work can be made faster and easier by a suitable
algorithm that attempts to position the phonetic boundary markers automatically
or semi-automatically. Although a perfect algorithmic solution for the phonetic
segmentation of a signal is not yet known, even an approximately good positioning
of the boundaries can significantly speed up the manual work.

3.2.1 Semi-Automatic Solution for Segmentation

The automatic segmentation of a speech signal into phones is one of the classic
problems of speech processing. Currently it is widely accepted that this problem
cannot be solved perfectly without at least a partial recognition of the speech signal.
That is, methods that are built solely on signal processing techniques and have no
machine learning component cannot be expected to provide a perfect solution.
Hence we call them “semi-automatic” to emphasize that their output has to be
corrected manually.

These methods all operate by measuring the changes in a properly processed
version of the signal and assume that the large changes refer to segment bound-
aries. The main question is, of course, how to process the signal before detecting
its changes. This processing should result in a signal that has large jumps at
those places where the phonetic quality of the signal changes. Unfortunately, these
points do not exactly coincide with large spectral changes. So a more sophisticated
processing is required.

The “Segmentation Assistant” software developed by our team performs the
following processing. The spectrum is decomposed into four bands. The bands
were originally chosen to roughly correspond to formant bands, but we later realized
that they practically cover 6 Bark wide ranges on the Bark scale. First we give the
formulas that connect the Hertz and the Bark frequency scales:

f = 20 + 600 · sinh(b/6.7),

b = 6.7 · asinh
(

f − 20
600

)
.
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And the frequency bands processed by the system are:

[20Hz; 635Hz],
[635Hz; 1790Hz],
[1790Hz; 4490Hz],
[4490Hz; 11000Hz].

The system detects the changes in energy within these fi bands. The simplest
way to measure changes is by examining the derivative. To avoid the detection
of minor changes the data is smoothed first. This is performed by the simplest
possible method, averaging (however, a more sophisticated filter could obviously
be used as well).

f̂i(t) =
1

2s + 1

s∑
k=−s

fi(t + k),

where parameter s controls the size of the smoothing window and thus the strength
of smoothing.

After this, differentiation is approximated simply by calculating the difference
of neighboring (or, depending on parameter d, farther positioned) data values:

di(t) = |f̂i(t + d) − f̂i(t − d)|.
The smoothing and differentiating steps described above correspond to a linear
system. In contrast to this, it is known that the processing in the human ear
has several non-linear steps, too. To simulate these, we also implemented another
function that emphasizes the changes in the signal. This function is non-linear and
is based on the “adaptive gain control (AGC)” processing characteristic to human
hearing. The formula of this function is:

yi (t) =
fi (t)

1 + K · f̂i (t)
,

where K is a constant that effects the strength of non-linearity.
4. The derivative and the AGC function can be calculated in all four bands and

they detect different kinds of spectral changes. In a final step their aggregation
is calculated by weighted summation. The largest drawback of the whole method
is that the constants occurring in the formulas are all tuned empirically, via te-
dious experiments. In addition, the result of all three processing steps (smoothing,
derivation, AGC) is highly dependent on the spectral resolution (the step size of
the analysis window). Currently we have the optimal parameters only for certain
special cases.

3.2.2 Automatic Segmentation

The best automatic segmentation algorithms are built on machine learning. Spe-
cially, the speech recognition algorithms themselves can also be used for speech
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segmentation. This is because during the recognition of a sentence recognizers per-
form a search: they try to fit every possible phonetic transcript on the underlying
signal. Moreover, the recognizers also try every possible segmentation, since not
only the transcript but also the segment boundaries are unknown. The result of
the recognition consists of the phonetic transcript and the segmentation that was
found to give the best fit. In a speech recognition application the segment bound-
aries are not required, so this component of the result is ignored. However, this
“hidden” feature of the recognizer can be exploited for segmentation. In this case
only one possible transcript is given to the recognizer, so it practically has to find
only the best fitting segmentation for the given transcript. This kind of usage of a
recognizer is commonly called “forced alignment” in the literature.

Based on the concept above the OASIS recognizer developed by our team was
adjusted to the needs of automatic segmentation. The recognizer itself is segment-
based and utilizes and artificial neural network for segmental classification. About
its phoneme classifier component more details can be found in [8]; the sentence-level
buildup of the system was described in [13]. In the following we shortly present the
mathematical background of the system.

The mathematical formulation of speech recognition and automatic
segmentation. The speech recognition algorithms are usually based on statistics
and probability theory. Their starting point is the decision theoretic theorem that
states that to minimize the number of misclassifications one always has to chose the
(a posteriori) most probable choice [2]. More specifically, if X denotes the object
to be classified and W the possible classes (in our case the phonetic transcripts),
then the output Ŵ returned by the recognizer will be:

Ŵ = argmax
W

P (W |X).

From this decision rule it follows that the goal of machine learning is to model
the distribution P (W |X) as precisely as possible. However, since the number of
possible W sentences and the space of the possible X acoustic observations is too
large, W and X both have to be decomposed somehow. To put it simply, it is
impossible to model whole sentences, so we have to build them from some smaller
units. The most reasonable choice for a building block is the phoneme. Let us
suppose that the phonetic transcript W is a string of phonetic symbols, that is
W = w1w2...wN . During recognition not only the identity of the building blocks
are unknown, but also their number and position in the signal. Supposing that their
acoustic counterpart in the signal can be practically anywhere, the best we can do
is to examine every possibility. Let S denote the set of all possible segmentations
of observation X . Then, according to the corresponding rule of probability theory

P (W |X) =
∑
S

P (W |X, S) · P (S|X).

If we presume that the signal has one “correct” segmentation and all the others
are very improbable, then the summation can be approximated by maximization:

P (W |X) ≈ max
S

P (W |X, S) · P (S|X).
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Embedding this formula in the first one we obtain that (phoneme-based) speech
recognition practically means a search along two dimensions. First, we have to find
the transcript W that fits X the best; second, for each W we have to find the best
segmentation S. From this it obviously follows that a recognizer working by the
above principle can easily be used for automatic segmentation as well, as during
recognition it implicitly finds the optimal segmentation of the input signal. The
only difference is that when used for automatic segmentation search over W can be
omitted as the phonetic transcript is readily given.

Speech recognition and segmentation with neural nets. Most speech
recognizers used in practice are based on the Hidden Markov Modeling technol-
ogy [3]. These – exploiting the Bayes theorem – model the P (X |W ) so-called
“class-conditional” ditribution instead of the P (W |X) posteriors. (but this fact
does not significantly influence the previous arguments). Modeling the class-
conditionals means that the distribution of the acoustic observations that belong to
each phoneme symbol is approximated separately, usually in the form of weighted
Gaussian mixtures.

A possible alternative is to apply neural nets instead. These however model
the P (W |X) posteriors [2]. As our recognizer is built on neural networks, in the
following we detail only this case.

Let us analyze the approximating formula of P (W |X) given earlier. As we
see, it consist of the product of two factors. Let us have a closer look at the first
one, P (W |X, S). As we already mentioned, it has to be decomposed because of
the too large number of the possible W and X values. For this we have to make
independency assumptions regarding the distribution P (W |X, S). Our first such
assumption will be that the neighboring phonemes occur independently1. With
this we obtain that

P (W |X, S) =
N∏

i=1

P (wi|X, S).

The other independency assumption is that the quality of a phoneme does
not depend on the full acoustic signal but only on that part that belongs to the
phoneme, according to the segmentation being evaluated. Let this signal excerpt
be denoted by Xi(S). Then

P (W |X, S) =
N∏

i=1

P (wi|Xi(S)).

That is, distribution P (wi|Xi(S)) tells us the probability of a certain phoneme
symbol wi belonging to a given acoustic segment Xi(S). This is why this component
of the system will be called the phoneme classifier. This probability can be properly
modeled by neural nets; the only requirement is that the segments (that are of

1This obviously does not hold and usually the language model of the recognizer is responsible
for modeling the correlation between the neighboring symbols. In our case, however, it will not
be required, as we have only one and readily given phonetic transcript.
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varying length in general) should always be represented by the same number of
features.

The other component of the formula is P (S|X). Its role is to assign a prob-
ability to every possible segmentation. It also has to be decomposed, if we want
to learn it by neural nets. For this we again need an independency assumption.
We will assume that the segments si independently influence the probability of
the whole segmentation. Furthermore, as the possible segmentations compete with
each other, the formula will contain not only the segments of the currently inspected
segmentation but also all the other segments of the other segmentations. Based on
this, our approximation will be:

P (S|X) =
∏

si∈S

P (si|Xsi)
∏

s̄i∈S̄

P (s̄i|Xs̄i),

where s ∈ S denotes the segments of the segmentation under evaluation and s̄ ∈ S̄
denotes all the other segments occurring in any other segmentation. P (si|.) denotes
the probability that a segment is indeed phonetic, while P (s̄i|.) is the probability
that the segment does not correspond to a phone, that is, it is a so-called “anti-
phone” (that is, part of a phone or longer than a real phone). This two-class
classification of speech segments is again well learnable by neural nets.

In practice the number of possible segments is too large, so we simplified the
formula above one step further by not considering all the elements s̄ ∈ S̄ but only
those that are the closest to s [13].

3.3 Manual Segmentation

Although automatic or semi-automatic segmentation has promising results, re-
ally accurate segmentation requires manual work even if it is tedious and time-
consuming.

3.3.1 Procedure of Manual Segmentation

The material prepared for segmentation is accompanied with phonetic transcripts.
Orthographic records are transformed into phonetic transcripts with respect to the
rules of Hungarian pronunciation (e.g. rules of assimilations, etc.). This type of
transcription is referred to as phonotypic transcription.

The work begins with cleaning up the recorded material. After the first listening,
longer pauses, repetitions and words that are not listed in the vocabulary source
are deleted from the wav files. Next, segmentation is done with a proper software
tool – in our case we always use HotSA, a program developed by the Research
Group on Artificial Intelligence of the Hungarian Academy of Sciences and the
University of Szeged. The process of manual segmentation usually consists of the
following steps. The material is listened to again to filter the noise, lexical errors or
transcription errors that remained after the first listening. Then word boundaries
are marked in a zoomed-in spectrogram. During the third listening, boundaries
and phonetic symbols are finalized. As a final step, the segmentation information
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is saved in a phonetic transcription file in the form of a sequence of phonetic codes,
along with starting and ending time information. If required, informants’ errors
and non-environmental noises may be booked, too.

3.3.2 Criteria for Segmentation

During the manual segmentation of the MTBA database we followed the rules
given below. These are again based on the earlier segmentation expertise of our
cooperating partner, Laboratory of Speech Acoustics of the Technical University of
Budapest [16]. These rules are required because it is idealistic to assume that speech
sounds form sound sequences in the linear sound structure. In reality, sounds are
not discrete units with clear-cut boundaries between them, but they have shorter
or longer overlaps. Nevertheless, boundaries must be inserted. Sometimes neither
comparing the spectrogram with the wave form, nor repeated listening gives us
objective cues to find the boundaries accurately. In every case we followed these
guiding principles:

• Segment boundaries are aligned with null transition.

• With voiced sounds, zero transition refers to positive null transition. The
boundary must be marked very precisely. With voiceless sounds, the begin-
ning of the sound can be marked with 1 ms accuracy.

• The beginning of a vowel should be marked at the beginning of voicing (after
a voiceless sound).

• The beginning of stops and affricates are marked after the last period of the
preceding sound.

• In vowel-vowel or vowel-resonant sequences, the boundary is inserted at 50%
of the overlap. This is less accurate because the separation of the sounds is
unsure [17].

• The [cut] code is used for sounds that are not identifiable even after repeated
listening.

The following procedure has proved to be useful: first we listened to the record,
paying attention to noises, speech errors or transcription errors. Then at small
resolution (as in Fig. 2), raw segmentation is done. Finally, at large zoom the
boundaries and phonetic symbols are finalized.

3.4 Observations

During the manual segmentation of the MTBA corpus we encountered many in-
teresting cases and collected a large set of observations. The most important and
general of these was that coarticulation may cause difficulty in the clear perception
of the overlap or even either or both sounds. Hence we are planning to examine
the overlaps thoroughly to improve the notation.
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More specially, we had several findings regarding to certain phones or phone
pairs. We list some of these interesting observations below.

The [l] and [j] sounds are difficult to distinguish. They have no clear boundaries
in neither their wave forms, nor their spectrograms, even though both sounds are
clearly audible. It is likely that the criteria used for consonants are suitable for
separating [j] and [l] because both sounds are sonorants like vowels. Furthermore,
their pronunciation is strongly influenced by the adjacent vowels (e.g. they become
round next to round vowels). There is no clear division in the spectrograms of
these consonants and the vowels next to them. Consequently, [l] and [j] should be
identified using the criteria for vowels, not the criteria for consonants.

Fricatives such as [s], [z], [S], [Z] are easily identifiable due to their strong noise.
The intervocalic allophone of /v/ is difficult to find because it has very little noise.
Clusters of nasals such as [mn] have usually clear spectrograms but clusters like
[mb] (as in gomba ‘mushroom’ or bim-bam ‘ding-dong’) are difficult to segment
because the voiced closure is often missing.

Distinguishing voiced and voiceless h is not unambiguous, nevertheless we are
trying to separate the allophones whenever possible.

Word-final or syllable-final stops (k, g, t) are often unreleased. Segmentation
procedures that localize stops in their release phase, will fail here even though
humans succeed by identifying them from the beginning of the closure.

Voiced g is often unreleased.
Long consonants get shortened between long vowels.

3.4.1 The problem of Closures

Speech recognition programs learn to analyze sound waves as sequences of discrete
speech sounds by receiving large amount of digitalized sound recordings annotated
with manually inserted boundary markers and phonetic transcriptions. Bound-
ary markers are only approximate due to the nature of the speech continuum. A
speech sound does not end before the next one begins but there is a considerable
overlap between them. Boundary markers are not meant to exactly delimit speech
sounds. Their role is to tell the program approximately where to look for informa-
tion. Vowels and continuant consonants can be relatively well recognized from their
innermost portions only. However, the outermost portions (the transitions phases)
play a very important role in the perception of stops.

Papp (1996) and many other authors distinguish three phases of a stop:

• closure (implosion): beginning phase

• hold (occlusion): middle phase

• release (explosion): final phase

The hold phase of voiceless stops is completely silent but even voiced stops
cannot be identified from the week voicing of their hold phase without place infor-
mation. If the speech recognition program ignored the closure and release phase of
stops, then it would have to identify the stops from sheer silence or voicing.
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In speech recognition the easiest way to identify a stop is to examine its release
phase. However, it only works if the stop has release. If there is no release then
the information can be gained from the closure, which a speech recognizer can
take into consideration only if context-dependent models are used. It is interesting
that Hungarian textbooks of phonetics do not mention the importance of closure.
According to Papp [10], the beginning and the middle phase is normally silent,
sound only occurs in the final phase. R. Molnar [12] or Kassai [4, 5, 6] teach the
same.

Ignoring the closure is less problematic in Hungarian than in some other lan-
guages because most Hungarian stops are released. But not all of them. A stop
followed by a homorganic nasal (as in népmese [pm] ‘folk tale,’ kötni [tn] ‘to bind’
or satnya [t’N] ‘sickly’) is only released if there is a pause between the stop and the
nasal. Less frequently, stops may be unreleased at the end of the word or in other
stop + consonant clusters. Unreleased stops are only ignored by popular university
textbooks. Vértes O. [14, 15] mentions them several times.

If satisfied with a speech recognition program which recognizes stop most of the
time then we may choose the easier solution and ignore unreleased stops. When
using so-called context independent phone models, the closure phase is mapped to
the end of a preceding vowel, so the model of the stop ignores it. This is just in
accordance with the manual segmentation of the word. Figure 3 shows an example
– the segmentation of nap ‘sun’:

Figure 3: The segmentation of nap ‘sun’

Note the release of high amplitude after the hold phase marked with minus.
The release of word-final stops is sometimes less powerful, as can be seen in

Figure 4.
Listening to what is marked as [O] in nap or [E] in szöveg, humans are able

to identify the following stop from the closure phase itself. Simple speech recog-
nizers that apply only context-independent phoneme models ignore this acoustic
cue. Even by ignoring it, the program will successfully classify the stop based on
its release only.

If we want to model human perception then the representation of a stop should



Phonetic Level Annotation and Segmentation of Hungarian Speech . . . 671

Figure 4: Release of word-final voiced stop in szöveg ‘text’

include all three phases from closure to release. That is, the model should also
examine the closure phase, which corresponds to the segmentation demonstrated
in Figure 5.

Figure 5: Segmentation of kép ‘picture’ with unreleased [p]

This way the acoustic modelling procedure becomes slightly more complicated
and requires context-dependent models, but it makes it possible to recognize both
released and unreleased stops.
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4 Summary

We have summed up the principles and possibilities of database creation, annotation
and segmentation. Special emphasis was given to the fact that such databases
may be helpful to speech technology in the development (training and testing) of
speaker-independent speech recognition programs. This will open up the road to
develop different services of speech technology. The collected sound material is also
useful for linguistic or speech technological research thanks to the segmentation
and annotation information it contains.
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