
Acta Cybernetica 17 (2005) 11–20.

Generation of Sentences with Their Parses: the

Case of Propagating Scattered Context Grammars

Alexander Meduna∗ and Jǐŕı Techet∗

Abstract

Propagating scattered context grammars are used to generate their sen-
tences together with their parses—that is, the sequences of labels denoting
productions whose use lead to the generation of the corresponding sentences.
It is proved that for every recursively enumerable language L, there exists a
propagating scattered context grammar whose language consists of L’s sen-
tences followed by their parses.

Keywords: parsing, propagating scattered context grammars

1 Introduction

Parallel parsing represents a vivid investigation area concerning compilers today
(see [1, 2, 9, 10, 16]). As parsing is almost always based on suitable grammatical
models, parallel grammars are important to this area. Since scattered context
grammars generate their languages in a parallel way, their use related to parsing
surely deserves our attention.

In this paper, we use the propagating scattered context grammars, which contain
no erasing productions, to generate their language’s sentences together with their
parses—that is, the sequences of labels denoting productions whose use lead to
the generation of the corresponding sentences (in the literature, derivations words
and Szilard words are synonymous with parses). We demonstrate that for every
recursively enumerable language L, there exists a propagating scattered context
grammar whose language consists of L’s sentences followed by their parses. That
is, if we eliminate all the suffixes representing the parses, we obtain precisely L. This
characterization of recursively enumerable languages is of some interest because it
is based on propagating scattered context grammars whose languages are included
in the family of context-sensitive languages, which is properly contained in the
family of recursively enumerable languages. Simply stated, in this paper, we use
the propagating scattered context grammars in such a way that this use provides us
with the parses corresponding to the generated sentences and, in addition, increases
the generative power of these grammars.

∗Department of Information Systems, Faculty of Information Technology, Brno University of
Technology, Božetěchova 2, Brno 61266, Czech Republic

11

12 Alexander Meduna and Jǐŕı Techet

2 Preliminaries

We assume that the reader is familiar with the language theory (see [6, 11, 12, 13]).
For an alphabet V , card(V) denotes the cardinality of V . V ∗ represents the free
monoid generated by V under the operation of concatenation. The unit of V ∗

is denoted by ε. Set V + = V ∗ − {ε}. For w ∈ V ∗, |w| and rev(w) denote the
length of w and the reversal of w, respectively. For U ⊆ V , occur(w, U) denotes
the number of occurrences of symbols from U in w. For L ⊆ V ∗, alph(L) denotes
the set of symbols appearing in a word of L. Let L1, L2 be two languages. The
right quotient of L1 with respect to L2, denoted by L1/L2, is defined as L1/L2 =
{y | yx ∈ L1, for some x ∈ L2, y ∈ alph(L1)∗}. The left quotient of L1 with respect
to L2, denoted by L2\L1, is defined as L2\L1 = {y |xy ∈ L1, for some x ∈ L2, y ∈
alph(L1)∗}.

A scattered context grammar (see [3, 4, 5, 7, 8, 14, 15] and pages 259–260 in
[13]), a SCG for short, is a quadruple, G = (V, P, S, T), where V is an alphabet,
T ⊆ V , S ∈ V − T , and P is a finite set of productions such that each production
has the form (A1, . . . , An) → (x1, . . . , xn), for some n ≥ 1, where Ai ∈ V − T ,
xi ∈ V ∗, for 1 ≤ i ≤ n. If every (A1, . . . , An) → (x1, . . . , xn) ∈ P satisfies
xi ∈ V + for all 1 ≤ i ≤ n, G is a propagating scattered context grammar, a PSCG
for short. If (A1, . . . , An) → (x1, . . . , xn) ∈ P , u = u1A1u2 . . . unAnun+1, and
v = u1x1u2 . . . unxnun+1, where ui ∈ V ∗, 1 ≤ i ≤ n, then u ⇒ v [(A1, . . . , An) →
(x1, . . . , xn)] in G or, simply, u ⇒ v. Let ⇒+ and ⇒∗ denote the transitive closure
of ⇒ and the transitive-reflexive closure of ⇒, respectively. The language of G is
denoted by L(G) and defined as L(G) = {x |x ∈ T ∗, S ⇒∗ x}.

3 Definitions and examples

Throughout this paper, we assume that for every SCG G = (V, P, S, T), there is
a set of production labels denoted by lab(G) such that card(lab(G)) = card(P);
as usual, lab(G)∗ denotes the set of all strings over lab(G). Let us label each
production in P uniquely with a label from lab(G) so that this labeling represents
a bijection from lab(G) to P . To express that p ∈ lab(G) labels a production
(A1, . . . , An) → (x1, . . . , xn), we write p : (A1, . . . , An) → (x1, . . . , xn). For every
p : (A1, . . . , An) → (x1, . . . , xn) ∈ P , lhs(p) and rhs(p) denote A1A2 . . . An and
x1x2 . . . xn, respectively. Furthermore, lpos(p, j) and rpos(p, j) denote Aj and xj ,
respectively. To express that G makes x ⇒∗ y by using a sequence of productions
labeled by p1, p2, . . . , pn, we write x ⇒∗ y [ρ], where x, y ∈ V ∗, ρ = p1 . . . pn ∈
lab(G)∗. Let S ⇒∗ x [ρ] in G, where x ∈ T ∗ and ρ ∈ lab(G)∗; then, x is a
sentence generated by G according to parse ρ. Let G = (V, P, S, T) be a SCG
with lab(G) ⊆ T . G is a proper generator of its sentences with their parses if
L(G) = {x |x = yρ, y ∈ (T − lab(G))∗, ρ ∈ lab(G)∗, S ⇒∗ x [ρ]}.

Next, we illustrate these definitions by three SCGs, each of which has
its set of production labels equal to {1, 2, 3, 4}. First, consider SCG G1 =
({S, A, B, C, a, b, c}, P1, S, {a, b, c}) with P1 containing 1 : (S) → (ε), 2 : (S) →

Generation of Sentences with Their Parses . . . 13

(ABC), 3 : (A, B, C) → (aA, bB, cC), 4 : (A, B, C) → (a, b, c). As {1, 2, 3, 4} �⊆
{a, b, c}, G1 is no proper generator of its sentences with their parses. Second,
consider G2 = ({S, A, B, C, a, b, c, 1, 2, 3, 4}, P2, S, {a, b, c, 1, 2, 3, 4}) with P2 con-
taining 1 : (S) → (1), 2 : (S) → (ABC2), 3 : (A, B, C) → (aA, bB, cC3),
4 : (A, B, C) → (a, b, c4). Notice that {1, 2, 3, 4} ⊆ {a, b, c, 1, 2, 3, 4}. However,
L(G2) = {anbncnrev(ρ) |n ≥ 0, S ⇒∗ anbncnrev(ρ) [ρ]} �= {anbncnρ |n ≥ 0, S ⇒∗

anbncnρ [ρ]}, so G2 is no proper generator of its sentences with their parses either.
Third, consider G3 = ({S, A, B, C, a, b, c, 1, 2, 3, 4}, P3, S, {a, b, c, 1, 2, 3, 4}) with P3

containing 1 : (S) → (1), 2 : (S) → (ABC2$), 3 : (A, B, C, $) → (aA, bB, cC, 3$),
4 : (A, B, C, $) → (a, b, c, 4). Observe that L(G3) = {anbncnρ |n ≥ 0, S ⇒∗

anbncnρ [ρ]}, so G3 is a proper generator of its sentences with their parses.

4 Results

Next, we demonstrate that for every recursively enumerable language L, there is a
PSCG G = (V, P, S, T), which represents a proper generator of its sentences with
their parses so that L results from L(G) by eliminating all production labels in
L(G). To express this property formally, we introduce the weak identity π from V ∗

to (V − lab(G))∗ defined as π(a) = a for every a ∈ (V − lab(G)) and π(p) = ε for
every p ∈ lab(G) and use π in the next main theorem of this paper.

Theorem 1. For every recursively enumerable language L, there exists a PSCG
G such that G is a proper generator of its sentences with their parses and L =
π(L(G)).

Proof. Let L be a recursively enumerable language. Then, there is a SCG Ḡ =
(V̄ , P̄ , S̄, T̄) such that L = L(Ḡ) (see [7]). Set Φ = {〈a〉 | a ∈ T̄}. Define the
homomorhism γ from V̄ to (Φ ∪ (V̄ − T̄) ∪ {Y })+ as γ(a) = 〈a〉 for all a ∈ T̄ and
γ(A) = A for all A ∈ V̄ − T̄ . Extend the domain of γ to V̄ + in the standard
manner; non-standardly, however, define γ(ε) = Y rather than γ(ε) = ε. (Let us
note that at this point γ does not, strictly speaking, represent a morphism on V̄ ∗.)
Next, we introduce a PSCG G = (V, P, S, T) such that G is a proper generator of
its sentences with their parses and L(Ḡ) = π(L(G)). Finally, set Γ = {$1, $2, $3}.
Define the PSCG

G = ({S, X, Y, Z} ∪ V̄ ∪ lab(G) ∪ Φ ∪ Γ, P, S, T̄ ∪ lab(G))

with lab(G) = {�0, �1, �2, �3, �4}∪Ξ1∪Ξ2∪Ξ3, where Ξ1 = {�p1 | p ∈ lab(Ḡ)},
Ξ2 = {�a2 | a ∈ T̄}, Ξ3 = {�a3 | a ∈ T̄}; without any loss of generality, assume
lab(G) ∩ alph(L) = ∅. P is constructed as follows:

1. Add
�1 : (S) → (X�1$1ZS̄) to P ;
�1ε : (S) → (�1ε$1S̄) to P ;

14 Alexander Meduna and Jǐŕı Techet

2. For every p : (A1, . . . , An) → (x1, . . . , xn) ∈ P̄ add
�p1 : ($1, A1, . . . , An) → (�p1$1, γ(x1), . . . , γ(xn)) to P ;
in addition, add
�2 : ($1) → (�2$2) to P ;
�2ε : ($1) → (�2ε$3) to P ;

3. For every a ∈ T̄ , add
�a2 : (X, $2, Z, 〈a〉) → (aX, �a2$2, Y, Z) to P ;
�a3 : (X, $2, Z, 〈a〉) → (a, �a3$3, Y, Y) to P ;

4. Add �3 : ($3, Y) → (�3, $3) to P ;

5. Add �4 : ($3) → (�4) to P .

Basic Idea:

First, we explain how G makes the generation of a nonempty sentence followed by
its parse; then, we explain the generation of the empty sentence followed by its
parse.

G makes the generation of a1a2 . . . anρ, where n ≥ 1, each ai ∈ T̄ and ρ is
the corresponding parse, by productions introduced in steps 1 through 5 in this
order. After starting this generation by using the production from 1, it applies
productions introduced in 2, which simulate the applications of productions from
P̄ . More precisely, it simulates the use of p : (A1, . . . , An) → (x1, . . . , xn) ∈ P̄
by using �p1 : ($1, A1, . . . , An) → (�p1$1, γ(x1), . . . , γ(xn)) ∈ P so that it places
its own label, �p1, right behind the previously generated production labels; this
substring of labels occurs between the leftmost symbol, X , and $1, in the sentential
form. Otherwise, �p1 : ($1, A1, . . . , An) → (�p1$1, γ(x1), . . . , γ(xn)) is analogical
to p : (A1, . . . , An) → (x1, . . . , xn) except that (i) the former has the fill-in symbol
Y where the latter has ε and (ii) the former has 〈ai〉 where the latter has terminal
ai. After using productions introduced in 2, G has its current sentential form of the
form Xτ$2Zu0〈a1〉u1〈a2〉u2 . . . un−1〈an〉un, where τ is a prefix of ρ and ui ∈ {Y }∗.
By using productions from 3, it places a1 . . . an at the beginning of the sentential
form while replacing each 〈ai〉 with Y and generating the production labels. By
using productions labeled �3 (see step 4), G replaces each Y with �3 while shifting
$3 to the right. Finally, the application of the production labeled with �4 completes
the generation of a1a2 . . . anρ (see step 5). Finally, let us explain how G makes the
generation of the empty sentence ε followed by its parse. By use of productions
labeled with �1ε and �2ε instead of �1 and �2, respectively, the process of placing
terminal symbols at the beginning of the sentential form (by productions from step
3) is skipped; otherwise, the derivation proceeds as above.

Generation of Sentences with Their Parses . . . 15

Rigorous proof (Sketch):

Claim 1. G generates every w ∈ L(G) − lab(G)+ in the following way

S ⇒ X�1$1ZS̄ [�1]
⇒+ x [ρ]
⇒ y [�2]
⇒∗ z [σ]
⇒ u [�a3]
⇒+ v [τ]
⇒ w [�4]

(1)

where �a3 ∈ Ξ3, ρ, σ and τ are sequences consisting from Ξ1, Ξ2 and {�3},
respectively.

Proof. First, let us make these four observations:

1. Since the only productions with S on its left-hand side are productions in-
troduced in step 1 of the construction, S ⇒+ w surely starts with a step
made by one of these productions. Notice that alph({w}) ∩ T̄ �= ∅ and only
productions labeled with p ∈ Ξ2 ∪ Ξ3 satisfy a ∈ alph({rhs(p)}), a ∈ T̄ .
As X = lpos(p, 1), a ∈ alph({rpos(p, 1)}), and only production labeled with
p ∈ �1 satisfies X ∈ alph({rhs(p)}), the derivation starts with a step made
by this production. This derivation ends by applying production labeled with
�4 because it is the only production with its right-hand side over T ∗. Thus,
S ⇒+ w can be expressed as

S ⇒ X�1$1ZS̄ [�1]
⇒+ v
⇒ w [�4]

2. Let p be the label of any production introduced in steps 2 through 4 of
the construction; then, occur(lhs(p), Γ) = occur(rhs(p), Γ) = 1. In greater
detail, for every �p1 ∈ Ξ1, �a2 ∈ Ξ2, �a3 ∈ Ξ3, productions intro-
duced in step 2 satisfy occur(lhs(�p1), {$1}) = occur(rhs(�p1), {$1}) = 1,
occur(lhs(�2), {$1}) = 1, occur(rhs(�2), {$2}) = 1, occur(lhs(�2ε), {$1})
= 1, occur(rhs(�2ε), {$3}) = 1. Similarly, productions introduced in step 3
satisfy occur(lhs(�a2), {$2}) = occur(rhs(�a2), {$2}) = 1, occur(lhs(�a3),
{$2}) = 1, occur(rhs(�a3), {$3}) = 1. Finally, production introduced in step
4 satisfies occur(lhs(�3), {$3}) = occur(rhs(�3), {$3}) = 1.

3. Because X ∈ alph({x}) and only productions labeled with p ∈ Ξ3 satisfy
X ∈ alph({lhs(p)}) and X /∈ alph({rhs(p)}), production labeled with �2ε
cannot be used.

4. Let p be the label of any production introduced in steps 1 through 5; then,
alph({rhs(p)}) ∩ lab(G) = {p} and occur(rhs(p), {p}) = 1.

16 Alexander Meduna and Jǐŕı Techet

Based on these observations, notice that G generates every w ∈ L(G) − {�0}
in the way described in the formulation of Claim 1.

Claim 2. Consider derivation (1). In its beginning

S ⇒ X�1$1ZS̄ [�1]
⇒+ x [ρ]
⇒ y [�2]

every sentential form s in X�1$1ZS̄ ⇒+ x satisfies s ∈ {X}lab(G)+{$1}{Z}(Φ∪
(V̄ − T̄) ∪ {Y })+ and y ∈ {X}lab(G)+{$2}{Z}(Φ ∪ {Y })+.

Proof. By the definition of homomorphism γ, productions labeled with �p1 rewrite
symbols over Φ∪ (V̄ − T̄)∪{Y } and change $1 to �p1$1. Since V̄ ∩{X, $1, Z} = ∅,
every sentential form s in X�1$1ZS̄ ⇒+ x satisfies s ∈ {X}lab(G)+{$1}{Z}(Φ ∪
(V̄ − T̄)∪{Y })+. Only Ξ1 contains production labels p satisfying alph({lhs(p)})∩
(V̄ − T̄) �= ∅. Therefore, to generate w ∈ T ∗, productions labeled with �p1 have to
be applied until s ∈ {X}lab(G)+{$1}{Z}(Φ∪{Y })+. Finally, a production labeled
with �2 is used, so y ∈ {X}lab(G)+{$2}{Z}(Φ ∪ {Y })+ and the claim holds.

Claim 3. In
y ⇒∗ z [�σ]

⇒ u [�a3]

of derivation (1), every sentential form o in y ⇒∗ z can be expressed as o ∈
T̄ ∗{X}lab(G)+{$2}{Y }∗{Z}(Φ∪ {Y })+ and u ∈ T̄ +lab(G)+{$3}{Y }+. In greater
detail,

X�p1 . . . �pn$2ZY i0〈b1〉Y i1〈b2〉Y i2 . . . 〈bm〉Y im

⇒ b1X�p1 . . . �pn�b12$2Y
i0+1ZY i1〈b2〉Y i2 . . . 〈bm〉Y im [�b12]

⇒ b1b2X�p1 . . . �pn�b12�b22$2Y
i0+1Y i1+1ZY i2 . . . 〈bm〉Y im [�b22]

⇒m−3 b1b2 . . . bm−1X�p1 . . . �pn�b12 . . . �bm−12$2Y
i0+1Y i1+1 . . .

. . . Y im−2ZY im−1〈bm〉Y im [σ̄]
⇒ b1b2. . .bm�p1. . .�pn�b12. . .�bm−12�bm3$3Y

i0+1Y i1+1. . .Y im+1 [�bm3]

where �p1, . . . , �pn ∈ lab(G) are labels that denote productions introduced in 1–
2, 〈b1〉, . . . , 〈bm〉 ∈ Φ, b1, . . . , bm ∈ T̄ , σ̄ = �b32 . . . �bm−12, i0, i1, . . . , im ≥ 0,
m = |s|, where s ∈ L(Ḡ) is a corresponding sentence of the SCG Ḡ.

Proof. Notice that occur(lhs(�a2), {X}) = occur(rhs(�a2), {X}) = 1 and
occur(lhs(�a2), {Y }) = occur(rhs(�a2), {Y }) = 1. In every derivation step of
y ⇒∗ z, the the first symbol 〈b〉 ∈ Φ, following Z is replaced with Z, X is changed
to bX , and $2 is changed to l$2, where l ∈ lab(G). As �a2 and �a3 are the only
production labels p satisfying alph({lhs(p)}) ∩ Φ �= ∅, alph({rhs(p)}) ∩ Φ = ∅ and
lpos(�a2, 3) = Z, rpos(�a2, 4) = Z, Z can replace only the first occurance of

Generation of Sentences with Their Parses . . . 17

〈b〉 ∈ Φ behind Z to generate w ∈ T ∗. Productions labeled with �a2 are used
m − 1 times. Thus, y ⇒∗ z has the form

X�p1 . . . �pn$2ZY i0〈b1〉Y i1〈b2〉Y i2 . . . 〈bm〉Y im

⇒ b1X�p1 . . . �pn�b12$2Y
i0+1ZY i1〈b2〉Y i2 . . . 〈bm〉Y im [�b12]

⇒ b1b2X�p1 . . . �pn�b12�b22$2Y
i0+1Y i1+1ZY i2 . . . 〈bm〉Y im [�b22]

⇒m−3 b1b2 . . . bm−1X�p1 . . . �pn�b12�bm−12$2Y
i0+1Y i1+1 . . .

. . . Y im−2ZY im−1〈bm〉Y im [σ̄]

where every sentential form satisfies T̄ ∗{X}lab(G)+{$2}{Y }∗{Z}(Φ ∪ {Y })+.
Finally, some production labeled with �a3 is applied; therefore, z ⇒ u can be

expressed as

b1b2 . . . bm−1X�p1 . . . �pn�b12 . . . �bm−12$2Y
i0+1Y i1+1 . . .

. . . Y im−2ZY im−1〈bm〉Y im

⇒ b1b2 . . . bm�p1 . . . �pn�b12 . . . �bm−12�bm3$3Y
i0+1Y i1+1 . . . Y im+1 [�bm3]

with u ∈ T̄ +lab(G)+{$3}{Y }+.
Putting together the previous parts of derivation, we obtain the formulation of

Claim 3. Thus, Claim 3 holds.

Claim 4. In
u ⇒+ v [τ]

⇒ w [�4]

of derivation (1), every sentential form s of u ⇒+ v satisfies s ∈
T̄ +lab(G)+{$3}{Y }∗ and w ∈ T̄ +lab(G)+. In greater detail, this derivation can
be expressed as

b1 . . . bm�p1 . . . �pn{$3}Y i

⇒ b1 . . . bm�p1 . . . �pn�3{$3}Y i−1 [�3]
⇒ b1 . . . bm�p1 . . . �pn�3�3{$3}Y i−2 [�3]
⇒i−3 b1 . . . bm�p1 . . . �pn�3i−1{$3}Y [τ̄]
⇒ b1 . . . bm�p1 . . . �pn�3i{$3} [�3]
⇒ b1 . . . bm�p1 . . . �pn�3i�4 [�4]

where all bj ∈ T̄ , 1 ≤ j ≤ m and �pk ∈ lab(G), 1 ≤ k ≤ n are labels that denote
productions introduced in steps 1 through 3 of the construction, τ̄ is a sequence of
production labels �3.
Proof. Notice that lpos(�3, 1) = rpos(�3, 2) = $3. Observe, that in order to
generate w ∈ T ∗ the first occurrence of Y following $3 has to be taken by �3 in
each derivation step. Finally, �4 is applied. At this moment, w satisfies w ∈ T ∗

and w ∈ T̄ +lab(G)+.

The next claim formally demonstrates how G generates the empty sentence ε fol-
lowed by its parse.

18 Alexander Meduna and Jǐŕı Techet

Claim 5. G generates every w ∈ L(G) ∩ lab(G)+ in the following way

S ⇒ �1ε$1S̄ [�1ε]
⇒+ x [ρ]
⇒ y [�2ε]
⇒+ v [τ]
⇒ w [�4]

(1)

where ρ and τ are sequences consisting from Ξ1 and {�3}, respectively.

Proof. Notice that alph({w}) ∩ T̄ = ∅ and only productions labeled with p ∈ Ξ3

satisfy X ∈ alph({lhs(p)}), X /∈ alph({rhs(p)}) and X = lpos(p, 1), a = rpos(p, 1),
a ∈ T̄ . Therefore, X cannot appear in any sentential form of S ⇒∗ w, and the
derivation starts with a step made by �1ε. As X /∈ alph({x}) and for p ∈ Ξ2 ∪Ξ3,
X ∈ alph({lhs(p)}), the production labeled with �2ε has to be used. Observe that
other derivation steps are made in the way described in Claim 2 and Claim 4.

From Claims 4 and 5, it follows that for every recursively enumerable language
L, there exists a PSCG G such that G is a proper generator of its sentences with
their parses and L = π(L(G)).

From Theorem 1, we obtain:

Corollary 1. For every recursively enumerable language L, there exists a PSCG
G such that G is a proper generator of its sentences with their parses and L =
L(G)/lab(G)∗ ∩ alph(L)∗.

Alternatively, we can introduce a SCG G = (V, P, S, T), as a proper generator
of its sentences preceded by their parses so that L(G) = {x |x = ρy, y ∈ (T −
lab(G))∗, ρ ∈ lab(G)∗, S ⇒∗ x [ρ]}.
Theorem 2. For every recursively enumerable language L, there exists a PSCG
G such that G is a proper generator of its sentences preceded by their parses and
L = π(L(G)).

Proof. This theorem can be proved by a straightforward modification of Theorem
1. A detailed version of this proof is left to the reader.

Corollary 2. For every recursively enumerable language L, there exists a PSCG
G such that G is a proper generator of its sentences preceded by their parses and
L = lab(G)∗\L(G) ∩ alph(L)∗.

5 Conclusion

In this concluding section, we make some final notes and suggestions regarding the
future investigation.

First, notice that all the above results can be also established so that the gen-
erated sentences are followed by the reversals of their parses.

Generation of Sentences with Their Parses . . . 19

Second, consider the unordered scattered context grammars (see page 260 in
[13]). In essence, in this version of scattered context grammars, we apply a pro-
duction of the form (A1 → x1, . . . , An → xn) so we simultaneously replace Ai with
xi, for all i = 1, . . . , n, no matter in what order the nonterminals Ai appear in
the rewritten word. Naturally, we are tempted to use the construction given in
the proof of Theorem 1 for these grammars in order to obtain analogical results
to the above results. Unfortunately, this construction does not work for the un-
ordered versions of scattered context grammmars. Specifically, steps 3 and 4 of
the construction require the prescribed order of rewritten nonterminals; otherwise,
the result is not guaranteed. Can we prove the results of this paper in terms of
unordered scattered context grammars by using some other methods?

Finally, let us recall that we have demonstrated that for every recursively enu-
merable language, there exists a propagating scattered context grammar that gener-
ate the language’s sentences followed by their parses. From a broader perspective,
we could naturally reformulate this generation of sentences with their parses in
terms of other propagating rewriting mechanisms that define the language family
contained in the family of context-sensitive languages. Probably, some propagat-
ing parallel rewriting mechanisms, such as propagating PC grammar systems (see
Chapter 4 in Volume 2 of [12]), can be used in this way. Furthermore, some propa-
gating regulated grammars, such as propagating matrix grammars (see Chapter 3
in Volume 3 of [12]), seems to be suitable for this generation as well. On the other
hand, we can hardly base the generation of sentences with their parses upon classi-
cal sequential rewriting mechanisms, such as context-free grammars. The authors
suggest these problem areas as the topics of future investigation that continues with
the discussion opened in the present paper.

Acknowledgements We thank the anonymous referee for useful comments con-
cerning the first version of this paper. The first author gladly acknowledges support
of GACR grant 201/04/0441.

References

[1] Chatterjee, S. (eds.): Languages and Compilers for Parallel Computing,
Springer-Verlag, London, 1999.

[2] Darte, A. et al. (eds.): Compilers for Parallel Computers, World Scientific,
Singapore, 2000.

[3] Fernau, H.: Scattered Context Grammars with Regulation, Annals of Bucharest
Univ., Math.-Informatics Series 45(1) (1996), 41–49.

[4] Gonczarowski, J. and Warmuth, M. K.: Scattered Versus Context-Sensitive
Rewriting, Acta Informatica 27 (1989), 81–95.

[5] Greibach, S. and Hopcroft, J. E.: Scattered Context Grammars, Journal of
Computer and System Sciences 3 (1969), 233–247.

20 Alexander Meduna and Jǐŕı Techet

[6] Meduna, A.: Automata and Languages: Theory and Applications, Springer-
Verlag, London, 2000.

[7] Meduna, A.: A Trivial Method of Characterizing the Family of Recursively
Enumerable Languages by Scattered Context Grammars, EATCS Bulletin 56
(1995), 104–106.

[8] Meduna, A.: Generative Power of Three-Nonterminal Scattered Context Gram-
mars, Theoretical Computer Science 237 (2000), 625–631.

[9] Midkiff, S. P. et al. (eds.): Languages and Compilers for Parallel Computing
(13th International Workshop on Languages and Compilers for Parallel Comput-
ing, 2000, Yorktown Heights, N.Y.), Springer, London, 2001.

[10] Rauchwerger, L. (eds.): Languages and Compilers for Parallel Computing
(16th International Workshop, October 2003, Colledge Station, Texas), Springer,
London, 2004.

[11] Revesz, G. E.: Introduction to Formal Language Theory, McGraw-Hill, New
York, 1983.

[12] Rozenberg, G. and Salomaa, A.(eds.): Handbook of Formal Languages, Volume
1 through 3, Springer-Verlag, 1997.

[13] Salomaa, A.: Formal Languages, Academic Press, London, 1973.

[14] Vaszil, G.: On the Number of Conditional Rules in Simple Semi-conditional
Grammars, Theoretical Computer Science, 2004 (in press).

[15] Virkkunen, V.: On Scattered Context Grammars, Acta Universitatis Ouluen-
sis, Series A, Mathematica 6 (1973), 75–82.

[16] Wolfe, M. J.: High Performance Compilers for Parallel Computing, Addison-
Wesley, Redwood City, 1996.

Received May, 2004

