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Minimal inter-particle distance in atom clusters∗

Tamás Vinkó†

Abstract

A general method for obtaining minimal interatomic distance in molecule
conformation problems is introduced. The method can be applied to a wide
family of potential energy functions having reasonable properties. Using this
method new lower bounds for the minimal inter-particle distance for the op-
timal Lennard-Jones and Morse potential functions are derived which are
independent from the number of atoms. Improved linear lower bounds for
the optimal function values for Lennard-Jones and Morse potentials are also
given.

1 Introduction

Given a cluster of n atoms, define xi ∈ R
3 (i = 1, . . . , n) as the center of the ith

atom. The potential energy of the cluster x = (x1, . . . , xn) ∈ R
3n is defined as the

sum of the two-body inter-particle pair potentials over all of the pairs, i.e.,

E(x) =
∑
i<j

v(rij), (1)

where rij = ‖xi − xj‖ and v(r) is the value of a pair potential of distance r. For
the pair potential v(r) we set the following requirements to be satisfied:

(P1) The function v is continuous.

(P2) There exists a unique s with v(s) < 0 and if r �= s then v(r) > v(s) (single
stable state property).

(P3) If r ≤ s then v is strictly decreasing and v(r) ≥ r−4.

(P4) If r > s then v is strictly increasing and v(r) ≥ −r−4.

The properties (P3) and (P4) come from sphere packing arguments used in the
paper. We should use here Cr−3 bounds instead, but the a priori determination of
the constant C is quite difficult.
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The aim of the paper is to obtain lower bounds for the minimal interatomic
distance in the optimal structure of (1), independent of the number of atoms and
assuming only that the pair potential minimally satisfies properties (P1)–(P4).
Many papers deal with this topic, however, they specialized the pair potential
function.

1.1 Previous results

The first paper is by Xue et al. [9], where a poor lower bound for the minimal
distance in Lennard-Jones cluster is established. They also proved that the global
optimum can be bounded from below and above by linear (in the number of atoms)
functions. In a paper of Maranas and Floudas [7] results for the minimal distance
can be found. They established bounds as functions of the number of atoms. That
value is useful only for small n since it goes to zero as the number of atoms grows.
In another work of Xue [11], a lower bound for inter-particle distance in the optimal
Lennard-Jones cluster is given which is independent of the number of atoms in the
cluster. Improved lower bound is obtained by Blanc [1]. For Morse clusters (for
which property (P3) does not hold) Locatelli and Shoen [5] establish lower bound
for the interatomic distance in the optimal structures. In this paper, better lower
bounds for the Lennard-Jones and the Morse cluster (where we use the results from
[5]) are derived as applications of the introduced general method.

Apart from the theoretical interest, this kind of results can be used efficiently in
the construction of global optimization methods, especially in branch-and-bound
type methods. As shown by Locatelli and Schoen in [4], information about the
minimal interatomic distance can be used efficiently in starting point generator
algorithm for (stochastic) optimization methods. Such a lower bound can also be
applied to construct special data structures for fast procedures to compute potential
functions with large number of atoms, see [12].

1.2 Notation

In the rest of the paper the following notation will be used. The set of real num-
bers, positive real number and nonnegative integers are denoted by R, R+ and N0,
respectively. V denotes the set of functions v : R+ → R satisfying properties (P1)–
(P4) Using this notation v ∈ V is supposed in this paper. The global minimizer of
the function E is the configuration x∗ ∈ R

3n with

E(x∗) = min
x∈R3n

E(x). (2)

The global minimum will be denoted by

E∗ = E(x∗).

Let rij be the Euclidean distance of the points x∗
i and x∗

j (i, j = 1, . . . , n). Define
the potential energy of particle i as

Ei(x) =
∑
i�=j

v(‖xi − xj‖) (i = 1, . . . , n)
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and E∗
i = Ei(x∗). It is obvious that

E(x) =
1
2

n∑
i=1

Ei(x) (3)

holds. The minimal inter-particle distance in the optimal structure is

r∗ = min
i,j

rij (i, j = 1, . . . , n). (4)

Lower bound for the minimal distance is denoted by q, i.e., our task is to find a
good underestimation

q ≤ r∗.

In order to obtain good lower bound q we assume that in the configuration taken
into account the minimal distance between the particles equal to q.

The positive root of v is denoted by t. Properties (P1)–(P4) imply that that t
is unique and t < s. Note that with the general method only such a lower bound
can be obtained which satisfies q < t.

Without loss of generality let us suppose that x1 = 0 and 0 = r1 < r2 ≤ . . . ≤ rn,
where

rj = ‖xj − x1‖ = ‖xj‖ (j = 1, . . . , n).

In the rest of the paper we consider only the cases n > 2.

2 Lower bound on the minimal inter-particle dis-
tance

To give a good lower bound for the minimal inter-particle distance we generalize
the arguments given by Xue in [11] and Blanc in [1]. To do that, first we establish
an upper bound for E∗

i (i = 1, . . . , n). Suppose that p ∈ R+ is a parameter such
that

pq ≥ s. (5)

Then we use the partition

E∗
1 =

∑
q≤rj<pq

v(rj) +
∑

rj≥pq

v(rj) (6)

and give underestimations for the two terms. With suitable chosen parameters we
show that if the minimal distance is too small, then we get a contradiction with
the upper bound for E∗

1 .

2.1 The auxiliary bounds

Lemma 1. In the optimal configuration the potential energy of particle i is always
less than the global minimum of v, i.e. the inequality E∗

i < v(s) holds for all i =
1, . . . , n.
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Proof. Let k = n if i �= n and k = n − 1 if i = n, and define the configuration
z = (z1, . . . , zn) in such a way that zj = x∗

j for all j �= i, ‖zi − zk‖ = s and
‖zi − zl‖ ≥ s for all l �= i. Then put the atom zi to the line determined by the
origin point and the coordinates of zk in such a way that then zi has the maximal
rj value. Thus Ei(z) < v(s). By construction of z,

E∗ − E∗
i = E(z) − Ei(z).

Since Ei(z) < v(s) and

E∗ − E∗
i = E(z) − Ei(z) > E(z) − v(s),

we find E∗
i < v(s).

Lemma 2. For q
2 < a < b, the index set Jab = {j | a ≤ rj < b} has size

|Jab| ≤
(

2b + q

q

)3

−
(

2a − q

q

)3

.

Proof. We may assume that the particles are centers of disjoint open balls of radius
q/2. The cardinality of the set Jab can not exceed the number of balls with radius
q/2 that can be contained in the ball centered at the origin with radius b + q/2.
With volume comparison this gives the upper bound

|Jab| ≤
(

b + q
2

q
2

)3

.

On the other hand, since rj ≥ a, we can drop out all the balls with radius q/2 from
the ball centered in the origin and having radius a − q/2.

Lemma 3. If pq ≥ s, then the first term of (6) can be underestimated with∑
q≤rj<pq

v(rj) ≥ v(q) + v(s)
(
(2p + 1)3 − 1)

)
. (7)

Proof. Suppose that r2 = r3 = . . . = rm+1 = q, (i.e. there are m ≥ 1 distances
equal to q). Since they give positive contributions we can cancel all of them but one
(about what we supposed that exists, see Section 1.2) and this one can be taken
out from the sum. Thus ∑

q≤rj<pq

v(rj) ≥ v(q) +
∑

q<rj<pq

v(rj) (8)

holds. Moreover, using Lemma 2 and the monotonicity property of the pair poten-
tial v we get

v(q) +
∑

q<rj<pq

v(rj) ≥ v(q) + v(s)

((
2pq + q

q

)3

−
(

2q − q

q

)3
)

(9)

= v(q) + v(s)
(
(2p + 1)3 − 1)

)
. (10)
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Lemma 4. Let s ≤ pq = R0 < R1 < R2 < . . . be an infinite strictly increasing
sequence and define the index set Ik = {j | 2 ≤ j ≤ n, Rk ≤ rj < Rk+1} (k =
0, 1, 2, . . .). If pq ≥ s, then the second term of (6) can be underestimated with

∑
rj≥pq

v(rj) ≥ 1
q3

∞∑
k=0

v(Rk)
(
(2Rk+1 + q)3 − (2Rk − q)3

)
. (11)

Proof. Again, we can use the monotonicity property of v and Lemma 2 with the
index set Ik:

∑
rj≥pq

v(rj) =
∞∑

k=0

∑
rj∈Ik

v(rj) (12)

≥
∞∑

k=0

∑
rj∈Ik

v(Rk) (13)

≥ 1
q3

∞∑
k=0

v(Rk)
(
(2Rk+1 + q)3 − (2Rk − q)3

)
, (14)

which completes the proof.

2.2 The general method

Using the above lemmas the following method can be introduced to obtain the
minimal interatomic distance in the optimal potential energy function E. Recall
that t and s are the zero and the minimizer of the pair potential v, respectively.
Suppose that v ∈ V . In Lemma 4 we use an increasing sequence Rk which represents
an infinite sequence of spherical shells. Instead of this sequence one can use function
R : R+ × N0 → R+ having the properties

R(Q, k) < R(Q, k + 1) and R(Q, 0) = c,

where c ∈ R+ is a constant (in the proof of Lemma 4 this constant is pq, the staring
point of the infinite sequence). For technical reasons we use the notation RQ

k for
the functions R(Q, k). Moreover, we write

UQ
c := {RQ

k | RQ
k < RQ

k+1 and RQ
k = c and k = 0, 1, . . .}.

Let us define now

F (q, p) := v(q) + v(s)
(
(2p + 1)3 − 1

)
, (15)

S(q, p, R) :=
1
q3

∞∑
k=0

v(RQ
k )
((

2RQ
k+1 + q

)3

−
(
2RQ

k − q
)3
)

, (16)

G(q, p, R) := F (q, p) + S(q, p, R). (17)
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Using these functions and Lemma 3 and 4, we have the lower bound:

E∗
1 =

∑
q≤rj<pq

v(rj) +
∑

rj≥pq

v(rj)

≥ G(q, p, R) (18)

where p ∈ R+ such that pq ≥ s and R ∈ UQ
pq.

Theorem 1. Define the function gv(q, p, Q) := G(q, p, R). If gv(q, p, Q) > −∞
then in the optimal atom cluster problem (2) the minimal inter-particle distance is
greater than or equal to the solution q of the nonlinear system of equations

∂gv(q, p, Q)
∂p

= 0, (19)

∂gv(q, p, Q)
∂Q

= 0, (20)

gv(q, p, Q) − v(s) = 0. (21)

Proof. The finiteness of gv comes from properties (P3) and (P4). These properties
also guarantee that gv is monotone in q on the interval [0, s]. Thus (21) has exactly
one solution.

From Lemma 1 we know E∗
1 < v(s). Moreover, gv ≤ E∗

1 comes from (18). We
are looking for the largest q for which the underestimation gv < v(s) does not hold.
Now let us consider the optimization problem

max q
s.t. gv(q, p, Q) ≥ v(s) (22)

Thus (19) and (20) are the first order optimality conditions for p and Q, respectively,
in the optimization problem (22). Finally, (21) guarantees the largest possible q
for which the the inequality gv < v(s) does not hold. In this manner the minimal
inter-particle distance in (2) is at least q.

One can improve the result can be achieved with Theorem 1. If we substitute the
first m term of the sequence Rk with variables p1, . . . , pm then we have a function
G with m + 2 variables. Namely,

G(q, p1, . . . , pm, R) := F (q, p) +
m−1∑
i=1

v(piq)
(
(2pi+1 + 1)3 − (2pi − 1)3)

)

+
1
q3

∞∑
k=0

v(RQ
k )
((

2RQ
k+1 + q

)3

−
(
2RQ

k − q
)3
)

,

where F (q, p) is defined in (15), p1q ≥ s, and RQ
k ∈ UQ

pmq.
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Corollary 1. Define the function gv(q, p1, . . . , pm, Q) := G(q, p1, . . . , pm, R). If
gv > −∞ then in the optimal atom cluster problem (2) the minimal inter-particle
distance is greater than or equal to the solution q of the nonlinear system of equa-
tions

∂gv(q, p1, . . . , pm, Q)
∂p1

= 0,

...
∂gv(q, p1, . . . , pm, Q)

∂pm
= 0,

∂gv(q, p1, . . . , pm, Q)
∂Q

= 0,

gv(q, p1, . . . , pm, Q) − v(s) = 0.

3 Linear lower bounds on the optimal values

Using the results of the previous section we can establish linear lower bounds for
the optimal objective function value. These bounds are valid for arbitrary large
clusters.

3.1 The general method

Theorem 2. If q is a lower bound obtained by the usage of Corollary 1 for the
minimal inter-particle distance in the problem (2), then there exists a constant K
such that

−K

2
n ≤ E∗.

Moreover, K can be computed using the value of q.

Proof. Let i ∈ {1, . . . , n} arbitrary but fixed. Recall from Section 1.2 that s is the
minimizer and t is the positive root of v, respectively. Let us define the interval
M = [t, pq), where pq ≥ s. Then one can make the underestimation

n∑
j=1
j �=i

v(rij) ≥
n∑

j=1
j �=i,rij∈M

v(rij) +
n∑

j=1
j �=i,rij≥pq

v(rij).

Using Lemma 2, an underestimation of the first term is

n∑
j=1

j �=i,rij∈M

v(rij) ≥ v(s)

(
(2p + 1)3 −

(
2t − q

q

)3
)

. (23)
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From Lemma 2 and 4 we have a lower bound for the second term:
n∑

j=1
j �=i,rij≥pq

v(rij) ≥ 1
q3

∞∑
k=0

v(RQ
k )
(
(2RQ

k+1 + q)3 − (2RQ
k − q)3

)
, (24)

where RQ
k ∈ UQ

pr∗ (see section 2.2). Moreover, as in Corollary 1 we can extend
these considerations with introducing more variables in (24). This leads to the
underestimation

n∑
j=1
j �=i

v(rij) ≥ v(s)

(
(2p + 1)3 −

(
2t − q

q

)3
)

+

+
m−1∑
l=1

v(plr
∗)
(
(2pl+1 + 1)3 − (2pl − 1)3)

)
+

+
1
q3

∞∑
k=0

v(RQ
k )
((

2RQ
k+1 + q

)3

−
(
2RQ

k − q
)3
)

=: −K,

where p1q ≥ s and RQ
k ∈ UQ

pmq. If gv is finite (see Corollary 1) then the substitution
of the solution vector from Corollary 1 guarantees the finiteness of K. Finally,
equation (3) yields a linear lower bound for the optimal potential function:

−K

2
n ≤ E∗.

4 Lennard-Jones clusters

In this section the generalized method introduced in the previous section is applied
to the Lennard-Jones function.

In general form the Lennard-Jones pair potential function is

vσ,ε(r) = 4ε

[(σ

r

)12

−
(σ

r

)6
]

, (25)

where ε is the pair well depth and 21/6σ is the pair separation at equilibrium. In the
global optimization literature the function (25) with reduced units, i.e. ε = σ = 1
and s = 21/6,

v1,1(r) =
4

r12
− 4

r6
,

or the so-called scaled Lennard-Jones pair potential (ε = 1, σ = 2−1/6, s = 1)

v2−1/6,1(r) =
1

r12
− 2

r6
(26)
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is investigated. Note that the properties (P1)–(P4) required for the application of
the general method are satisfied by (25). The scaled version is plotted in Figure 1.

Using (1) and (25), the Lennard-Jones potential function is defined by

Eσ,ε(x) =
∑

1≤i<j≤n

vσ,ε(‖xi − xj‖). (27)

In the following minimal distance in the optimal Lennard-Jones cluster is given.

4.1 Minimal distance

Theorem 3. In the optimal Lennard-Jones atom cluster problem the minimal
inter-particle distance is greater than or equal to 21/6σ · 0.6187356774.

Proof. The translation between the general and the scaled Lennard-Jones pair po-
tential is

vσ,ε(r) = εv2−1/6,,1(r/s), (28)

thus the minimal distance scales with s and the potential scales with ε. We give a
proof for the scaled version; then the result for the general case is straightforward.

For the sake of simplicity, in the proof we use the notation

v(r) = v2−1/6,1(r) and E = E2−1/6,1.

3

1

-1

x

1.81.61.41.21

5

4

2

0

Figure 1: The scaled Lennard-Jones pair potential function.
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One can easily see that the zero point and the minimizer point of the function v is

t = 2−1/6 and s = 1,

respectively.
From Lemma 1 we have E∗

1 < −1. The lower bound for E∗
1 can be established

with the usage of Lemma 3 and 4. To prove the theorem by contradiction we should
choose a suitable function R(Q, k) to keep that lower bound greater than or equal
to −1.

Define the function R(Q, k) = pqQk (pq ≥ 1, Q > 1, k = 0, 1, 2, . . .). Since
property (P4) is satisfied by v, it is easy to see that

SLJ(q, p, Q) :=
∞∑

k=0

(
1

pqQ12k
− 2

pqQ6k

)((
2pQk+1 + 1

)3 − (2pQk − 1
)3)

> −∞
(29)

holds. Indeed, because Q > 1 holds, as k goes to infinity the first term in the sum
(i.e. v(pqQk)) tends to 0 faster than the second term goes to infinity. Thus the
function

gv(q, p, Q) := v(q) + 1 − (2p + 1)3 + SLJ(q, p, Q) (30)

is well defined. Figure 2 shows the graph of this function, where the variable
q = 0.618 is fixed. Note that the function gv is monotone decreasing in variable q.

2,2

2,22

2,24

p2,26
1,2

-1

1,22

-0,5

1,24
2,28

1,26

0

Q~ 1,28 2,3
1,3

0,5

1

1,5

2

Figure 2: The graph of function gv(0.618, p, Q).
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To obtain a lower bound one has to solve the nonlinear system of equations with
three variables:

∂gv

∂p
(q, p, Q) = 0,

∂gv

∂Q
(q, p, Q) = 0,

gv(q, p, Q) + 1 = 0.

The closed formula of the convergent series (29) and the partial derivative in the
nonlinear system of equation above can be calculated with the usage of a symbolic-
algebraic system. For this task we used MAPLE 9 [6]. The solution of the nonlinear
system is

Q = 1.234749976, p = 2.24086158005346, q = 0.61845034503861, (31)

which gives a lower bound on the minimal interatomic distance for the optimal
scaled Lennard-Jones problem.

As it is stated in Corollary 1, we can improve this bound with introducing more
parameters. Using 5 variables instead of 3, one obtains:

q = 0.6187356774, (32)

which gives a slightly better underestimation for the minimal distance.

Note that we do not have significantly better bound with Corollary 1 using more
and more variables, but more complicated calculations have to done.

As it is mentioned in the introduction, there are papers about the minimal
distance in optimal scaled Lennard-Jones clusters. These results are compared in
the following table including the minimal distance obtained in this paper.

Xue [11] Blanc [1] general method
0.5 0.6108 0.6187

Note that all these results are independent of the number of particles in the con-
figuration.

The next corollary specializes the previous result for the case of reduced unit.

Corollary 2. The minimal inter-particle distance in the optimal Lennard-Jones
clusters with reduced units is greater than or equal to 0.6945073156.

4.2 Linear lower bound on the optimal value

Theorem 4. The optimal Lennard-Jones potential function has the linear lower
bound

−138.6775911n · ε ≤ E∗
σ,ε (n = 2, 3, . . .).

Proof. One can use the values from the numerical result of Theorem 3 and equation
(28) then the statement of the theorem is straightforward from the considerations
in section 3.1, thus the proof is omitted.
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5 Morse clusters

The pair potential function in Morse cluster is

vρ(r) = eρ(1−r)
(
eρ(1−r) − 2

)
, (33)

where ρ > 0 is a parameter. For ρ = 6 the Morse and the scaled Lennard-Jones
pair potential are related, they have similar curvature at the minimum point r = 1.

Using (33) and (1) the Morse potential function is defined by

Mρ(x) =
∑

1≤i<j≤n

vρ(‖xi − xj‖). (34)

The zero point and the minimizer point of the function vρ is

t = 1 − ln 2
ρ

and s = 1,

respectively. Note that if ρ < ln 2 then vρ has no positive root. In the context of
global optimization, the cases ρ > 6 are interesting, since these are more difficult
problems than finding the optimal Lennard-Jones structures [2].

5.1 Minimal distance

We must emphasize that property (P3) is not satisfied by the Morse potential. The
reason is that the pair potential function vρ is defined even in the case r = 0,
i.e., when two particles are in the same position. In other words the function G
from (15) has two roots, i.e. becomes negative for small q values. Thus the general
method cannot be applied directly to Mρ. In this case, information on the minimal
inter-particle distances can be helpful. In [5] the minimal inter-particle distance
in optimal Morse clusters is investigated. The proposed technique differs from the
method introduced by Xue in [11] and from the general method introduced in this
paper. In [5] it has been proved that there are positive minimal distances in the
optimal Morse clusters for ρ ≥ 6. Using this information these bounds can be
improved by the application of the general method.

In the rest of this subsection we use the notation M := Mρ for a given ρ > 0.
From Lemma 1 we know that M∗

i < −1 for all i = 1, . . . , n and ρ > 0. As for the
Lennard-Jones potential, define the function R(Q, k) := pqQk (pq > 1, Q > 1, k =
0, 1, . . .). The infinite series

SM (q, p, Q) :=
∞∑

k=0

((
eρ(1−pqQk) − 1

)2

− 1
)((

2pQk+1 + 1
)3 − (2pQk − 1

)3)
(35)

is convergent –the first term of the sum (i.e. vρ(pqQk)) goes to zero faster than the
second term goes to infinity–, thus the function

gv(q, p, Q) := vρ(q) + 1 − (2p + 1)3 + SM (q, p, Q) (36)
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is well defined.
In Table 1 the results from [5] are collected and compared with the results can

be achieved with the usage of the general technique introduced in this paper. Note
that the new results are achieved using the results from [5], i.e. using that q must
be greater than the second column in Table 1. One can see that the new method
produces much better lower bounds, especially for the case ρ = 6.

The present method works for ρ ≥ 6. For ρ = 5, the corresponding nonlinear
system of equation has no non-negative solution. The technique used in [5] also
gives no results for the cases ρ ≤ 6 (at least without further non-trivial refinements).

5.2 Linear lower bounds on the optimal values

Theorem 5. The optimal Morse potential function has the linear lower bound for
different ρ values:

−177.6190601n ≤ M∗
6

−97.52208250n ≤ M∗
7

−69.76159670n ≤ M∗
8

−55.71197450n ≤ M∗
9

−47.25499588n ≤ M∗
10

−41.61681210n ≤ M∗
11

−37.59385566n ≤ M∗
12

−34.58070042n ≤ M∗
13

−32.24012281n ≤ M∗
14

−30.36965466n ≤ M∗
15

Proof. The values in the statement can be derived by the considerations from sec-
tion 3.1 and from the numerical result of section 5.1, thus the proof is omitted.

ρ q from [5] q by the general method
6 0.114 0.4985948046
7 0.376 0.6113121449
8 0.468 0.6796501438
9 0.528 0.7268978345

10 0.574 0.7618207355
11 0.613 0.7887781722
12 0.644 0.8102494106
13 0.672 0.8277671751
14 0.695 0.8423362542
15 0.715 0.8546451536

Table 1: Lower bounds for the minimal distances in optimal Morse clusters for
different ρ.
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6 Summary

The method introduced in this paper can be used to obtain minimal inter-particle
distance in optimal atom clusters. For the usage, only natural requirements are
supposed for the pair potential function. Linear lower bounds on the optimal
potential energy is also established. As application, new results for the Lennard-
Jones and Morse clusters are derived. These theoretical results can be used for
accelerating global optimization methods.
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