Quasi-star-free Languages on Infinite Words*

Zhilin Wu^{\dagger}

Abstract

Quasi-star-free languages were first introduced and studied by Barrington, Compton, Straubing and Thérien within the context of circuit complexity in 1992, and their connections with propositional linear temporal logic were established by Ésik and Ito recently. While these results are all for finite words, in this paper we consider the languages on infinite words.

1 Introduction

Characterizations of different subclasses of regular languages have been a constantly active research area since Büchi characterized regular languages by monadic second order logic in [3]. One of the most important characterizations among them is the characterization of star free languages: in $[11,17,9,7,13,19,18,4]$, star free languages on finite and infinite words were characterized by aperiodic monoids, monadic first order logic and linear temporal logic.

Quasi-star-free languages were first studied by Barrington, Compton, Straubing and Thérien in [2]. Their motivation was to characterize the regular languages that can be recognized by constant-depth Boolean circuits using OR,AND and NOT gates $\left(\mathrm{AC}^{0}\right)$. They found that these languages are precisely the quasi-star-free languages. And they give a characterization in terms of quasi-aperiodic semigroups and in terms of first order logic $\mathrm{FO}[\mathrm{C}]$, which uses only the numerical predicates $x<y$ and $x \equiv r(\bmod d)$. Recently, Ésik and Ito proved in [5] that $\mathrm{FO}[\mathrm{C}]$ and propositional linear temporal logic with cyclic counting(LTL[C]) have the same expressive power. While these results are all for finite words, we extend them to the case of infinite words in this paper.

This paper is organized as follows. In section 2 we give some preliminaries about regular languages on finite and infinite words. Then in section 3, we give some definitions of quasi-star-free languages on finite words $\left(\mathrm{QSF}^{\mathrm{F}}\right)$, and summarize

[^0]the results of $\mathrm{QSF}^{\mathrm{F}}$ in $[2,5]$. In section 4, we define quasi-star-free languages on infinite words $\left(\mathrm{QSF}^{\mathrm{I}}\right)$, and extend the results of $\mathrm{QSF}^{\mathrm{F}}$ to $\mathrm{QSF}^{\mathrm{I}}$. Finally in section 5 , we give some conclusions and remarks on this paper.

2 Preliminaries

2.1 Regular languages on finite words

In this subsection, at first we present some basic facts of semigroups and formal languages on finite words (cf. [12, 6, 14, 10] for more information), then after recalling the definitions of monadic first order logic ($\mathrm{FO}[<]$) and linear temporal $\operatorname{logic}(\mathrm{LTL})$ interpreted on finite words, we introduce the classical results of star free languages on finite words.

Let A be a finite alphabet, and $L \subseteq A^{*}$ be regular.

2.1.1 Monoids and formal languages on finite words

Let M be a finite monoid. We say that morphism $\phi: A^{*} \rightarrow M$ recognizes L if there is $X \subseteq M$ such that $L=X \phi^{-1}$. And we say that monoid M recognizes L if there is a morphism $\phi: A^{*} \rightarrow M$ recognizing L. Moreover we say that congruence \approx on A^{*} recognizes L if the natural morphism $\phi: A^{*} \rightarrow A^{*} / \approx$ recognizes L.

The syntactic congruence of L, \approx_{L}, is defined by: $u \approx_{L} v$ iff (xuy $\in L$ iff $x v y \in L$ for all $x, y \in A^{*}$); the syntactic monoid of $L, M(L)$, is defined by the quotient monoid A^{*} / \approx_{L}; and the syntactic morphism of $L, \eta_{L}: A^{*} \rightarrow M(L)$, is defined by $u \eta_{L}=[u]$, where $[u]$ denotes the equivalence class of \approx_{L} containing u. Syntactic congruence is the coarsest congruence of A^{*} recognizing L, i.e. for any congruence $\approx \operatorname{recognizing} L, u \approx v$ implies $u \approx_{L} v$ for all $u, v \in A^{*}$.

A morphism $\phi: A^{*} \rightarrow M$ recognizes L iff there is a morphism $\theta: \operatorname{Im}(\phi) \rightarrow$ $M(L)$ (where $\operatorname{Im}(\phi)$ is the image of ϕ) such that for all $u \in A^{*}, u(\phi \theta)=u \eta_{L}$. Furthermore, a morphism $\phi: A^{*} \rightarrow M$ recognizes L iff there are morphisms ϕ^{\prime} : $A^{*} \rightarrow M^{\prime}$ and $\theta: \operatorname{Im}(\phi) \rightarrow M^{\prime}$ such that ϕ^{\prime} recognizes L and for all $u \in A^{*}$, $u(\phi \theta)=u \phi^{\prime}$.
L is star free if L can be constructed from singleton languages $\{a\}(a \in A)$ and the language A^{*} by finite applications of operations of union, complementation, and concatenation.
L is noncounting if there is some $n_{0} \in N$ satisfying that for all $n \geq n_{0}, x y^{n} z \in L$ iff $x y^{n+1} z \in L$ for all $x, y, z \in A^{*}$.

A monoid M is aperiodic if there is some $n_{0} \in N$ satisfying that for all $n \geq n_{0}$, $m^{n}=m^{n+1}$ for all $m \in M$.
L is aperiodic if $M(L)$ is aperiodic. It is easy to show that L is aperiodic iff there is an aperiodic monoid M recognizing L.

It is not hard to show that L is noncounting iff L is aperiodic. In the remainder of this paper, we don't distinguish between the "noncounting" and "aperiodic" properties of regular languages on finite words.

2.1.2 First order logic and linear temporal logic on finite words

Let $\mathrm{FO}[<]$ denote first order logic on words with binary predicate $<$ and unary predicates $P_{a}(a \in A)$. The formulas of $\mathrm{FO}[<]$ are defined by the following rules:

$$
\varphi:=P_{a}(x)|x<y| \varphi_{1} \vee \varphi_{2}|\neg \psi|(\exists x) \psi
$$

The semantics of $\mathrm{FO}[<]$ are defined as follows: let X be a variable set and φ be a formula with free variables in $X ; u \in A^{*}$ and $\eta: X \rightarrow\{0, \ldots,|u|\}$, i.e., η maps variables in X to "positions" in u.

- $(u, \eta) \models P_{a}(x)$, if $u[|x|]=a$, where $u[|x|]$ is the letter of u at position $x \eta$ (the first position is 0 , the last position is $|u|$, and by convention the letter at position $|u|$ is ε);
- $(u, \eta) \models x<y$, if $x \eta<y \eta$;
- $(u, \eta) \models \varphi_{1} \vee \varphi_{2}$, if $(u, \eta) \models \varphi_{1}$ or $(u, \eta) \models \varphi_{2}$;
- $(u, \eta) \models \neg \psi$, if not $(u, \eta) \models \psi$;
- $(u, \eta) \vDash(\exists x) \psi$, if there exists a function $\eta^{\prime}: X \rightarrow\{0, \ldots,|u|\}$, which agrees with η on $X-\{x\}$ and possibly differs from η on x, such that $(u, \eta \prime) \models \psi$.

Let φ be an $\mathrm{FO}[<]$ sentence and $u \in A^{*}$. We write $u \vDash \varphi$ if there is an $\eta: X \rightarrow\{0, \ldots,|u|\}$ such that $(u, \eta) \models \varphi$.

Remark 2.1. The semantics of $F O[<]$ defined in [5] had a subtle inaccuracy: the assignments of variables were defined by function $\lambda: X \rightarrow[|u|]$, where $[|u|]=$ $\{0, \ldots,|u|-1\}$. But then for the empty string ε, the assignments would become into $\lambda: X \rightarrow \emptyset$, since $[|\varepsilon|]=[0]=\emptyset$.

We avoid the accuracy by defining the assignments as $\eta: X \rightarrow\{0, \ldots,|u|\}$, and thus formulas of $F O[<]$ can be interpreted on the empty string ε.

It is natural to define the boolean operations " \wedge ", " \rightarrow ", etc. in a standard way. Here we introduce several other abbreviations for $\mathrm{FO}[<]$: Last (x) for $\forall y(\neg(x<y))$; True for $\varphi \vee \neg \varphi$, where φ is a fixed sentence; and False for \neg True.

A language $L \subseteq A^{*}$ is definable in $\mathrm{FO}[<]$ if there is an $\mathrm{FO}[<]$ sentence φ such that for all $u \in A^{*}, u \models \varphi$ iff $u \in L$.

Associate each letter a in A with a propositional constant p_{a}. Then formulas of linear temporal logic (LTL,[15]) over alphabet A are defined by the following rules:

$$
\varphi:=p_{a}\left|\varphi_{1} \vee \varphi_{2}\right| \neg \psi|X \psi| \varphi_{1} U \varphi_{2}
$$

The semantics of LTL formulas on finite words are defined as follows: Let φ be an LTL formula, $u \in A^{*}$. Denote the suffix of u starting from the i-th position (the first position is 0) as u^{i}, where $0 \leq i \leq|u|$, and the suffix starting from the $|u|$-th position is empty string ε.

- $u \neq p_{a}$, if $u=a v$, for some $v \in A^{*}$;
- $u \models \varphi_{1} \vee \varphi_{2}$, if $u \models \varphi_{1}$ or $u \models \varphi_{2}$;
- $u \models \neg \varphi_{1}$, if not $u \models \varphi_{1}$;
- $u \models X \varphi_{1}$, if $|u|>0$ and $u^{1} \models \varphi_{1}$;
- $u \models \varphi_{1} U \varphi_{2}$, if there is $0 \leq i \leq|u|$ such that $u^{i} \models \varphi_{2}$ and for all $0 \leq j<i$, $u^{j} \models \varphi_{1}$.

We introduce several abbreviations for LTL, let True $\equiv p_{a} \vee \neg p_{a}$, where a is any letter in A, and let False $\equiv \neg$ True. Moreover, let End denote the formula $\wedge_{a \in A} \neg p_{a}$, so that for all $u \in A^{*}, u \models$ End iff $u=\varepsilon$.
Remark 2.2. When interpreted on finite words, the LTL formulas $\neg X \varphi$ and $X \neg \varphi$ are not equivalent while on infinite words they are (See Section 2.2.2 for LTL interpreted on infinite words). For instance, $\varepsilon \vDash \neg X p_{a}$ while not $\varepsilon \vDash X \neg p_{a}$, where ε is the empty string.

A language $L \subseteq A^{*}$ is LTL definable iff there is an LTL formula φ such that for all $u \in A^{*}, u \models \varphi$ iff $u \in L$.

2.1.3 Classical results of star free languages on finite words

The classical results of star free languages on finite words are summarized in the following proposition:

Proposition 2.3. Let $L \subseteq A^{*}$ be regular. The following conditions are equivalent [11, 17, 9, 7, 4]:

- L is star free;
- L is aperiodic;
- $M(L)$ contains no nontrivial group (i.e. contains no subsets which form a nontrivial group under the product of $M(L)$);
- L is $F O[<]$ definable;
- L is LTL definable.

2.2 Regular languages on infinite words

Similar to the case of finite words, in this subsection at first we present some basic facts of semigroup and formal languages on infinite words (cf. [1, 20, 21, 4, 16]), then we interpret monadic first order logic $(F O[<])$ and linear temporal logic (LTL) on infinite words, at last we introduce the classical results of star free languages on infinite words.

Let A be a finite alphabet and $L \subseteq A^{\omega}$ be regular, i.e., $L=\bigcup_{i=1}^{m} X_{i} Y_{i}^{\omega}$, where $X_{i} \subseteq A^{*}, Y_{i} \subseteq A^{+}$are regular languages on finite words.

2.2.1 Monoids and formal languages on infinite words

Let M be a finite monoid. L is recognized by morphism $\phi: A^{*} \rightarrow M$ if for all $m, n \in M,\left(m \phi^{-1}\right)\left(n \phi^{-1}\right)^{\omega} \cap L \neq \emptyset$ implies $\left(m \phi^{-1}\right)\left(n \phi^{-1}\right)^{\omega} \subseteq L$. A monoid M recognizes L iff there is a morphism $\phi: A^{*} \rightarrow M$ recognizing L. Moreover we say that a congruence \approx on A^{*} recognizes L if the natural morphism $\phi: A^{*} \rightarrow A^{*} / \approx$ recognizes L.

The syntactic congruence of L, \approx_{L}, is defined by: for all $u, v \in A^{*}, u \approx_{L} v$ iff for all $x, y, z \in A^{*},\left(x u y z^{\omega} \in L\right.$ iff $\left.x v y z^{\omega} \in L\right)$ and $\left(x(y u z)^{\omega} \in L\right.$ iff $\left.x(y v z)^{\omega} \in L\right)$. The syntactic monoid of $L, M(L)$, is defined by the quotient monoid A^{*} / \approx_{L}. The syntactic morphism of $L, \eta_{L}: A^{*} \rightarrow M(L)$, is defined by $u \eta_{L}=[u]$, where $[u]$ is the equivalence class of \approx_{L} containing u. Syntactic congruence is the coarsest congruence recognizing L.

Proposition 2.4. Let $L \subseteq A^{\omega}$ be regular. A morphism $\phi: A^{*} \rightarrow M$ recognizes L iff there is a morphism $\theta: \operatorname{Im}(\phi) \rightarrow M(L)$ such that for all $u \in A^{*}, u \phi \theta=u \eta_{L}$.

Proof.
$" \Rightarrow$ " part:
Define $\theta: \operatorname{Im}(\phi) \rightarrow M(L)$ as follows:

$$
m \theta=u \eta_{L}, \text { where } u \in A^{*}, u \phi=m
$$

θ is well defined since $u \phi=v \phi$ implies that $u \eta_{L}=v \eta_{L}$ (syntactic congruence is the coarsest one).

It is easy to verify that $\phi \theta=\eta_{L}$ " \Leftarrow " part:

It is sufficient to prove that for all $m, n \in \operatorname{Im}(\phi)$

$$
\phi^{-1}(m)\left[\phi^{-1}(n)\right]^{\omega} \bigcap L \neq \emptyset \text { implies } \phi^{-1}(m)\left[\phi^{-1}(n)\right]^{\omega} \subseteq L
$$

Since $\phi^{-1}(m)\left[\phi^{-1}(n)\right]^{w} \bigcap L$ is a nonempty regular language, there is an ultimately periodic ω-word $x y^{\omega} \in \phi^{-1}(m)\left[\phi^{-1}(n)\right]^{\omega} \cap L$. So $x y^{\omega}$ has a decomposition: $w_{0} w_{1}^{\omega}$ such that

$$
w_{0} \in \phi^{-1}(m)\left[\phi^{-1}(n)\right]^{p}, w_{1} \in\left[\phi^{-1}(n)\right]^{q} \text { for some } p, q \geq 0
$$

It is easy to see that $\phi^{-1}(m)\left[\phi^{-1}(n)\right]^{\omega} \subseteq\left[w_{0} \phi \phi^{-1}\right]\left[w_{1} \phi \phi^{-1}\right]^{\omega}$, thus it is sufficient to prove that $\left[w_{0} \phi \phi^{-1}\right]\left[w_{1} \phi \phi^{-1}\right]^{\omega} \subseteq L$, i.e., $\left[w_{0} \phi \phi^{-1}\right]\left[w_{1} \phi \phi^{-1}\right]^{\omega} \bigcap \bar{L}=\emptyset$.

To the contrary, suppose that $\left[w_{0} \phi \phi^{-1}\right]\left[w_{1} \phi \phi^{-1}\right]^{\omega} \bigcap \bar{L} \neq \emptyset$.
Since $\left[w_{0} \phi \phi^{-1}\right]\left[w_{1} \phi \phi^{-1}\right]^{\omega} \bigcap \bar{L}$ is regular, then there is an ultimately periodic word $\alpha_{0} \alpha_{1}^{\omega} \in\left[w_{0} \phi \phi^{-1}\right]\left[w_{1} \phi \phi^{-1}\right]^{\omega} \cap \bar{L}$.
$\alpha_{0} \alpha_{1}^{\omega}$ has a decomposition $\alpha_{0}^{\prime} \alpha_{1}^{\prime \omega}$ such that $\alpha_{0}^{\prime} \in w_{0} \phi \phi^{-1}\left[w_{1} \phi \phi^{-1}\right]^{r}$ and $\alpha_{1}^{\prime} \in$ $\left[w_{1} \phi \phi^{-1}\right]^{s}$ for some $r, s \geq 0$.

From the assumption $\phi \theta=\eta_{L}$ we know that $\alpha_{0}^{\prime} \eta_{L}=\alpha_{0}^{\prime} \phi \theta=\left(w_{0} w_{1}^{r}\right) \phi \theta=$ $\left(w_{0} w_{1}^{r}\right) \eta_{L}$, and $\alpha_{1}^{\prime} \eta_{L}=\alpha_{1}^{\prime} \phi \theta=\left(w_{1}^{s}\right) \phi \theta=\left(w_{1}^{s}\right) \eta_{L}$. Thus $w_{0} w_{1}^{r}\left(w_{1}^{s}\right)^{\omega} \in L$ iff $\alpha \in L$, i.e., $w_{0} w_{1}{ }^{\omega} \in L$ iff $\alpha \in L$, i.e., $x y^{\omega} \in L$ iff $\alpha \in L$, a contradiction.

Corollary 2.5. A morphism $\phi: A^{*} \rightarrow M$ recognizes L iff there are morphisms $\phi^{\prime}: A^{*} \rightarrow M^{\prime}$ and $\theta: \operatorname{Im}(\phi) \rightarrow M^{\prime}$ such that ϕ^{\prime} recognizes L and for all $u \in A^{*}$, $u(\phi \theta)=u \phi^{\prime}$.
L is star free if L can be constructed from the language A^{ω} by finite applications of operations of union, complementation and concatenation on the left by star free languages of A^{*}.
L is noncounting if there is $n_{0} \in N$ such that for all $n \geq n_{0}$ and $x, u, y, z \in A^{*}$, $\left(x u^{n} y z^{\omega} \in L\right.$ iff $\left.x u^{n+1} y z^{\omega} \in L\right)$ and $\left(x\left(y u^{n} z\right)^{\omega} \in L\right.$ iff $\left.x\left(y u^{n+1} z\right)^{\omega} \in L\right)$.
L is aperiodic if its syntactic monoid $M(L)$ is aperiodic. And it is easy to show that L is aperiodic iff it is recognized by an aperiodic monoid.

It is not hard to prove that L is noncounting iff L is aperiodic. In the remainder of this paper, for regular languages on infinite words, we don't distinguish between the "noncounting" and "aperiodic" properties.

2.2.2 First order logic and linear temporal logic on infinite words

$\mathrm{FO}[<]$ and LTL formulas can also be interpreted on infinite words.
For $\mathrm{FO}[<]$: Let X be the variable set and φ be a formula with free variables in $X ; u \in A^{\omega}$ and $\eta: X \rightarrow N$, i.e., η maps variables in X to "positions" in u.

- $(u, \eta) \models P_{a}(x)$, if $u[|x|]=a$, where $u[|x|]$ is the $x \eta$ th letter of u;
- $(u, \eta) \models x<y$, if $x \eta<y \eta$;
- $(u, \eta) \models \varphi_{1} \vee \varphi_{2}$, if $(u, \eta) \models \varphi_{1}$ or $(u, \eta) \models \varphi_{2}$;
- $(u, \eta) \models \neg \psi$, if not $(u, \eta) \models \psi$;
- $(u, \eta) \models(\exists x) \psi$, if there exists a function $\eta^{\prime}: X \rightarrow N$, which agrees with η on $X-\{x\}$ and possibly differs from η on x, such that $(u, \eta \prime) \models \psi$.

Let φ be an $\mathrm{FO}[<]$ sentence and $u \in A^{\omega}$. We write $u \models \varphi$ if there is an $\eta: X \rightarrow N$ such that $(u, \eta) \models \varphi$.

For LTL: Let φ be an LTL formula, $u \in A^{\omega}$. Denote the suffix of u starting from i-th position (the first position is 0) as u^{i}, then

- $u \models p_{a}$, if $u=a v$, for some $v \in A^{\omega}$;
- $u \models \varphi_{1} \vee \varphi_{2}$, if $u \models \varphi_{1}$ or $u \models \varphi_{2}$;
- $u \models \neg \varphi_{1}$, if not $u \models \varphi_{1}$;
- $u \models X \varphi_{1}$, if $u^{1} \models \varphi_{1}$;
- $u \models \varphi_{1} U \varphi_{2}$, if there is $i \geq 0$ such that $u^{i} \models \varphi_{2}$ and for all $0 \leq j<i, u^{j} \models \varphi_{1}$.
L is definable in $\mathrm{FO}[<]$ if there is an $\mathrm{FO}[<]$ sentence φ such that for all $u \in A^{\omega}$, $u \models \varphi$ iff $u \in L$.
L is definable in LTL if there is an LTL formula φ such that for all $u \in A^{\omega}$, $u \models \varphi$ iff $u \in L$.

2.2.3 Classical results of star free languages on infinite words

Similar to the finite words, there are the following classical results of star free languages on infinite words.

Proposition 2.6. Let $L \subseteq A^{\omega}$ be regular. The following conditions are equivalent [13, 19, 18, 9, 7]:

- L is star free;
- L is aperiodic;
- $M(L)$ contains no nontrivial group;
- $L=\bigcup_{i=1}^{m} X_{i} Y_{i}^{\omega}$, where $X_{i} \subseteq A^{*}, Y_{i} \subseteq A^{+}$are star free and $Y_{i} Y_{i} \subseteq Y_{i}$;
- L is $F O[<]$ definable;
- L is LTL definable.

3 Quasi-star-free languages on finite words

3.1 Quasi-star-free languages on finite words

Definition 3.1. Let $L \subseteq A^{*}$ be regular. L is quasi-star-free if there is some $d \geq 1$ such that L can be constructed from singleton languages $\{a\}(a \in A)$ and the language $\left(A^{d}\right)^{*}$ by finite applications of operations of union, complementation, and concatenation.

If $L \subseteq A^{*}$ is star free, it is quasi-star free as well.
The family of quasi-star-free languages on finite words is denoted by $\mathrm{QSF}^{\mathrm{F}}$.
Definition 3.2. Let $L \subseteq A^{*}$ be regular. L is quasi-noncounting if there is some $d \geq 1$ such that there is some $n_{0} \in N$ satisfying that for all $n \geq n_{0}$, and for all $x, y, z \in A^{*}$ with $|y|=0 \bmod d ; x y^{n} z \in L$ iff $x y^{n+1} z \in L$.

Let $L \subseteq A^{*}$ be regular and $\eta_{L}: A^{*} \rightarrow M(L)$ be its syntactic morphism. we denote $\left(A^{d}\right)^{*} \eta_{L}$ by $M(L)^{(d)}$. Then we have the following definition:

Definition 3.3. Let $L \subseteq A^{*}$ be regular and $\eta_{L}: A^{*} \rightarrow M(L)$ be its syntactic morphism. L is quasi-aperiodic if there is $d \geq 1$ such that $M(L)^{(d)}$ is aperiodic.

A language of A^{*} is quasi-noncounting iff it is quasi-aperiodic. Thus in the remainder of this paper, we don't distinguish between the "quasi-noncounting" and "quasi-aperiodic" properties of regular languages on finite words.

3.2 Logic with cyclic counting interpreted on finite words

$\mathrm{FO}[<]$ can be extended with unary predicates $C_{d}^{r}(d \geq 1,0 \leq r<d)$ adjoined. C_{d}^{r} are interpreted on finite words as follows:

Let $u \in A^{*}, \eta: X \rightarrow\{0, \ldots,|u|\}$, then $(u, \eta) \models C_{d}^{r}(x)$ if $x \eta \equiv r \bmod d$.
Denote this extended logic of $\mathrm{FO}[<]$ as $\mathrm{FO}[\mathrm{C}]$.
LTL can be extended with " U " (Until) operator of LTL replaced by new "Until" operators with cyclic counting, namely $U^{(d, r)}$ for all $d \geq 1$ and $0 \leq r<d$. The semantics of $\varphi_{1} U^{(d, r)} \varphi_{2}$ is defined as follows:

Let $u \in A^{*}$, then $u \models \varphi_{1} U^{(d, r)} \varphi_{2}$ if there is i such that $0 \leq i \leq|u|, i \equiv r \bmod d$ and $u^{i} \models \varphi_{2}$; moreover, for all j such that ($0 \leq j<i$ and $j \equiv r \bmod d$), $u^{j} \models \varphi_{1}$.

Denote this extended LTL by LTL[C].
Similar to $\mathrm{FO}[<]$ and LTL, we can define the languages defined by FO[C] sentences and LTL[C] formulas.

The expressive power of $\mathrm{FO}[\mathrm{C}]$ is strictly stronger than that of $\mathrm{FO}[<]$. For instance, language $(\{a\} A)^{*}(a \in A$ and $|A|>1)$ isn't aperiodic, then according to Proposition 2.3, it can't be defined in $\mathrm{FO}[<]$, while it can be defined by $\mathrm{FO}[\mathrm{C}]$ sentence $\forall x\left(\operatorname{Last}(x) \rightarrow C_{2}^{0}(x)\right) \wedge \forall x\left(C_{2}^{0}(x) \wedge \neg \operatorname{Last}(x) \rightarrow P_{a}(x)\right)$.

It is obvious that for $u \in A^{*}, u \models \varphi_{1} U \varphi_{2}$ iff $u \models \varphi_{1} U^{(1,0)} \varphi_{2}$. Then the expressive power of LTL[C] is at least as strong as that of LTL. In fact, LTL[C] is more expressive than LTL. For instance, language $(\{a\} A)^{*}(\{a\} \in A$ and $|A|>1)$ can't be defined in LTL, while it can be defined by LTL[C] formula $p_{a} U^{(2,0)} E n d$.
Remark 3.4. In [5], LTL[C] is defined by adjoining additional constants $I g_{d, r}(d \geq$ $1,0 \leq r<d)$ into LTL, and $U^{(d, r)}$ are just derived temporal operators of $I g_{d, r}$ and " U ". Nevertheless, since $u \models I g_{d, r}$ iff $|u| \equiv r \bmod d$, LTLL[C] defined in [5] can't be interpreted on infinite words. Consequently we directly adjoin $U^{(d, r)}$ into LTL since $U^{(d, r)}$ can be interpreted on infinite words naturally. When interpreted on finite words, $I g_{d, r}$ can be derived from $U^{(d, r)}$ as follows:

$$
I g_{d, r} \equiv \operatorname{TrueU}^{(d, r)} E n d
$$

3.3 Theorem on quasi-star-free languages on finite words

We summarize the results of quasi-star-free languages on finite words in $[2,5]$ into the following proposition:
Proposition 3.5. Let $L \subseteq A^{*}$ be regular. The following conditions are equivalent:
(i) L is quasi-star-free;
(ii) L is quasi-aperiodic;
(iii) For all $t \geq 0, A^{t} \eta_{L}$ contains no nontrivial group;
(iv) L is definable in $F O[C]$;
(v) L is definable in LTL[C].

Remark 3.6. (i), (ii),(iii) and (iv) of Proposition 3.5 were proved equivalent in [2], and (iv) and (v) were proved equivalent in [5]. As a matter of fact, (i),(iii),(iv) of Proposition 3.5 and the following condition (ii')(Theorem 3(d) in [2]), instead of (ii), were proved equivalent in [2],
($i^{\prime}{ }^{\prime}$) L is recognized by a morphism $\psi:\{0,1\}^{*} \rightarrow M w r Z_{r}$, where M is a finite aperiodic monoid and where the composition $\psi \pi:\{0,1\}^{*} \rightarrow Z_{r}$ takes both 0 and 1 to the generator 1 of Z_{r} (see [2] for the exact meaning of (ii'))

And it is not hard to prove that (ii) and (ii') are equivalent.

4 Quasi-star-free languages on infinite words

4.1 Quasi-star-free languages on infinite words

Similar to the case of finite words, we define that an ω-language is quasi-star-free, quasi-noncounting and quasi-aperiodic in this subsection.

Definition 4.1. Let $L \subseteq A^{\omega}$ be regular. L is quasi-star-free if L can be constructed from the language A^{ω} by finite applications of operations of union, complementation, and concatenation on the left by quasi-star-free languages of A^{*}.

If an ω-language $L \subseteq A^{\omega}$ is star free, it is quasi-star-free as well. The family of quasi-star-free languages on infinite words is denoted by QSF $^{\mathrm{I}}$.

Proposition 4.2. Let $L \subseteq A^{\omega}$ be quasi-star-free, then there is some $d \geq 1$ such that all those quasi-star-free languages of A^{*}, used in the construction of L (namely, used in the operations of left concatenation during the construction of L), can be constructed from singleton languages $\{a\}(a \in A)$ and the language $\left(A^{d}\right)^{*}$ by finite applications of operations of union, complementation and concatenation.

Proof. Let L_{1}, \ldots, L_{k} be the quasi-star-free languages of A^{*} used in the construction of L.

Then there are $d_{i}(1 \leq i \leq k)$ such that $L_{i}(1 \leq i \leq k)$ can be constructed from singleton languages $\{a\}(a \in A)$ and the language $\left(A^{d_{i}}\right)^{*}$.

Let d be the least common multiple of d_{1}, \ldots, d_{k}. Then

$$
\left(A^{d_{i}}\right)^{*}=\bigcup_{r=0}^{d_{i}^{\prime}-1}\left(A^{d}\right)^{*} A^{r d_{i}}=\bigcup_{r=0}^{d_{i}^{\prime}-1}\left(A^{d}\right)^{*}\left(\bigcup_{a \in A}\{a\}\right)^{r d_{i}}, \text { where } d_{i}^{\prime}=\frac{d}{d_{i}}
$$

Consequently $L_{i}(1 \leq i \leq k)$ can be constructed from singleton languages $\{a\}(a \in$ A) and the language $\left(A^{d}\right)^{*}$ by finite applications of operations of union, complementation and concatenation.

Definition 4.3. Let $L \subseteq A^{\omega}$ be regular. L is quasi-noncounting if there is some $d \geq 1$ such that there is $n_{0} \in N$ satisfying that for all $n \geq n_{0}$ and $u, x, y, z \in A^{*}$ with $|u|=0 \bmod d,\left(x u^{n} y z^{\omega} \in L\right.$ iff $\left.x u^{n+1} y z^{\omega} \in L\right)$ and $\left(x\left(y u^{n} z\right)^{\omega} \in L\right.$ iff $\left.x\left(y u^{n+1} z\right)^{\omega} \in L\right)$.

Definition 4.4. Let $L \subseteq A^{\omega}$ be regular and $\eta_{L}: A^{*} \rightarrow M(L)$ be its syntactic morphism. Then L is quasi-aperiodic if there is some $d \geq 1$ such that $M(L)^{(d)}$ is aperiodic.

Proposition 4.5. Let $L \subseteq A^{\omega}$ be regular. L is quasi-noncounting iff it is quasiaperiodic.

Proof.
" \Rightarrow " part:
Suppose that there is some $d \geq 1$ such that there is some $n_{0} \in N$ satisfying that for all $n \geq n_{0}$, and for all $x, u, y, z \in A^{*}$ with $|u| \equiv 0 \bmod d$;

$$
\left(x u^{n} y z^{\omega} \in L \text { iff } x u^{n+1} y z^{\omega} \in L\right) \text { and }\left(x\left(y u^{n} z\right)^{\omega} \in L \text { iff } x\left(y u^{n+1} z\right)^{\omega} \in L\right) .
$$

Now we prove that $M(L)^{(d)}$ is aperiodic.
Let $m \in M(L)^{(d)}$. Then there is some $u \in\left(A^{d}\right)^{*}$ such that $u \eta_{L}=m$. Thus for any $n \geq n_{0}$, and for all $x, y, z \in A^{*}$;

$$
\left(x u^{n} y z^{\omega} \in L \text { iff } x u^{n+1} y z^{\omega} \in L\right) \text { and }\left(x\left(y u^{n} z\right)^{\omega} \in L \text { iff } x\left(y u^{n+1} z\right)^{\omega} \in L\right) .
$$

Consequently for any $n \geq n_{0},\left(u^{n}\right) \eta_{L}=\left(u^{n+1}\right) \eta_{L}$, i.e., $m^{n}=m^{n+1}$. " \Leftarrow " part:

Suppose that there is some $d \geq 1$ such that $M(L)^{(d)}$ is aperiodic, i.e., there is some $n_{0} \in N$ satisfying that for all $n \geq n_{0}$ and $m \in M(L)^{(d)} ; m^{n}=m^{n+1}$.

Now we prove that L is quasi-noncounting.
Let $n \geq n_{0}$ and $x, u, y, z \in A^{*}$ with $|u| \equiv 0 \bmod d$. Then $u \eta_{L} \in M(L)^{(d)}$, so $\left(u^{n}\right) \eta_{L}=\left(u^{n+1}\right) \eta_{L}$. From the definition of η_{L}, we have that

$$
\left(x u^{n} y z^{\omega} \in L \text { iff } x u^{n+1} y z^{\omega} \in L\right) \text { and }\left(x\left(y u^{n} z\right)^{\omega} \in L \text { iff } x\left(y u^{n+1} z\right)^{\omega} \in L\right) .
$$

As a result of Proposition 4.5, in the remainder of this paper, we don't distinguish between "quasi-noncounting" and "quasi-aperiodic" properties of regular languages on infinite words.

4.2 Logic with cyclic counting interpreted on infinite words

$\mathrm{FO}[\mathrm{C}]$ and LTL[C] defined in Section 3.2 can be interpreted on infinite words as follows:

For $\mathrm{FO}[\mathrm{C}]$: Let $u \in A^{\omega}$ and $\eta: X \rightarrow N$, then

$$
(u, \eta) \models C_{d}^{r}(x) \text { if } x \eta \equiv r \bmod d
$$

For LTL[C]: Let $u \in A^{\omega}$, then
$u \models \varphi_{1} U^{(d, r)} \varphi_{2}$ if there is $i \geq 0$ such that $(i \equiv r \bmod d)$ and $\left(u^{i} \models \varphi_{2}\right)$, and (for all $0 \leq j<i$ and $j \equiv r \bmod d ; u^{j} \models \varphi_{1}$).

Similar to the case of finite words, we can define the languages defined by FO[C] sentences and LTL[C] formulas.

When interpreted on infinite words, the expressive power of FO[C](LTL[C] resp.) is strictly stronger than $\mathrm{FO}[<]$ (LTL resp.). E.g., language $(\{a\} A)^{\omega}(a \in A$ and $|A|>1)$ isn't aperiodic, then according to Proposition 2.6, it can't be defined in FO $[<]$ (LTL resp.), while it can be defined by FO[C] sentence $\forall x\left(C_{2}^{0}(x) \rightarrow P_{a}(x)\right)$ (LTL[C] formula $\neg\left(\operatorname{True} U^{(2,0)} \neg p_{a}\right)$ resp.)

4.3 Theorem on quasi-star-free languages on infinite words

We extend Proposition 3.5 for QSF $^{\mathrm{F}}$ to the following theorem for QSF $^{\mathrm{I}}$.
Theorem 4.6. Let $L \subseteq A^{\omega}$ be regular. The following conditions are equivalent:
(i) L is quasi-star-free;
(ii) L is quasi-aperiodic;
(iii) For all $t \geq 0, A^{t} \eta_{L} \subseteq M(L)$ contains no nontrivial group;
(iv) $L=\bigcup_{i=1}^{m} X_{i}\left(Y_{i}\right)^{\omega}$, where $X_{i}, Y_{i} \in Q S F^{F}, Y_{i} \subseteq A^{+}$and $Y_{i} Y_{i} \subseteq Y_{i}$;
(v) L is definable in $F O[C]$;
(vi) L is definable in $L T L[C]$.

Before the proof of Theorem 4.6, we give some definitions and lemmas.
Let $A^{(d)}$ denote the alphabet consisting of all letters $\langle u\rangle$, where $u \in A^{d}$. For any $x \in\left(A^{d}\right)^{*}$, we denote the corresponding element of $\left(A^{(d)}\right)^{*}$ as $\langle x\rangle$.

Let $L \subseteq A^{*}$ and $u \in A^{*}$, define $L u^{-1}=\left\{x \mid x \in A^{*}, x u \in L\right\}$.
Let $L \subseteq A^{*}$ and $d \geq 1$, define
$L^{(d)}=\left\{\begin{array}{l}\left\{\left\langle u_{0}\right\rangle \ldots\left\langle u_{k-1}\right\rangle \mid u_{0} \ldots u_{k-1} \in L, k \geq 1, \forall 0 \leq i<k\left(u_{i} \in A^{d}\right)\right\} \text { if } \varepsilon \notin L \\ \{\varepsilon\} \bigcup\left\{\left\langle u_{0}\right\rangle \ldots\left\langle u_{k-1}\right\rangle \mid u_{0} \ldots u_{k-1} \in L, k \geq 1, \forall 0 \leq i<k\left(u_{i} \in A^{d}\right)\right\} \text { othewise }\end{array}\right.$
Let $L \subseteq A^{*}$ and $u \in A^{*}$, define $L^{(d, u)}=\left(L u^{-1}\right)^{(d)}$.
Let $L \subseteq A^{\omega}$ and $d \geq 1$, define

$$
L^{(d)}=\left\{\left\langle u_{0}\right\rangle \ldots\left\langle u_{k}\right\rangle \ldots \mid u_{0} \ldots u_{k} \ldots \in L, \forall i \geq 0\left(u_{i} \in A^{d}\right)\right\}
$$

Lemma 4.7. Let $L \subseteq A^{\omega}$ be regular. Define $\phi:\left(A^{(d)}\right)^{*} \rightarrow M(L)^{(d)}$ by $\langle x\rangle \phi=x \eta_{L}$ for $\langle x\rangle \in\left(A^{(d)}\right)^{*}$. Then ϕ recognizes $L^{(d)}$.

Proof. We define morphism $\theta: \operatorname{Im}(\phi) \rightarrow M\left(L^{(d)}\right)$ such that $\phi \theta=\eta_{L^{(d)}}$, and thus according to Proposition 2.4, ϕ recognizes $L^{(d)}$.

Define θ by: for $m \in \operatorname{Im}(\phi), m \theta=\langle w\rangle \eta_{L^{(d)}}$, where $\langle w\rangle \in\left(A^{(d)}\right)^{*}$ and $\langle w\rangle \phi=$ m.

At first, we prove that θ is well defined. Let $\left\langle w_{1}\right\rangle \phi=\left\langle w_{2}\right\rangle \phi=m$, i.e. $w_{1} \eta_{L}=$ $w_{2} \eta_{L}=m$. Then for all $x, y, z \in A^{*},\left(x w_{1} y z^{\omega} \in L\right.$ iff $\left.x w_{2} y z^{\omega} \in L\right)$ and $\left(x\left(y w_{1} z\right)^{\omega} \in\right.$ L iff $\left.x\left(y w_{2} z\right)^{\omega} \in L\right)$, thus for all $\langle x\rangle,\langle y\rangle,\langle z\rangle \in\left(A^{(d)}\right)^{*},\left(\langle x\rangle\left\langle w_{1}\right\rangle\langle y\rangle\langle z\rangle^{\omega} \in L^{(d)}\right.$ iff $\left.\langle x\rangle\left\langle w_{2}\right\rangle\langle y\rangle\langle z\rangle^{\omega} \in L^{(d)}\right)$ and $\left(\langle x\rangle\left(\langle y\rangle\left\langle w_{1}\right\rangle\langle z\rangle\right)^{\omega} \in L^{(d)}\right.$ iff $\langle x\rangle\left(\langle y\rangle\left\langle w_{2}\right\rangle\langle z\rangle\right)^{\omega} \in$ $L^{(d)}$, i.e. $\left\langle w_{1}\right\rangle \approx_{L^{(d)}}\left\langle w_{2}\right\rangle,\left\langle w_{1}\right\rangle \eta_{L^{(d)}}=\left\langle w_{2}\right\rangle \eta_{L^{(d)}}$, so θ is well defined.

Evidently for all $\langle w\rangle \in\left(A^{(d)}\right)^{*},\langle w\rangle \phi \theta=\langle w\rangle \eta_{L^{(d)}}$.
Lemma 4.8. Suppose that $L=\bigcup_{i=1}^{m} X_{i}\left(Y_{i}\right)^{\omega}$, where $X_{i}, Y_{i} \in Q S F^{F}, Y_{i} \subseteq A^{+}$and $Y_{i} Y_{i} \subseteq Y_{i}$. Then there is $d \geq 1$ such that all those X_{i} and Y_{i} can be constructed from the singleton languages $\{a\}(a \in A)$ and the language $\left(A^{d}\right)^{*}$.

Proof. Since $X_{i}, Y_{i} \in \mathrm{QSF}^{\mathrm{F}}$, then there are $d_{X_{i}}$ and $d_{Y_{i}}$ such that X_{i} and Y_{i} are constructed from the singleton languages $\{a\}$ and the language $\left(A^{d_{X_{i}}}\right)^{*}$.

Let $d=\operatorname{lcm}\left\{d_{X_{i}}, d_{Y_{i}} \mid 1 \leq i \leq m\right\}$. Then similar to the proof of Proposition 4.2, we can prove that X_{i} and Y_{i} can be constructed from singleton languages $\{a\}$ and the language $\left(A^{d}\right)^{*}$.

Lemma 4.9. Suppose that $L \subseteq\left(A^{(d)}\right)^{*}$ is star free for some $d \geq 1$, then $L^{\prime}=$ $\left\{x \mid x \in\left(A^{d}\right)^{*},\langle x\rangle \in L\right\}$ is quasi-star-free.

Proof. Since $L \subseteq\left(A^{(d)}\right)^{*}$ is star free, it can be constructed from singleton languages $\{\langle u\rangle\}\left(u \in A^{d}\right)$ and the language $\left(A^{(d)}\right)^{*}$ by union, complementation and concatenation.

By replacing $\{\langle u\rangle\}\left(u=a_{0} \ldots a_{d-1}\right)$ by $\left\{a_{0}\right\} \ldots\left\{a_{d-1}\right\} ;\left(A^{(d)}\right)^{*}$ by $\left(A^{d}\right)^{*} ; L_{1} \bigcup L_{2}$ by $L_{1}^{\prime} \cup L_{2}^{\prime} ;\left(A^{(d)}\right)^{*}-L_{1}$ by $\left(A^{d}\right)^{*}-L_{1}^{\prime}\left(\right.$ namely $\left.A^{*}-\left(\left(A^{*}-\left(A^{d}\right)^{*}\right) \cup L_{1}^{\prime}\right)\right)$; and $L_{1} L_{2}$ by $L_{1}^{\prime} L_{2}^{\prime}$ during the construction procedure of L, we can get the construction procedure of $L^{\prime}\left(\right.$ where $L_{1}, L_{2} \subseteq\left(A^{(d)}\right)^{*}$ and $L_{1}^{\prime}, L_{2}^{\prime}$ are the languages of $\left(A^{d}\right)^{*}$ corresponding to L_{1} and L_{2} respectively). Thus L^{\prime} can be constructed from singleton languages $\{a\}$ and the language $\left(A^{d}\right)^{*}$ by union, complementation and concatenation. Consequently it is quasi-star-free by definition.

Lemma 4.10. Let $L \subseteq A^{\omega}$. Then L is definable in $F O[C]$ iff there is some $d \geq 1$ such that $L^{(d)}$ is definable in $F O[<]$.

Lemma 4.11. Let $L \subseteq A^{\omega}$. Then L is definable in $L T L[C]$ iff L is definable in FO[C].

Remark 4.12. The proofs of Lemma 4.10 and Lemma 4.11 are totally similar to the proofs of the same results for finite words(Proposition 6.5, Proposition 6.7 and Theorem 7.5 in [5]). Consequently we omit the proofs of them here.

Now we prove Theorem 4.6.
Proof of Theorem 4.6. At first we prove the equivalence of (ii) and (iii). According to Lemma 4.11, (v) and (vi) are equivalent. Then if we have proved the equivalence
of (i),(ii),(iv) and (v), the proof would be completed. We prove the equivalence of (i),(ii), (iv) and (v) by proving the equivalence of (i),(ii),(v) and equivalence of (ii),(v) respectively.
(ii) \Rightarrow (iii):

Suppose that $L \subseteq A^{\omega}$ is quasi-aperiodic, i.e. $M(L)^{(d)}$ is aperiodic for some $d \geq 1$. Now we show that for all $t \geq 0, A^{t} \eta_{L}$ contains no nontrivial group.

To the contrary suppose that there is some $t \geq 0$ such that $A^{t} \eta_{L}$ contains a nontrivial group. Obviously $t \geq 1$. Select an element m of order $k>1$ from the group, then $G=\left\{m, \ldots m^{k}\right\}$ is also a nontrivial group in $A^{t} \eta_{L}$. Hence there are $u, v \in A^{t}$ such that $u \eta_{L}=m, v \eta_{L}=m^{k}$.

Consider $A^{t k d} \eta_{L} \subseteq M(L)^{(d)}$. It is easy to see that $m^{i}=\left(v^{k(d-1)}\left(u^{i} v^{k-i}\right)\right) \eta_{L} \in$ $A^{t k d} \eta_{L}$, thus $G \subseteq A^{t k d} \eta_{L} \subseteq M(L)^{(d)}, M(L)^{(d)}$ contains a nontrivial group. Because a monoid is aperiodic iff it contains no nontrivial group, we have that $M(L)^{(d)}$ isn't aperiodic, a contradiction.
(iii) \Rightarrow (ii):

The main idea is from the proof of Theorem 3 in [2].
Suppose that $M(L)$ is finite and for all $t \geq 0, A^{t} \eta_{L}$ contains no nontrivial group.
For each nontrivial group G contained in $M(L)$ pick a nonempty word v_{G} such that $v_{G} \eta_{L}$ is the identity of G. Let d be a common multiple of the lengths of all these v_{G}. Now we show that $M(L)^{(d)}$ is aperiodic.

To the contrary suppose that $M(L)^{(d)}$ isn't aperiodic. Because a monoid is aperiodic iff it contains no nontrivial group, then there is a nontrivial group in $M(L)^{(d)}$. Select an element m of order $k>1$ from the group, then $G=\left\{m, \ldots, m^{k}\right\}$ is also a nontrivial group in $M(L)^{(d)}$. Select some $v \in\left(A^{d}\right)^{*}$ such that $v \eta_{L}=m$. From the selection of d, we know $|v|$ (the length of v) is a multiple of $\left|v_{G}\right|$, thus there is some power w of v_{G} such that $|v|=|w|$. Let $t=k|v|$, then $m^{j}=\left(v^{j} w^{k-j}\right) \eta_{L} \in$ $A^{t} \eta_{L}$, so $G \subseteq A^{t} \eta_{L}$, a contradiction.

Therefore we have proved the equivalence of (ii) and (iii).
Now we prove the equivalence of (i), (ii), (v).
(i) \Rightarrow (ii):

Suppose that L can be constructed from language A^{ω} by finite applications of operations of union, complementation, and concatenation on the left by quasi-starfree languages of A^{*}. Then according to Proposition 4.2 , there is $d \geq 1$ such that quasi-star-free languages of A^{*} used in the construction of L can be constructed from singleton languages $\{a\}$ and the language $\left(A^{d}\right)^{*}$.

Now we prove that $M(L)^{(d)}$ is aperiodic by induction on the construction procedure of L.

Induction base: $L=A^{\omega}$, then $M(L)=\{e\}$, where e is the identity of $M(L)$. Obviously $M(L)^{(d)}=\{e\}$, then it is aperiodic.

Induction step:
Case $L=A^{\omega}-L_{1}$: From induction hypothesis, $M\left(L_{1}\right)^{(d)}$ is aperiodic. Since it is not hard to see that $M(L)=M\left(L_{1}\right)$ and $\eta_{L}=\eta_{L_{1}}$ from the definition of syntactic monoid and syntactic morphism of ω-languages, $M(L)^{(d)}$ is aperiodic as well.

Case $L=L_{1} \bigcup L_{2}$: From induction hypothesis, $M\left(L_{i}\right)^{(d)}(i=1,2)$ are aperiodic, then according to Proposition 4.5, there are $n_{i}(i=1,2)$ such that for all $n \geq n_{i}$ and $u, x, y, z \in A^{*}$ with $|u| \equiv 0 \bmod d,\left(x u^{n} y z^{\omega} \in L_{i}\right.$ iff $\left.x u^{n+1} y z^{\omega} \in L_{i}\right)$ and $\left(x\left(y u^{n} z\right)^{\omega} \in L_{i}\right.$ iff $\left.x\left(y u^{n+1} z\right)^{\omega} \in L_{i}\right)$.

Let $n_{0}=\max \left\{n_{1}, n_{2}\right\}$. Now we show that for all $n \geq n_{0}$ and $u, x, y, z \in A^{*}$ with $|u| \equiv 0 \bmod d,\left(x u^{n} y z^{\omega} \in L\right.$ iff $\left.x u^{n+1} y z^{\omega} \in L\right)$ and $\left(x\left(y u^{n} z\right)^{\omega} \in L\right.$ iff $x\left(y u^{n+1} z\right)^{\omega} \in$ $L)$. Then according to Proposition 4.5 we conclude that $M(L)^{(d)}$ is aperiodic.

Suppose that $x u^{n} y z^{\omega} \in L$, then $x u^{n} y z^{\omega} \in L_{i}$ for some $i=1,2$. Thus $x u^{n+1} y z^{\omega} \in L_{i}$ since $n \geq n_{0} \geq n_{i}$, so $x u^{n+1} y z^{\omega} \in L$. The proof of $x u^{n+1} y z^{\omega} \in L$ implies $x u^{n} y z^{\omega} \in L$ is similar.

Suppose that $x\left(y u^{n} z\right)^{\omega} \in L$, then $x\left(y u^{n} z\right)^{\omega} \in L_{i}$ for some $i=1,2$. Thus $x\left(y u^{n+1} z\right)^{\omega} \in L_{i}$ since $n \geq n_{0} \geq n_{i}$, so $x\left(y u^{n+1} z\right)^{\omega} \in L$. The proof of $x\left(y u^{n+1} z\right)^{\omega} \in L$ implies $x\left(y u^{n} z\right)^{\omega} \in L$ is similar.

Case $L=L_{1} L_{2}$: where $L_{1} \subseteq A^{*}$ and $L_{2} \subseteq A^{\omega}$. According to Proposition 3.5, L_{1} is quasi-aperiodic, then there is n_{1} such that for all $n \geq n_{1}, x y^{n} z \in L_{1}$ iff $x y^{n+1} z \in L_{1}$ for all $x, y, z \in A^{*}$ with $|y|=0 \bmod d$. From induction hypothesis, $M\left(L_{2}\right)^{(d)}$ is aperiodic, thus there is n_{2} such that for all $n \geq n_{2}, u, x, y, z \in A^{*}$ with $|u|=0 \bmod d,\left(x u^{n} y z^{\omega} \in L_{2}\right.$ iff $\left.x u^{n+1} y z^{\omega} \in L_{2}\right)$ and $\left(x\left(y u^{n} z\right)^{\omega} \in L_{2}\right.$ iff $\left.x\left(y u^{n+1} z\right)^{\omega} \in L_{2}\right)$.

Let $n_{0}=n_{1}+n_{2}+1$. It is sufficient to show that for all $n \geq n_{0}$ and $u, x, y, z \in A^{*}$ with $|u|=0 \bmod d,\left(x u^{n} y z^{\omega} \in L\right.$ iff $\left.x u^{n+1} y z^{\omega} \in L\right)$ and $\left(x\left(y u^{n} z\right)^{\omega} \in L\right.$ iff $\left.x\left(y u^{n+1} z\right)^{\omega} \in L\right)$ in order to prove that $M(L)^{(d)}$ is aperiodic according to Proposition 4.5.
(a) Suppose that $n \geq n_{0}, u, x, y, z \in A^{*}$ with $|u|=0 \bmod d$, and $x u^{n} y z^{\omega} \in L$. We show that $x u^{n+1} y z^{\omega} \in L$.

Since $x u^{n} y z^{\omega} \in L=L_{1} L_{2}, x u^{n} y z^{\omega}$ has a decomposition $v w$ such that $v \in L_{1}$ and $w \in L_{2}$. There are the following cases:

- $v=x_{1}, w=x_{2} u^{n} y z^{\omega}$ with $x=x_{1} x_{2}$;
- there are $h, k \geq 0, u_{1}, u_{2} \in A^{*}$ such that $v=x u^{h} u_{1}, w=u_{2} u^{k} y z^{\omega}$ with $n=h+k+1, u=u_{1} u_{2}$;
- $v=x u^{n} y_{1}, w=y_{2} z^{\omega}$ with $y=y_{1} y_{2}$;
- there are $p \geq 0, z_{1}, z_{2} \in A^{*}$ such that $v=x u^{n} y z^{p} z_{1}, w=z_{2} z^{\omega}$ with $z=z_{1} z_{2}$.

Here we take the second case as an example, the discussions of the other cases are similar. In the second case, because $h+k+1 \geq n_{1}+n_{2}+1$, then $h \geq n_{1}$ or $k \geq n_{2}$, thus $x u^{h+1} u_{1} \in L_{1}$ or $u_{2} u^{k+1} y z^{\omega} \in L_{2}$, then $x u^{n+1} y z^{\omega} \in L_{1} L_{2}=L$.

The proof of $x u^{n+1} y z^{\omega} \in L$ implies $x u^{n} y z^{\omega} \in L$ is similar to (a).
(b) Suppose that $n \geq n_{0}, u, x, y, z \in A^{*}$ with $|u|=0 \bmod d$, and $x\left(y u^{n} z\right)^{\omega} \in L$. We show that $x\left(y u^{n+1} z\right)^{\omega} \in L$.

Since $x\left(y u^{n} z\right)^{\omega} \in L=L_{1} L_{2}, x\left(y u^{n} z\right)^{\omega}$ has a decomposition $v w$ such that $v \in L_{1}$ and $w \in L_{2}$. There are the following cases:

- $v=x_{1}, w=x_{2}\left(y u^{n} z\right)^{\omega}$ with $x=x_{1} x_{2}$;
- there are $p \geq 0, y_{1}, y_{2} \in A^{*}$ such that $v=x\left(y u^{n} z\right)^{p} y_{1}, w=\left(y_{2} u^{n} z\right)\left(y u^{n} z\right)^{\omega}$ and $y=y_{1} y_{2}$;
- there are $p, h, k \geq 0, u_{1}, u_{2} \in A^{*}$ such that $v=x\left(y u^{n} z\right)^{p}\left(y u^{h} u_{1}\right), w=$ $\left(u_{2} u^{k} z\right)\left(y u^{n} z\right)^{\omega}$ with $n=h+k+1, u=u_{1} u_{2}$;
- there are $p \geq 0, z_{1}, z_{2} \in A^{*}$ such that $v=x\left(y u^{n} z\right)^{p}\left(y u^{n} z_{1}\right), w=z_{2}\left(y u^{n} z\right)^{\omega}$, $z=z_{1} z_{2} ;$

Here we take the third case as an example, the discussions of the other cases are similar.

Since $n \geq n_{0}=n_{1}+n_{2}+1 \geq n_{i}(i=1,2)$, then $x\left(y u^{n+1} z\right)^{p}\left(y u^{h} u_{1}\right) \in L_{1}$ and $\left(u_{2} u^{k} z\right)\left(y u^{n+1} z\right)^{\omega} \in L_{2}$. Because $h+k+1 \geq n_{1}+n_{2}+1$, we have $h \geq n_{1}$ or $k \geq n_{2}$. Thus $x\left(y u^{n+1} z\right)^{p}\left(y u^{h+1} u_{1}\right) \in L_{1}$ or $\left(u_{2} u^{k+1} z\right)\left(y u^{n+1} z\right)^{\omega} \in L_{2}$. Consequently

$$
x\left(y u^{n+1} z\right)^{p}\left(y u^{h+1} u_{1}\right)\left(u_{2} u^{k} z\right)\left(y u^{n+1} z\right)^{\omega} \in L_{1} L_{2}
$$

or

$$
x\left(y u^{n+1} z\right)^{p}\left(y u^{h} u_{1}\right)\left(u_{2} u^{k+1} z\right)\left(y u^{n+1} z\right)^{\omega} \in L_{1} L_{2} .
$$

Namely, $x\left(y u^{n+1} z\right)^{\omega} \in L_{1} L_{2}=L$.
The proof of $x\left(y u^{n+1} z\right)^{\omega} \in L$ implies $x\left(y u^{n} z\right)^{\omega} \in L$ is similar to (b).
(ii) $\Rightarrow(v)$:

Suppose L is quasi-aperiodic, then there is $d \geq 1$ such that $M(L)^{(d)}$ is aperiodic, then according to Lemma 4.7, $L^{(d)}$ is aperiodic, thus L is definable in $\mathrm{FO}[\mathrm{C}]$ according to Lemma 4.10.

$$
(v) \Rightarrow(i):
$$

Suppose $L \subseteq A^{\omega}$ is definable in $\mathrm{FO}[\mathrm{C}]$, then according to Lemma 4.10, there is $d \geq 1$ such that $L^{(d)} \subseteq\left(A^{(d)}\right)^{\omega}$ can be expressed in $\mathrm{FO}[<]$. According to Proposition 2.6, $L^{(d)}$ is star-free, i.e. it can be constructed from $\left(A^{(d)}\right)^{\omega}$ by union, complementation and concatenation on the left by star free languages of $\left(A^{(d)}\right)^{*}$.

By replacing $L_{1} \bigcup L_{2},\left(A^{(d)}\right)^{\omega}-L_{1}$, and $L_{1} L_{2}$ by $L_{1}^{\prime} \cup L_{2}^{\prime},\left(A^{d}\right)^{\omega}-L_{1}^{\prime}$ and $L_{1}^{\prime} L_{2}^{\prime}$ respectively during the construction of $L^{(d)}$ (where $L_{1}^{\prime}, L_{2}^{\prime}$ are languages of $\left(A^{d}\right)^{*}$ or $\left(A^{d}\right)^{\omega}$ corresponding to L_{1} and L_{2} respectively), we can get the construction procedure for L. Moreover, according to Lemma 4.9, languages of $\left(A^{d}\right)^{*}$ used in the left concatenation during the construction of L must be quasi-star-free. Then we can conclude that L can be constructed from A^{ω} (namely $\left(A^{d}\right)^{\omega}$) by union, complementation and concatenation on the left by quasi-star-free languages of A^{*}, i.e., L is quasi-star-free.

Therefore we have proved the equivalence of (i),(ii),(v).
Now we prove the equivalence of (ii),(iv) and complete the proof of the theorem. (ii) $\Rightarrow(i v)$:

Suppose L is quasi-aperiodic, i.e. there is $d \geq 1$ such that $M(L)^{(d)}$ is aperiodic. According to Lemma 4.7, $L^{(d)}$ is aperiodic. Thus by Proposition $2.6, L^{(d)}=$ $\bigcup_{i=1}^{m} X_{i} Y_{i}^{\omega}$, where $X_{i} \subseteq\left(A^{(d)}\right)^{*}, Y_{i} \subseteq\left(A^{(d)}\right)^{+}$are star free, and $Y_{i} Y_{i} \subseteq Y_{i}$.

Let $X_{i}^{\prime}=\left\{x \mid x \in\left(A^{d}\right)^{*},\langle x\rangle \in X_{i}\right\}, Y_{i}^{\prime}=\left\{y \mid y \in\left(A^{d}\right)^{*},\langle y\rangle \in Y_{i}\right\}$, then $L=$ $\bigcup_{i=1}^{m} X_{i}^{\prime}\left(Y_{i}^{\prime}\right)^{\omega}$. Evidently $Y_{i}^{\prime} Y_{i}^{\prime} \subseteq Y_{i}^{\prime}$. Since $X_{i}, Y_{i} \subseteq\left(A^{(d)}\right)^{*}$ are star free, then according to Lemma 4.9, X_{i}^{\prime} and Y_{i}^{\prime} are quasi-star-free.
(iv) \Rightarrow (ii):

Suppose that $L=\bigcup_{i=1}^{m} X_{i}\left(Y_{i}\right)^{\omega}$, where $X_{i} \subseteq A^{*}, Y_{i} \subseteq A^{+}$are quasi-star-free languages, and $Y_{i} Y_{i} \subseteq Y_{i}$. Then according to Lemma 4.8, there is $d \geq 1$ such that X_{i}, Y_{i} can be constructed from singleton languages $\{a\}(a \in A)$ and the language $\left(A^{d}\right)^{*}$.

Because X_{i} is quasi-star-free, according to Proposition 3.5, X_{i} is quasi-aperiodic, i.e. there is $n_{0} \in N$ such that for all $n \geq n_{0}$ and $x, y, z \in A^{*}$ with $|y| \equiv 0 \bmod d$, $x y^{n} z \in X_{i}$ iff $x y^{n+1} z \in X_{i}$. Denote this n_{0} as $n_{0}\left(X_{i}\right)$. Similarly we have $n_{0}\left(Y_{i}\right)$ for Y_{i}. Moreover, since X_{i}, Y_{i} are quasi-star-free, $X_{i} Y_{i}$ is quasi-star-free as well, and we let $n_{0}\left(X_{i} Y_{i}\right) \geq n_{0}\left(X_{i}\right)+n_{0}\left(Y_{i}\right)+1$ for $X_{i} Y_{i}$ such that for all $n \geq n_{0}\left(X_{i} Y_{i}\right)$ and $x, y, z \in A^{*}$ with $|y| \equiv 0 \bmod d, x y^{n} z \in X_{i} Y_{i}$ iff $x y^{n+1} z \in X_{i} Y_{i}$.

Let $N_{0}=1+2 \max \left\{n_{0}\left(X_{i} Y_{i}\right) \mid 1 \leq i \leq m\right\}$. It is sufficient to show that for all $n \geq N_{0}$ and $u, x, y, z \in A^{*}$ with $|u|=0 \bmod d,\left(x u^{n} y z^{\omega} \in L\right.$ iff $\left.x u^{n+1} y z^{\omega} \in L\right)$ and $\left(x\left(y u^{n} z\right)^{\omega} \in L\right.$ iff $\left.x\left(y u^{n+1} z\right)^{\omega} \in L\right)$ in order to prove that L is quasi-aperiodic (according to Proposition 4.5).
(a) Suppose that $n \geq N_{0}, u, x, y, z \in A^{*},|u|=0 \bmod d$, and $x u^{n} y z^{\omega} \in L$, we show that $x u^{n+1} y z^{\omega} \in L$.

Because $L=\bigcup_{i=1}^{m} X_{i}\left(Y_{i}\right)^{\omega}, x u^{n} y z^{\omega} \in X_{i}\left(Y_{i}\right)^{\omega}$ for some i. Then there is $p, p^{\prime}, q, q^{\prime} \geq 0, z_{1}, z_{2} \in A^{*}$ such that $z=z_{1} z_{2}, x u^{n} y z^{p^{\prime}} z_{1} \in X_{i} Y_{i}^{p}$ and $z_{2} z^{q^{\prime}} z_{1} \in Y_{i}^{q}$. If $p=0$, then $x u^{n+1} y z^{p^{\prime}} z_{1} \in X_{i}$ since $n \geq N_{0} \geq n_{0}\left(X_{i} Y_{i}\right) \geq n_{0}\left(X_{i}\right), x u^{n+1} y z^{\omega}=$ $\left(x u^{n+1} y z^{p^{\prime}} z_{1}\right)\left(z_{2} z^{q^{\prime}} z_{1}\right)^{\omega} \in X_{i}\left(\left(Y_{i}\right)^{q}\right)^{\omega}=X_{i} Y_{i}^{\omega} \subseteq L$. In the case of $p>0$, $X_{i} Y_{i}^{p} \subseteq X_{i} Y_{i}$ follows from that assumption $Y_{i} Y_{i} \subseteq Y_{i}$, so $x u^{n+1} y z^{p^{\prime}} z_{1} \in X_{i} Y_{i}$ since $n \geq N_{0} \geq n_{0}\left(X_{i} Y_{i}\right) ;$ then $x u^{n+1} y z^{\omega}=\left(x u^{n+1} y z^{p^{\prime}} z_{1}\right)\left(z_{2} z^{q^{\prime}} z_{1}\right)^{\omega} \in$ $X_{i} Y_{i}\left(\left(Y_{i}\right)^{q}\right)^{\omega}=X_{i}\left(Y_{i}\right)^{\omega} \subseteq L$.

The proof of $x u^{n+1} y z^{\omega} \in L$ implies $x u^{n} y z^{\omega} \in L$ is similar to (a).
(b) Suppose that $n \geq N_{0}, u, x, y, z \in A^{*},|u|=0 \bmod d$, and $x\left(y u^{n} z\right)^{\omega} \in L$, we show that $x\left(y u^{n+1} z\right)^{\omega} \in L$.

Because $L=\bigcup_{i=1}^{m} X_{i}\left(Y_{i}\right)^{\omega}, x\left(y u^{n} z\right)^{\omega} \in X_{i} Y_{i}^{\omega}$ for some i. Then there are $p, p^{\prime}, q, q^{\prime} \geq 0, v_{1}, v_{2} \in A^{*}$ such that $x\left(y u^{n} z\right)^{p^{\prime}} v_{1} \in X_{i} Y_{i}^{p}, v_{2}\left(y u^{n} z\right)^{q^{\prime}} v_{1} \in Y_{i}^{q}$, $v_{1} v_{2}=y u^{n} z$.

Here we prove for the case of $p>0$, the case of $p=0$ can be proved similarly.
Suppose that $p>0$.
Since $Y_{i} Y_{i} \subseteq Y_{i}$, we have $X_{i} Y_{i}^{p} \subseteq X_{i} Y_{i}, Y_{i}^{q} \subseteq Y_{i}$.
Because $n \geq N_{0} \geq n_{0}\left(X_{i}, Y_{i}\right) \geq n_{0}\left(Y_{i}\right)$, we have that $x\left(y u^{n+1} z\right)^{p^{\prime}} v_{1} \in X_{i} Y_{i}$ and $v_{2}\left(y u^{n+1} z\right)^{q^{\prime}} v_{1} \in Y_{i}$.

Now we discuss the following three cases of v_{1} and v_{2}.

- $v_{1}=y_{1}, v_{2}=y_{2} u^{n} z, y=y_{1} y_{2}$;
- $v_{1}=y u^{n} z_{1}, v_{2}=z_{2}, z=z_{1} z_{2}$;
- $v_{1}=y u^{h} u_{1}, v_{2}=u_{2} u^{k} z$, with $h+k+1=n$ and $u=u_{1} u_{2}$.

Here we take the third case as the example, the discussions of other cases are similar.

Case $v_{1}=y u^{h} u_{1}, v_{2}=u_{2} u^{k} z$, with $h+k+1=n$ and $u=u_{1} u_{2}$:
Since $n \geq N_{0} \geq 1+2 n_{0}\left(X_{i} Y_{i}\right)$, we have $h \geq n_{0}\left(X_{i} Y_{i}\right)$ or $k \geq n_{0}\left(X_{i} Y_{i}\right)$.
If $h \geq n_{0}\left(X_{i} Y_{i}\right)$, then

$$
x\left(y u^{n+1} z\right)^{p^{\prime}}\left(y u^{h+1} u_{1}\right) \in X_{i} Y_{i}, \quad\left(u_{2} u^{k} z\right)\left(y u^{n+1} z\right)^{q^{\prime}}\left(y u^{h+1} u_{1}\right) \in Y_{i} .
$$

Thus
$x\left(y u^{n+1} z\right)^{\omega}=\left(x\left(y u^{n+1} z\right)^{p^{\prime}}\left(y u^{h+1} u_{1}\right)\right)\left(\left(u_{2} u^{k} z\right)\left(y u^{n+1} z\right)^{q^{\prime}}\left(y u^{h+1} u_{1}\right)\right)^{\omega} \in X_{i} Y_{i}^{\omega}$.
If $k \geq n_{0}\left(X_{i} Y_{i}\right)$, then $\left(u_{2} u^{k+1} z\right)\left(y u^{n+1} z\right)^{q^{\prime}}\left(y u^{h} u_{1}\right) \in Y_{i}$. Thus

$$
x\left(y u^{n+1} z\right)^{\omega}=\left(x\left(y u^{n+1} z\right)^{p^{\prime}}\left(y u^{h} u_{1}\right)\right)\left(\left(u_{2} u^{k+1} z\right)\left(y u^{n+1} z\right)^{q^{\prime}}\left(y u^{h} u_{1}\right)\right)^{\omega} \in X_{i} Y_{i}^{\omega} .
$$

The proof of $x\left(y u^{n+1} z\right)^{\omega} \in L$ implies $x\left(y u^{n} z\right)^{\omega} \in L$ is similar to (b).

5 Conclusions and Remarks

In this paper quasi-star-free languages on infinite words $\left(\mathrm{QSF}^{\mathrm{I}}\right)$ are defined and studied. Quasi-star-free languages on finite words $\left(\mathrm{QSF}^{\mathrm{F}}\right)$ have been studied in $[2,5]$, and our work in this paper is an extension of those results for $\operatorname{QSF}^{\mathrm{F}}$ in $[2,5]$.

The extension of results of $\mathrm{QSF}^{\mathrm{F}}$ to $\mathrm{QSF}^{\mathrm{I}}$ should be more useful for the characterizations of the expressive power of temporal logics since temporal logics are usually interpreted on infinite words in order to describe temporal properties of concurrent systems. One of the examples is the characterizations of expressive power of fragments of linear μ-calculus [8](known as $\nu T L$). The "next" operators within the scope of the fixed points of $\nu T L$ formulas act like the $\mathrm{FO}[\mathrm{C}]$ predicates " $C_{d}^{r}(x)$ " and LTL[C] operators " $U^{(d, r) ", ~ e . g . ~} \nu T L$ formula $\nu Q . p_{a} \wedge X X Q$ defines language $(\{a\} A)^{\omega}$, which can be defined by $\mathrm{FO}[\mathrm{C}]$ sentence $\forall x\left(C_{2}^{0}(x) \rightarrow p_{a}(x)\right)$ and $\operatorname{LTL}[\mathrm{C}]$ formula $\neg\left(\operatorname{True} U^{(2,0)} \neg p_{a}\right)$ respectively, as we have noticed in Section 4.2.

Acknowledgements. I would like to thank anonymous referees for their comments and suggestions. Moreover, I would like to thank Prof. Wenhui Zhang for his reviews on this paper and discussions with me.

References

[1] A. Arnold. A syntactic congruence for rational ω-languages. Theoretical Computer Science 39, 333-335, 1985.
[2] D.A. Barrington, K. Compton, H. Straubing, D. Thérien. Regular languages in $N C^{1}$. Journal of Computer and System Sciences 44, 478-499, 1992.
[3] J. R. Büchi, On a decision method in restricted second order arithmetic. In: E. Nagel et al., eds., Proc Internat. Congr. on Logic, Methodology and Philosophy of Science (Stanford Univ. Press, Stanford, CA),1-11, 1962.
[4] J.Cohen, D.Perrin, J.E.Pin. On the expressive power of temporal logic for finite words,Journal of Computer and System Sciences 46, 271-294,1993.
[5] Z. Ésik, M. Ito. Temporal logic with cyclic counting and the degree of aperiodity of finite automata. Acta Cybernetica 16, 1-28, 2003.
[6] S. Eilenberg. Automata, Languages and Mahcines, Volume B. Academic Press, 1976.
[7] Dov M. Gabbay, Amir Pnueli, Saharon Shelah, and Jonathan Stavi. On the Temporal Analysis of Fairness. In Conference Record of the 7th ACM Symposium on Principles of Programming Languages (POPL'80), 163-173, 1980.
[8] R. Kaivola. Axiomatising linear time mu-calculus. In 6th International Conference of Concurrency theory, LNCS 962: 423-437, 1995.
[9] H. W. Kamp. Tense Logic and the Theory of Linear Order. PhD thesis, UCLA, Los Angeles, California, USA, 1968.
[10] G.. Lallement. Semigroups and combinatorial applications. Wiley, New York, 1979.
[11] R. McNaughton and S. Papert. Counter-free automata. MIT Press, 1971.
[12] D. Perrin. Finite automata. Handbook of Theoretical Computer Science, Volume B: Formal Models and Semantics, 1-53, Elsevier Science Publishers, Amsterdam, 1990.
[13] D. Perrin. Recent results on automata and infinite words. In 11th MFCS, LNCS 176, 134-148, 1984.
[14] J.E.Pin. Varieties of formal languages. North Oxford Academic, London, Plenum, New York, 1986.
[15] A.Pnueli. The temporal logic of programs. Proc. $18^{\text {th }}$ FOCS, Providence, RI, 46-57, 1977.
[16] D.Perrin, J.E.Pin. Infinite Words. Pure and Applied Mathematics, Vol 141, Elsevier, 2004, ISBN 0-12-532111-2.
[17] M.P Schutzenberger. On finite monoids having only trivial subgroups. Information and Computation 8, 190-194, 1965.
[18] W. Thomas. Star-free regular sets of ω-sequences. Inform. and Control 42, 148-156, 1979.
[19] W. Thomas. A combinatorial approach to the theory of ω-automata. Inform. and Control 48, 261-283, 1981.
[20] W. Thomas. Computation tree logic and regular ω-languages. In REX Workshop 1988: Linear Time, Branching Time and Partial Order in Logics and Models for Concurrency, LNCS 354, 690-713, 1989.
[21] W. Thomas. Automata on infinite objects. Handbook of Theoretical Computer Science, Volume B: Formal Models and Semantics, 133-192. Elsevier Science Publishers, Amsterdam, 1990.
[22] H. Straubing. Finite Automata, Formal Logic and Circuit Complexity. Birkhauser, 1994.
[23] P. Wolper. Temporal logic can be more expressive. Inform. and Control 56, 72-99, 1983.

[^0]: *Partially supported by the National Natural Science Foundation of China under Grant No. 60223005 and the National Grand Fundamental Research 973 Program of China under Grant No. 2002cb312200.
 ${ }^{\dagger}$ Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, P.O.Box 8718, Beijing, China, \& Graduate School of the Chinese Academy of Sciences, 19 Yuquan Street, Beijing, China. E-mail: wuzl@ios.ac.cn

