
Acta Cybernetica 17 (2005) 273–287.

An Approach based on Genetic Algorithms for

Clustering Classes in Components

Dan Laurenţiu Jişa∗

Abstract

The goal of this work is to create a model that allows identification of the
software components (or subsystems according to the unified process termi-
nology) based on the design models, or more exactly, based on the classes
diagrams (for the static aspects) and on the interaction diagrams (for the
dynamic aspects). The work also presents a genetic algorithm used for the
clustering of classes into modules.

Keywords: object-oriented metrics, UML, unified process, genetic algo-
rithms, clustering algorithms.

1 Introduction

The components based development (CBD) process tends to revolutionize the pro-
cess of applications development, the usage of components opens the possibility
of assembling applications from predefined building blocks. A component has to
assure a better management of the complex applications, to lead to a decrease of
the development costs and to an increase of the flexibility. These goals could be
reached through a proper quality level of software components. One of the most
important quality indicators for a software module is the reusability. The term
“reuse” refers to the utilization of a software product, earlier developed, in a new
project or software application. This reutilization can take many aspects:

• any physical component or program code;
• any product, result of a software development process: tools, documentation,

models (requirements, analysis or design) etc.;
• any knowledge gains in the earlier projects.

The reutilisation, in a development process, of a software component that al-
ready exists, instead of the development of a new one, represents an activity that
leads to an increase of product quality and, also, to a decrease of the development
costs. These benefits are the consequence of two reasons:

∗PhD student, Department of Business Informatics, Academy of Economic Studies, Calea
Dorobanţilor 15-17, Sector 1, 71131-Bucharest, Romania, e-mail:dan.jisa@estwest.ro

273

274 Dan Laurenţiu Jişa

• the development of new components (modules) is expensive;

• the reused components (modules) are considered as being very well tested,
and their maintenance is not very expensive.

From the point of view of the software metrics, the reuse of software products
provides many interesting attributes to estimate. For example, these attributes can
be: the quantity of reused code in a software product, the reutilisation cost, the
reusability of a certain product, module or class etc.

The measurement of the degree to which a software product can be reused,
usually takes the name of reusability. Generally, the reusability is defined as the
extent to which a software product can be used in other applications.

Often, the goal of reusability measurements is to identify components in large
applications. In addition, the goal is often to automatically extract the components.
For the domain experts it will be still necessary to assess the modules in order to
identify the possible modifications. However, some results show that through the
automation of the identification process, the quantity of code which has to be
examined by the domain experts will be reduced.

Another important objective is to design and to write a reusable code. When the
software development process is mature enough and the software metrics become
part of the process carried on in an organisation, then the design metrics become
more important for two reasons:

• the measurement process can be automated, so that to have a feedback for
the designers;

• the measurement of the reusability, performed over the design model of a soft-
ware product, allows the early identification of products with a low potential
of reusability, when the modification and the refinement are still possible (and
the cost is not too high).

The identification of reusable elements is well known as one of the most difficult
tasks in software reuse. Although the traditional elements (cod segments, objects)
are the most frequently reused, great benefits are obtained when big elements, as
the business components, are reused.

According to the components based methodologies, the clustering process of
classes into modules must begin as early as possible in the development lifecycle (in
the analysis stage). So that, in the unified process ([BRJ99a]) the analysis model is
decomposed into analysis packages in two ways: in a top-down manner, as well as a
bottom-up manner. In the bottom-up approach, when the model becomes too large,
it must be decomposed into many packages, in such a way that, after decomposition,
it should have a high cohesion degree among the classes inside the packages and
low values for coupling among packages (that is as few relationships as possible
among classes that belong to different packages). The analysis packages will evolve
in subsystems (this is the concept used by the unified process in order to specify
a software component in the design stage), and the subsystems, in their turn, will
evolve in physical components (used in components diagrams). Therefore, it can

An Approach based on Genetic Algorithms for Clustering Classes. . . 275

be asserted that, among the analysis packages, the subsystems of the design stage
and the physical components (specified in UML through the component notation),
the traceability is provided.

2 Mathematical model

It will be considered a design model consisting of n classes, where n > 1 (n is
higher than one). It will be desired to cluster the classes into a certain number of
components, k (where k < n), so there will be obtained values as high as possible
for several quality indicators (indicators used to asses the clustering of classes).
Till the present moment (for this stage of the work) it was used only one quality
indicator, the reusability.

In the book “Designing Object Oriented C++ Applications Using the Booch
Method” ([MAR95]), Robert Martin presents several metrics that can be applied for
the class categories. The equivalent concept in the Universal Modelling Language
is the package. Therefore, the R. Martin’s metrics can be applied in a context
of models developed with the unified process and UML, more exactly they can
be applied for the subsystems, which represent the concept used to specify the
components at a design level (according to the unified process terminology). A
basic premise is the desire to build class structures such that a single change to a
class will not propagate up and down the class hierarchy without restraint. The
class categories are designed to have the property of closure. One way of creating
subsystems that exhibit closure, is to ensure that the subsystems with the most
dependencies on other subsystems also have the greatest resistance to change; those
subsystems that are the most changeable, should also have the fewest relationships
with other subsystems.

R. Martin’s metrics, used in the presented model (and in the algorithm which
will be presented in the next section), are the following:

• Relational cohesion – through this metric it is tried to assess the cohesion
degree among the classes inside a package. Relational cohesion is defined as
the number of relationships between the classes that belong to the package,
divided by the number of classes belonging to the same package;

• Afferent coupling – represents the number of classes that depend on the classes
belonging to a specified package; it is recommendable to have low values for
this metric;

• Efferent coupling – represents the number of classes outside a specified pack-
age which depend on the classes belonging to the package; there is recom-
mendable to have low values for this metric;

• Instability – is defined as the ratio between the efferent coupling and the
total coupling (defined as the sum between the efferent and afferent coupling)
computed for a package;

276 Dan Laurenţiu Jişa

The elements of the mathematical model will be represented as follows:

• A matrix M = (mij), that represents the inheritance relationships among the
classes of the model, where i = 1, n, j = 1, n, and

mij =

⎧⎨
⎩

1, if class i is inherited by the class j
2, if class i inherits class j
0, otherwise

• A matrix A = (aij) , that represents the association relationships among the
classes of the model, where i = 1, n, j = 1, n (n is the number of classes of the
model), and aijrepresents the number of association relationships between
classes i and j.

• A matrix D = (dij) , that represents the dependency relationships among
the classes of the model, where i = 1, n (i takes values between one and the
maximum number of classes - n), j = 1, n, and dijrepresents the number of
dependency relationships from class i to class j.

• A matrix Msg = (msgij) , that represents the messages exchanged among the
objects (that is the instances) of the model classes, where i = 1, n, j = 1, n,
and msgijrepresents the number of messages sent by the objects of class i to
the objects of class j.

• A matrix Met = (metij) , where i = 1, n and j = 1, m, where m represents
the number of internal metric considered.

metij = the value of metric j computed for class i

The goal is to find k components (modules), where 1 ≤ k ≤ n − 1. For each
component it will be possible to impose constraints as regarding the number of
classes included (for example, 2 ≤ dim ≤ n/2).

A solution is represented by a vector X = (xi), with i = 1, n, where:

xi =
{

index of the component to which the class i belongs
0, if the class does not belong to any component

Further on there will be presented the formulas used for computing the R.
Martin’s metrics (relational cohesion, afferent and efferent coupling), based on the
model’s elements described above.

In order to compute the relational cohesion, the generalization/specialization,
association and dependency relationships were considered, as well as the messages
exchanged by classes’ objects.

The coupling, also, was computed based on the relationships among classes: gen-
eralization/specialization, association and dependency. The interaction diagrams,
in UML, are used in order to specify the dynamic aspects of the collaborations
among classes: the objects of the classes involved in collaboration exchange mes-
sages along the links between them. But, according to UML, the concept of link

An Approach based on Genetic Algorithms for Clustering Classes. . . 277

represents an instance of an association; therefore, the exchange of messages will be
done between objects of the classes related by association relationships. In the for-
mulas used to compute the cohesion and the coupling, the messages exchanged by
objects are considered in order to have a measurement of the coupling or cohesion
intensity.

The relational cohesion, for a component k and a solution X, was computed
based on the model elements presented above, as follows:

RCoeh(k, X) =

∑n
i=1

∑n
j=1 rc(k, i, j, X)∑n

i=1 s(k, i, X)
, (1)

where

rc(k, i, j, X) =

⎧⎪⎨
⎪⎩

wm × mij + wa × aij + wd × dij + wmsg × msgij ,

if xi = k ∧ xj = k,

0, otherwise,
(2)

and

s (k, i, X) =
{

1, if xi = k
0, otherwise

wm = the weight assigned to the inheritance relationships;
wa = the weight assigned to the association relationships;
wd = the weight assigned to the dependency relationships;

wmsg = the weight assigned to the messages exchanged by classes’ objects;

As it can be observed in the above formulas, for each relationship type implied
in the metrics calculation there was allowed the assignment of weights. This is
so because different types of relations among classes have a different meaning as
regards the relations’ strength (an inheritance relationship represents a stronger
relation than a dependency). As a consequence, the software developers could want
to assign weight to different types of relations, in accordance with the importance
assigned in the clustering process.

The formulas used in order to compute the afferent and efferent coupling for a
component k and a solution X, are the following:

AC(k, X) =
n∑

i=1

n∑
j=1

ac(k, i, j, X), (3)

where

ac(k, i, j, X) =

⎧⎪⎨
⎪⎩

wm × mij + wa × aij + wd × dij + wmsg × msgij ,

if xi �= k ∧ xj = k

0, otherwise

278 Dan Laurenţiu Jişa

EC(k, X) =
n∑

i=1

n∑
j=1

ec(k, i, j, X), (4)

where

ec(k, i, j, X) =

⎧⎪⎨
⎪⎩

wm × mij + wa × aij + wd × dij + wmsg × msgij ,

if xi = k ∧ xj �= k

0, otherwise

The mathematical model, based on the previous elements, is:

maximize F (X) =
∑

k

⎡
⎢⎢⎣ RCoeh(k, X)

(AC(k, X) + EC(k, X) + 1) +
EC(k, X)

AC(k, X) + EC(k, X)

⎤
⎥⎥⎦ , (5)

where
X = represents the searched solution X = (xi), i = 1, n

It will be necessary to find out X so that F (X) will be maximum.
RCoeh(k, X) = represents the relational cohesion for component k (formula 1);

AC(k, X) = represents the afferent coupling for component k (formula 3);
EC(k, X) = represents the efferent coupling for component k (formula 4);

The constraints of the model are:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

G(k, X) ≥ number of classes in module − 1
number of classes in module

AC(k, X) + EC(k, X) > 0
k min ≤ ∑

i

s (k, i, X) ≤ k max

where

G (k, X) =
∑

i

∑
j

g (k, i, j, X) ,

and

g (k, i, j, X) =
{

1, if xi = k ∧ xj = k ∧ rc (k, i, j, X) > 0
0, otherwise

The meaning of the constraints is:

• a subsystem must contain more than one class, and among them there have to
be relationships (otherwise the value of the relational cohesion will be zero);
it must not contain classes that are not related to the other classes within the
subsystem;

An Approach based on Genetic Algorithms for Clustering Classes. . . 279

• a subsystem must have relationships with the other subsystems (it cannot
exist in isolation); this means that the total coupling (efferent or afferent)
will be higher than zero;

• for a subsystem, the developer can impose conditions as regarding the number
of classes (a minimum and a maximum number of classes).

3 The genetic approach

For the clustering of classes in subsystems (software components) the work proposes
the utilization of a genetic algorithm. A genetic algorithm applies ideas taken from
the natural selection theory, in order to navigate through a large solutions space.

Successfully applying a genetic algorithm in order to solve a problem implies
that:

a) a suitable representation of the solution must be found; a solution will be
represented by a chromosome;

b) a fitness function must be established in order to evaluate each solution;
c) the genetic operators, which will be applied in the algorithm, must be estab-

lished;
d) the values of the algorithm parameters must be established, that is: dimension

of the population, the probabilities with which the operators will be applied
etc.;

a) The representation of a solution must be:

• complete;
• valid.

A complete representation assumes that there is a possibility to encode all the
solutions for the studied problem. A valid representation assumes that all the
codifications are in the solution space. Invalid representations can be used, but the
algorithm has to be adapted in order to avoid invalid solutions.

In this paper, for the discussed problem, a solution was encoded as a vector (the
vector elements are positive integers), as follows:

• the index of each element represents a class of the model;
• the value of each element is a positive integer and represents the index of the

component to which the class belongs.

Each element of a chromosome can take a value between one and the maximum
number of components. Through this representation the completeness is assured.
Therefore, it will be possible to represent any clustering of classes in modules,
through a chromosome. The validity of a chromosome has to be checked out, in
case there are imposed constraints regarding the number of classes within a module.

280 Dan Laurenţiu Jişa

b) The fitness function quantifies each solution represented by a chromosome and
is used as basis for chromosomes selection for mating. For the discussed problem
the fitness function is represented by formula (5).

The objective function is built so that it will lead to a clustering in subsystems
(components) with low values for coupling (afferent and efferent) and for instability,
and high values for relational cohesion.

The function computed for each subsystem (component), is the ratio between
the relational cohesion of the classes within the module, and the sum between the
coupling (afferent and efferent) and the module instability.

The relational cohesion (formula 1) is computed as the ratio between the
number of relationships among the classes within a module and the number of
classes belonging to the module, so that it will not be possible to have high values
for cohesion (and for the fitness function) if a subsystem contains a high number
of classes, but with few relationships among them.

c) The operators used by the algorithm are the following:
Initialization operator – the initial population is randomly generated. The al-

gorithm was tested using several initialization operators that generate individuals
composed by groups of two, three, four and five classes. For each element of a
chromosome is generated a positive integer between one and the maximum number
of subsystems (in which the model can be divided).

The selection operator used by the algorithm is roulette wheel.
As regarding the crossover operator, the algorithm was tested using several

crossover operators. The classical operators used, are the following:

• one-point-crossover;

• two-point-crossover;

• uniform-crossover;

In addition to the above presented operators, it was tested a new one (named
ClusterCrossover) for which there have been obtained the good values for the fitness
function. The results are presented in section 4.

Further on the new crossover operator will be presented.
The operator works as follows: having two chromosomes selected for crossover,

Xp = (xp1, ..., xpn) and Xq = (xq1, ..., xqn). One point, in the first chromosome, is
randomly selected: spi. The new chromosomes are created as follows:

• the first child is composed of all the positions from Xp equals with xpi and
the others positions from Xq;

• the second child takes the remaining values from the two parent chromosomes.

The mutation operators used by the algorithm were swap-mutator and a muta-
tion operator presented in the paper “FGKA: A Fast Genetic K-means Clustering
Algorithm” ([LLF04]), adapted for the discussed problem, which will be presented
further on.

An Approach based on Genetic Algorithms for Clustering Classes. . . 281

Figure 1: The crossover operation

If it is considered a chromosome Xp = (xp1, ..., xpn), the element xpi is replaced
by the value xpi′ , for i = 1, n, where xpi′ is a subsystem, randomly selected from 1
to k, with the probability:

pmutt =
1, 5 ∗ Distpmax − Dispp(i, xpi) + 0.5∑k
j=1(1, 5 ∗ Distpmax − Distp(i, j) + 0.5)

,

where t between 1 and k (k is the maximum number of components).
Distpmax represents the maximum square of the Euclidian distance between class

i and one of the subsystems, and Distp(i) represents the square of the Euclidian
distance between class i and the subsystem xpi.

The square of the Euclidian distance is computed as the square of the difference
between the centroid of the subsystem xpi(Centr(xpi,Xp))and the weight of the
class i (W(i,Xp)):

Distp(i) = [Centr(xpi, Xp − W (i, Xp))]2

The weight W of the class i is computed with the following formula (the ratio
between all the relationships between class i and the other classes belonging to the
same subsystem, divided to the number of classes within the subsystem, and the
relationships between class i and the classes outside the subsystem):

W (i, Xp) =

∑
j,i�=j [cupl in(i, j, Xp)/s(i, Xp)]∑

j,i�=j cupl out(i, j, Xp)
, (6)

where

cupl in(i, j, Xp) =
{

wm × mij + wa × aij + wd × dij + wmsg × msgij , if xpi = xpj

0, if xpi �= xpj

282 Dan Laurenţiu Jişa

cupl out(i, j, Xp) =

⎧⎨
⎩

wm × mij + wa × aij + wd × dij + wmsg × msgij ,
if xpi �= xpj

0, if xpi = xpj

The formula for the centroid of the subsystem xpi is:

Centr(i, Xp) =
∑

i class weight(i, t, Xp)
number of classes within module t

, (7)

where

class weight(i, t, Xp) =
{

W (i, Xp), t = xpi

0, t �= xpi

d) The algorithm parameters were found as follows:

• the initial dimension of the population: 20 x n (where n is the number of
classes within the model);

• the crossover probability: 0.9;
• the mutation probability: 0.01;
• the overlapping degree of the populations: 20%;
• number of generations: 50 x n;

The algorithm involves the following steps:

1. The initial population is generated. There are created fixed length strings
(the length of a string is equal to the number of classes within the model).
The strings are randomly initialized using one of the initialisation operators
described above.

2. There are selected the individuals for mating using roulette wheel operator.
3. One of the crossover operators described above is applied.
4. One of the mutation operators presented above is applied.
5. The old population is replaced by the new one: the worst individuals are

removed from the temporary population, in order to return the population
to its original size.

6. If the required number of iterations is not reached, then the algorithm will
continue with step 2.

4 Case study and results

The results that will be presented further on, were obtained as a result of running
the algorithm on a model composed of 17 classes. This model, showed in figure
2, is extracted from a larger project, in which a B2B application is developed: an
intermediary site that takes the requests (the orders) from dealers and sends them
to manufacturers.

An Approach based on Genetic Algorithms for Clustering Classes. . . 283

At present, the information about the model is extracted manually and in-
troduced into a database in order to be used by the algorithm. Further on, an
application will be developed that will be able to extract the information about the
UML model from an XMI (XML Metadata Interchange) file.

The following image presents the cluster of classes proposed by the algorithm
(in the best case).

Figure 2: The clusters of classes proposed by the algorithm

The following figure represents the results obtained as a consequence of apply-
ing the swap-mutator operator together with the uniform, two-points and cluster-
crossover (the new operator tested), for initial population which contains individ-
uals formed by clusters of three classes.

As it can be observed from the above picture, the best results were obtained for
the ClusterCrossover operator.

Figure 4 presents the results obtained as a consequence of applying the same
crossover and mutation operators as in the previous figure, but with an initial
population which contains individuals formed by clusters of four classes (the ini-
tialization operator is different).

Again, like in the first case, the best fitness function value is obtained in a
smaller number of iterations for the ClusterCrossover operator, than for uniform
and two-point crossover.

In the following picture the same operators are applied as in the previous case,
but with the initial population which contains individuals formed by cluster of five
classes.

284 Dan Laurenţiu Jişa

Figure 3: Results for an initial population composed by individuals formed by
clusters of three classes

Figure 4: Results for an initial population composed by individuals formed by
clusters of four classes

In figure 6 there are presented the results obtained as a consequence of applying
the FGKA-mutator operator together with the uniform, two-points and cluster-
crossover (the new operator tested), for the initial population which contains indi-
viduals formed by clusters of two classes. It can be asserted that if the algorithm
starts with a large number of subsystems that must be reduced during the evolution
of the algorithm, then the FGKA-mutator is more suitable than the swap-mutator
operator.

An Approach based on Genetic Algorithms for Clustering Classes. . . 285

Figure 5: Results for an initial population composed by individuals formed by
clusters of five classes

Figure 6: Results of applying FGKA-mutator together with the uniform, two-points
and cluster-crossover

5 Conclusions and future work.

The structure of the software systems can be very complex. A design model for a
medium size application can include tens of classes (even more than one hundred),
the objects (the instances) of a class could be included in more than one interaction
diagram. Therefore, it is difficult enough for a developer to find the optimum
distribution of classes among the modules that compose the application, so that
the reusability should be as easy as possible and should involve a minimum number
of modifications (the ideal case is to have not any modification) within the module.

286 Dan Laurenţiu Jişa

The goal of the algorithm proposed in this work is to help software developers in
order to reach a decision as close as possible to the best one (to find the optimal
distribution of classes among subsystems).

There are, already, in the speciality literature, approaches that try to identify
software components (to group classes in components), but they are applicable
during the implementation phase (on the source code). Therefore, in [ETZ97]
is presented an algorithm for the automated identification of reusable software
components, which collects the metrics from a C/C++ source code. The algorithm
is based on metrics like LCOM, average number of comment lines per method etc.,
that it is applicable only for the implementation phase.

Another approach, presented in [JCI01], achieves a clustering of classes (using
a clustering algorithm) based on coupling intensity between them. In a second
phase there are applied heuristics in order to find the best values for several quality
indicators. In contrast with this approach, the algorithm presented in this work
achieves the clustering of classes into subsystems, having as goal a high level of
reusability for them. The clustering is based on several architectural metrics (R.
Martin’s metrics), that can be applied against the subsystems (packages). In addi-
tion to the well known metrics, like cohesion and coupling, there is also considered
the module stability. According to R. Martin, “the dependencies between compo-
nents in a design should be in the direction of stability” and “a component should
only depend upon components that are more stable than it”.

The approach presented in this work is addressed to the design phase because it
was considered that the impact of modifications, involved by the cluster of classes
proposed by the algorithm, is less than during the implementation phase. The
future work will consist of:

• New metrics will be included in the objective function, metrics which can be
computed at design model level, like the following: depth of inheritance tree
(DIT), number of children (NOC) etc.

• Modalities (indicators) will be defined for the assessment of the impact over
the final product, as a result of applying the algorithm in the design phase
(how evolved the identified subsystems in physical components, implemented
using the new technologies).

• The modification of the mathematical model and of the algorithm, in order
to be possible to assign a class to several packages. In practice it is possible
to have situations in which, in order to reduce the dependency between mod-
ules, it should be necessary to introduce new classes, even if the information
managed by these is redundant. Therefore, a solution will be represented as
a matrix (n x n, where n is the number of classes) in which a matrix element,
nij, will contain the index of the subsystem to which both classes (i and j)
belong, or 0 if the classes don’t belong to the same subsystem.

An Approach based on Genetic Algorithms for Clustering Classes. . . 287

References

[BRJ99a] Booch G., Raumbaugh J., Jacobson I., The Unified Software Develop-
ment Process, Addison/Wesley 1999.

[BRJ99b] Booch G., Raumbaugh J., Jacobson I., The Unified Modelling Language.
User Guide, Addison/Wesley 1999.

[CHK94] Chidamber S., Kemerer C., Metrics Suite for Object Oriented Design,
IEEE Transaction on Software Engineering, vol.20, No.6, 1994.

[ETZ97] Etzkorn, L. H., A Metrics-Based Approach to the Automated
Identification of Object-Oriented Reusable Software Components,
http://www.cs.uah.edu/∼letzkorn/disserta.pdf, 1997.

[JCI01] Hemant Jain, Naresh Chalimeda, Navin Ivaturi, Balarama Reddy, Busi-
ness Component Identification – A Formal Approach, Fifth IEEE Inter-
national, Enterprise Distributed Object Computing Conference, 2001.

[LLF04] Lu, Y., Lu S., Fotouhi F., A Fast Genetic K-means Clustering Algorithm,
http:// www.cs.wayne.edu/∼shiyong/papers/sac04.pdf, 2004

[KHA01] Khaled El Emam, Object Oriented Metrics: A Review of Theory and
Practice, http://citeseer.nj.nec.com/479219.html, 2001.

[MAR02] Marinescu, R., Principles of Object-Oriented Design,

http://labs.cs.utt.ro/labs/ip2/html/2002/lectures/3/lecture3.pdf

[MAR95] Martin, R., Designing Object-Oriented C++ Applications Using the
Booch Method., Prentice Hall, Englewood Cliffs, NJ, 1995.

[MIC96] Michalewicz Z., Genetic Algorithms + Data Structures = Evolution Pro-
grams, Springer-Verlag, Heidelberg, 1996.

[MRC98] Marchesi, M., OOA Metrics for the Unified Modelling Language, Pro-
ceedings of the 2end Euromicro Conference on Software Maintenance
and Engineering, 1998, pp. 67-73.

[XHC99] Tao Xie, Huang Huang, Xiangkui Chen, Object Oriented Software
Metrics Technology, http://www.cs.washington.edu/homes/taoxie/ Ri-
cohmiddleReport.pdf , 1999.

