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Abstract

Model-Driven Architecture (MDA) standardized by OMG facilitates to
separate the platform independent part and the platform specific part of a
system model. Due to this separation Platform-Independent Model (PIM) can
be reused across several implementation platforms of the system. Platform-
Specific Model (PSM) is ideally generated automatically from PIM via model
transformation steps. Because of the appearance of high level languages,
object-oriented technologies and CASE tools, metamodeling becomes more
and more important. Metamodeling is one of the most central techniques
both in design of visual languages, and reuse existing domains by extend-
ing the metamodel level. The creation of model compliers on a metamod-
eling basis is illustrated by a software package called Visual Modeling and
Transformation System (VMTS), which is an n-layer multipurpose model-
ing and metamodel-based transformation system. VMTS is able to realize
an MDA model compiler. This paper (i) addresses the relationship between
the constraints enlisted in metamodel-based rewriting rules and the pre- and
postconditions, (ii) it introduces the concepts of general validation, general
preservation and general guarantee, which facilitate that if a transformation
step is specified adequately with the help of constraints, and the step has
been executed successfully for the input model, then the generated output
model is in accordance with the expected result, which is described by the
transformation step refined with the constraints.

An illustrative case study based on constraint specification in rewriting
rules is also provided.

1 Introduction

OMG’s Model Driven Architecture [17] offers a standardized framework to sepa-
rate the essential, platform independent information from the platform dependent
constructs and assumptions. A complete MDA application consists of a defini-
tive platform-independent model (PIM), and one or more platform-specific models
(PSM) and complete implementations, one on each platform that the application
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developer decides to support. The platform independent artifacts are mainly UML
and other software models containing enough specification to generate the platform
dependent artifacts automatically by so-called model compilers. Hence software
model transformation provides a basis for model compilers, which plays central
role in the MDA architecture.

Model transformation means converting an input model that is available at
the beginning of the transformation process to an output model. MDA sets out
a more restrictive definition: the output model should describe the same system
as the input model. But our approach (VMTS [12] [25]) has been designed to
be able to specify more general transformations. Model compilers can support
properties to guarantee, preserve or validate them, and the presented approach is a
practical application of these mechanisms. Models can be considered special graphs;
simply contain nodes and edges between them. This mathematical background
makes possible to treat models as labeled graphs and to apply graph transformation
algorithms to models. The steps of graph transformation are rewriting rules, each
rewriting rule consists of a left-hand side graph (LHS) and right-hand side graph
(RHS). Previous work [13] has introduced an approach, where LHS and RHS of
the rules are built from metamodel elements. It means that an instantiation of the
LHS must be found in the graph to which the rule is applied (host graph) instead
of the isomorphic subgraph of the LHS. Hence the LHS and RHS graphs are the
metamodels of the graphs which we search and replace in the host graph.

Often it is not enough to match graphs based on the topological information
only, we want to restrict the desired match by other properties, e.g. we want
to match a subgraph with a node, which has a special property or which has a
unique relation between the properties of the matched nodes. For example we
want to match a state in a statechart model which has at least one incoming
and two outgoing transitions. The metamodel-based specification of the rules [13]
allows assigning OCL [18] constraints to the rules, using the guidelines of the UML
standard [19]. Because these constraints are bound to the rules, they are able to
express local constraints. This is inherently a local construct, because the elements
not appearing in LHS or RHS cannot be directly included in the OCL statements.
Although the specification has this local-nature, it does not mean that validating
them does not involve checking other model elements in the input model: constraint
propagation needs to be taken into account by both the algorithmic background
and the user of the transformation on specifying the constraint. OCL constraints
which are enlisted in the LHS and RHS graphs affect the matched instances of the
LHS and RHS graphs.

We have pre- and postconditions and OCL constraints assigned to the rewriting
rules. In this paper we introduce the relation between them and the applicability
of this concept based on a case study.
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2 Backgrounds and Related work

The purpose of contracts [16] is to help us build better software by organizing the
communication between software elements through specifying the mutual obliga-
tions. Contracts are used to guarantee that these communications occur on the
basis of precise specifications of what these services are going to be. For the soft-
ware to be able to guarantee any kind of correctness and robustness properties, they
must know the precise constraints over such communications. In a client/supplier
relationship, where the client needs a certain service and the supplier provides that
service, to impose certain obligations on the client as to the kind of original program
state that is permissible, when the client calls the supplier or the kind of arguments
that the client routine passes to the supplier. These are preconditions, and they
are obligations for the client. In the other direction, we are going to express the
conditions that the supplier routine must guarantee to the client on completion
of the supplier’s task. That is the postcondition of the contract, specifically, the
postcondition of that particular routine. The postcondition is also an obligation
for the supplier. Besides the pre- and postcondition the third fundamental element
of contracts is the invariant. A class invariant is a condition that applies to an
entire class. It describes a consistency property that every instance of the class
must satisfy.

The Object Constraint Language [18] is a formal language for analysis and
design of software systems. It is a subset of the industry standard Unified Modeling
Language [19] that allows software developers to write constraints and queries over
object models. A constraint is a restriction on one or more values of an object-
oriented model or system. There are four types of constraints: (i) An invariant is
a constraint that states a condition that must always be met by all instances of
the class, type, or interface. (ii) A precondition to an operation is a restriction
that must be true at the moment that the operation is going to be executed. The
obligations are specified by postconditions. (iii) A postcondition to an operation is
a restriction that must be true at the moment that the operation has just ended its
execution. (iv) A guard is a constraint that must be true before a state transition
fires. Besides these, OCL can be used as a navigation language as well.

Graph rewriting [2, 7, 21] is a powerful tool for graph transformations with
strong mathematical background. Originally it was developed as the natural gen-
eralization of Chomsky grammars to generate and parse visual languages. Instead
of that graph language approach we will use the mechanism of the individual pars-
ing steps, so-called rewriting rules for graph transformations. Rewriting rules are
the atoms of graph transformation, which consists of a left hand side graph (LHS)
and right hand side graph (RHS). Applying a graph rewriting rule means finding
an isomorphic occurrence (match) of the LHS in the graph to witch the rule being
applied (host graph), and replacing this subgraph with RHS. Replacing means re-
moving elements which are in the LHS but not in the RHS, and gluing elements
which are in the RHS but not in the LHS. Replacing process consists of two steps:
removing and gluing, this approach is the so-called double pushout (DPO) [21]. The
graph transformation is defined as an ordered sequence of rewriting rules, in other



342 László Lengyel, Tihamér Levendovszky, and Hassan Charaf

words we control the transformation process by sequencing the rewriting rules. The
rewriting rule is a stereotype of the UML activity state (<<Rewriting Rule>>)
[13].

Figure 1: An illustration of direct derivation: L, K, R are the left-hand side, the
interface and the right hand side graph; G and H are the graphs before and after
the rule firing and D corresponds to K; l, r, l*, r*, m, d, m* are inclusions

The DPO approach accomplishes the rule firing by two steps: after finding
a redex (the part of the host graph parsed by the rewriting rule), the first step
removes the elements (vertices and edges) from the redex which are in the redex,
but not in the RHS graph. This modified redex is referred to as interface graph.
Then as a second step the elements of the RHS graph not in the interface graph
but in the RHS graph are glued to the interface graph. The rewriting rule is
characterized by a double pushout. The application of the rules results in a direct
derivation of the host graph (Fig. 1). The category theory framework provides
more flexible and more general background, so the DPO approach can be applied
to many graph-like categories. For labeled and directed graphs the existence of
the pushout (which is the condition to fire a rule) can be ensured by forcing the
so-called gluing condition. The gluing condition consists of two parts. Firstly, the
identification condition, which states that different vertices in the rewriting rule
cannot match the same vertex in the host graph. Secondly, the dangling edge
condition has to be dealt with as well: if a vertex should be deleted which is
connected to an edge that is not inside the redex, the production rule cannot be
fired. Unfortunately, this makes impossible to delete a connected vertex without
considering its environment. Related to the DPO approach a rather tutorial like
description can be found in [3, 5, 6, 4], and a more complete summary in [8, 21].

Our tool set, the Visual Modeling and Transformation System (VMTS) [13, 25]
is an n-layer multipurpose modeling and metamodel-based transformation system.
Using this environment, it is easy to edit metamodels, design models according to
their metamodels, transform models using graph rewriting [13, 14]. It facilitates
to check the metamodel constraints during the metamodel instantiation, and the
rewriting rule constraints during the graph transformation process. VMTS can
also be used to parse visual languages. The control structure can be thought of
as a similar construct to programmed graph rewriting systems e.g. [20] and the
rewriting process follows rules of the DPO direct derivation. Although the rewriting
rules are specified in terms of the metamodel elements [13], on the instantiation
level the rule firing mechanism is equivalent to the DPO rewriting rules.

VMTS benefits from the results of the mathematical background of formal lan-
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guages, graph rewriting and results related to the metamodel-based software model
transformation. It also incorporates several ideas from other existing environments
[1, 10, 15], which implement the OCL, and enable constraints to be checked over
models.

Model Integrated Computing (MIC) [22, 23, 24] is a model-based approach
to software development, facilitating the synthesis of application programs from
models created using customized, domain-specific program synthesis environments.
MIC focuses on models, supports the flexible creation of modeling environments,
and helps following the changes of the models. At the same time it facilitates
code generation and provides tool support for turning the created models into
code artifacts. Metamodeling environments and model interpreters together form
the tool support for MIC. So far MIC is the only methodology, which requires
metamodeling environments, model processors and provides a framework for them
to cooperate to create Computer-Based Systems (CBS) in the practice. VMTS
implements the ideas of MIC and it is able to realize an MDA model compiler.

The Generic Modeling Environment (GME) [9] is a metamodeling tool from
which our system has borrowed several concepts of a metamodel-based modeling
tool. GME on its own is not a transformation system, although the underlying
MultiGraph Architecture (MGA) can be reached from the GReAT transformation
system. GME supports constraint handling, it has a constraint interpreter called
Constraint Manager.

The GReAT framework [11] is a transformation system for domain specific
languages (DSL) built on metamodeling and graph rewriting concepts; it uses a
proprietary notation and interpretation instead of instantiation between the rules
expressed with meta elements and the match. The sequencing of the rewriting rules
and parameter passing are similar in GReAT and in VMTS.

PROGRES [20] is a visual programming language in the sense that it has a
graph-oriented data model and a graphical syntax for its most important language
constructs. There are rather few tools which support pre- and postconditions,
but VMTS and PROGRES manage them. In PROGRES the precondition of a
transaction is a query, which should never fail, applied to the input graph of the
surrounding transaction. Similarly the postcondition of a transaction is a query,
which should never fail applied to the output graph of the surrounding transaction.
It is allowed to access the in- and out-parameters of its transaction, but does not
distinguish between a before- and an after-state of referenced nodes.

3 Contributions

The design by contract principle and model transformation by graph rewriting
mechanism has been successfully applied in checking software systems. Thus re-
vealing the connection between the concepts of pre- and postconditions and the
OCL constraints assigned to the rewriting rules seems a promising direction.

This section (i) introduces the relation between the pre- and postconditions and
OCL constraints assigned to the rewriting rules, (ii) presents how to check models
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based on this relation, and (iii) discusses a metamodel-based approach along with
a simple but illustrative case study: while we give and explain our definitions and
propositions, we can show their benefit immediately on a practical example.

3.1 Relation between the Pre- and Postconditions and OCL
Constraints

For the unified treatment we give the basic definitions, which are mainly based on
[16]:

Definition 1. (Transformation and Finite sequence of steps)
A Transformation and a Finite sequence of steps consist of n number of rewriting
rules (where n > 0) in an ordered sequence. This sequence defines the execution
order of the contained rewriting rules. The difference between a transformation
and a finite sequence of steps is that a finite sequence of steps is always comes
to an end, it always terminates. A transformation, however, can contain infinite
number of steps.

Definition 2. (Precondition and Postcondition)
A precondition (postcondition) assigned to a rewriting rule is a boolean expression
that must be true at the moment when the rewriting rule is fired (after the com-
pletion of a rewriting rule). If a precondition of a rewriting rule is not true then
the rewriting rule fails without being fired. If a postcondition of a rewriting rule is
not true after the execution of the rewriting rule, the rewriting rule fails.

Definition 3. (V alidation, Preservation, Guarantee)
V alidation of a property: a transformation step S validates a property P specified
by a boolean expression, when the following condition always holds: if a property
P was true before the step S it remains true after the execution of the step S, and
if P is false, the step S fails.
Preservation of a property: a transformation step S preserves a property P
specified by a boolean expression, when the following condition always holds: if
a property P was false (true) before the step S it remains false (true) after the
execution of the step S.
Guarantee of a property: a transformation step S guarantees a property P spec-
ified by a boolean expression, when the following condition always holds: if a
property P was true before the step S it remains true after the execution of the
step S, and if P is false, the step S changes property P to true.

Definition 4. (Pre value)
If an OCL constraint is specified in the RHS of a transformation step, x@pre means
the value of x immediately before the rule was fired even if the value of x has not
changed.

A direct corollary of Definition 2 that an OCL expression in LHS is a precondi-
tion to the rewriting rule, and an OCL expression in RHS is a postcondition to the
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property P before the step S property P after the step S

Validation true true
false step S fails

Preservation true true
false false

Guarantee true true
false true

Table 1: Truth table of the validation, preservation and guarantee properties

rewriting rule. A rewriting rule can be fired if and only if all conditions enlisted
in LHS are true. Also, if a rewriting rule finished successfully then all conditions
enlisted in RHS must be true.

Table 1 illustrates the truth table of the validation, preservation and guarantee
properties.

3.2 A Case Study

To show the applicability and the practical relevance of the results, a case study is
provided. The case study contains a rewriting rule which uses a statechart model
as input model and builds a CodeDOM [25] tree (an abstract syntax like graph
representation of the code to be generated) in the VMTS database which we can
use easily to generate source code from it on optional language (e.g. C++, C# or
J#).

In Fig. 2 there is a statechart model of a water tank. Our case study uses this
statechart model as input graph and applies a rewriting rule (Fig. 3) to it.

In VMTS it is possible that the LHS and the RHS of a rewriting rule have
different metamodel. In the rewriting rule depicted in Fig. 3 the metamodel of
the LHS is the Statechart metamodel [19, 25] and the metamodel of the RHS is
the CodeDOM metamodel [25]. On the LHS of the rewriting rule there are two
states, whose meta type is statechart state, and there is a transition between them
with a 0..* multiplicity on the side of the target state. It means that exhaustively
applying this rewriting rule to a statechart model, it will match all states with their
target adjacent states. The rule has to match the accessible adjacent states because
we need them to generate the state-transitions in the source code. Obviously it is
possible that a state has no outgoing transitions, and the reason why we enable
the 0 in the multiplicity is that we want to match states having only incoming
transitions to generate CodeDOM tree for it. On the RHS of the rewriting rule the
CTypeDeclaration represents a type declaration for a class, structure, interface or
enumeration. CMemberF ield can be used to denote the declaration for a field of a
type, and CMemberMethod to phrase the declaration for a method. CParameter
represents a parameter declaration for a method, property, or constructor, and
CSnippetStatement means a statement using a literal code fragment.

In a rewriting rule we can connect the LHS elements to the RHS elements, this
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Figure 2: Case study: statechart of the water tank

Figure 3: Rewriting rule of the case study
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relation between LHS and RHS elements is called causality [11], which facilitates
to assign an operation to this connection. Causalities can express either modifi-
cation or removal of an LHS element, or creation of an RHS element. In Fig. 3
the causalities are denoted as dashed lines. The create operation and attribute
transformation that are one of the most important part of the rewriting process are
accomplished by XSL scripts. XSL scripts can access the attributes of the objects
matched to LHS elements, and produce a set of attributes for the RHS element to
which the causality point.

After the rewriting process the output graph has two parts. The difference be-
tween the two parts is that the first part is not affected, while the second part is
affected by the rewriting rule. Accordingly we can examine the constraints con-
tained by our rewriting rule only in the second part of the output graph, which
is affected by the rewriting rule. Our case study is a fortunate case, because the
whole right side and the whole output graph is generated. Hence it facilitates to
check the local-nature constraints in the whole output graph.

In the next subsections we give our propositions for individual steps (rewriting
rule), and for finite sequence of steps in along with the validation, preservation
and guarantee properties, and we will illustrate their applicability based on the
presented case study.

3.3 General Validation

Based on the validation property we can introduce the concepts of general valida-
tion. The goal of the general validation is that if a rewriting rule (a finite sequence
of steps) is specified properly with the help of validation type constraints, and the
rewriting rule (the finite sequence of steps) has been executed successfully for the
input model, then the generated output model is in accordance with the expected
result, which is described by the rewriting rule (the finite sequence of steps) refined
with the constraints.

Proposition 1. General validation (Sufficient and necessary conditions)

(i) A step S validates a property P for an input model M if the property
P is enlisted in both pre- and postconditions of the step S, and the step
S has been executed successfully for the model M .

Proof. (SLHS - is the left-hand side (LHS) of the step S, and SRHS- is
the right-hand side (RHS) of the step S). Assuming that the property P
is enlisted in both SLHS and SRHS , and the step S has been executed
successfully for the model M , but the step S does not validate the
property P .

This is a contradiction because (1) if the property P is not true the
step S cannot even be fired. (2) If the property P is true the step S
can be fired. The property P is enlisted in SRHS , and the step S has
been executed successfully for the model M , it means that the property



348 László Lengyel, Tihamér Levendovszky, and Hassan Charaf

P is true after the execution of the step S, which is equivalent to the
definition of the validation. Hence the step S validates the property P .

(ii) If a step S validates a property P for a model M without conditions
in the step S for the property P , then the property P can be enlisted
in SLHS and SRHS without changing the result of the step S for the
model M .

Proof. Assuming that (a) step S validates a property P for a model
M without conditions in the step S for the property P , (b) one enlists
the property P in SLHS and SRHS , then because of the newly added
constraints, the result for the step S is different.

This is a contradiction because (1) if the property P is false: then the
step S fails in both cases. In the first case (a) if the step S validates the
property P and the property P is false, then the step S fails (definition
of the validation). In the second case (b) if the property P placed in
SLHS and the property P is false, then the step S fails without being
fired (definition of the precondition). (2) If the property P is true,
the step S can be fired. In the first case (a) the property P remains
true after the execution of the step S, because the step S validates the
property P . In the second case (b) the property P is enlisted in SLHS

and SRHS , which is equivalent to the definition of the validation. It
means that the result can not be different.

(iii) A finite sequence of steps (S1, S2 . . . Sn) validates a property P for an
input model M if the property P is enlisted both in preconditions of the
step S1 and in the postconditions of the step Sn, and the finite sequence
of steps S1, S2 . . . Sn has been executed successfully for the model M .

(iv) If a finite sequence of steps (S1, S2 . . . Sn) validates a property P for an
input model M without conditions in SLHS

1 and SRHS
n for the property

P , then the property P can be enlisted in SLHS
1 and SRHS

n without
changing the result of the finite sequence of steps S1, S2 . . . Sn for the
model M .

As it is stated above, the rewriting rule of the case study generates a CodeDOM
tree for the matched states. An example for the validation can be the following:
the rewriting rule validates that the states with generated CodeDOM tree are not
isolated (unreachable) states; it means that starting from the start state we can get
at these states. To examine whether a state is unreachable, we enlist a constraint
in the precondition of the rewriting rule, which checks whether the sate is isolated
(Fig. 4). If the state is reachable (e.g. Filling the tank), the rewriting rule can be
fired, but if the state is isolated (e.g. Cleaning the tank), the step fails (there is
no proper match because of the violated constraint), as it is depicted in Fig. 5.
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Figure 4: The LHS of the rewriting rule with an OCL constraint

Figure 5: Examples for the matched states and the results of the transformation
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3.4 General Preservation

Based on the preservation property we can introduce the concepts of general preser-
vation. The modeler’s task is to create adequate rewriting rules (finite sequence
of steps) and specify them fully with constraints (pre- and postconditions). If the
execution of the rewriting rule (the finite sequence of steps) finishes successfully, it
preserves the required property values.

Proposition 2. General preservation (Sufficient and necessary condition)

(i) A step S preserves a property P for an input model M if the expression
(NOT P or P@pre) and (P or NOTP@pre) is enlisted as an OCL
expression in the postconditions of the step S, and the step S has been
executed successfully for the model M .

Proof. Assuming that the expression (NOT P or P@pre) and (P or
NOT P@pre) is enlisted as an OCL expression in SRHS , and the step
S has been executed successfully for the model M , but the step S does
not preserve the property P .

This is a contradiction because the expression (NOT P or P@pre) and
(P or NOT P@pre) is true if and only if the P@pre = P holds after
the execution of the step S, and it means that the step S preserves the
property P .

(ii) If a step S preserves a property P for a model M without a postcondi-
tion in the step S for the property P , then the expression (NOT P or
P@pre) and (P or NOT P@pre) as an OCL expression can be enlisted
in SRHS , and the step S also preserves the property P for the model
M .

Proof. Assuming that (a) the step S preserves a property P for a
model M without postconditions in the step S for the property P , (b)
one enlists the expression (NOT P or P@pre) and (P or NOT P@pre)
as an OCL expression in SRHS , but in this case, because of the newly
added constraint, the step S does not preserve the property P for the
model M .

This is a contradiction, because in the first case (a) the step S preserves
the property P . In the second case (b) the enlisted constraint is equiv-
alent to the definition of the preservation, hence the step S preserves
the property P in the second case (b) as well.

(iii) A finite sequence of steps (S1, S2 . . . Sn) preserves a property P for
an input model M if the expression (NOT P or P@preS1) and (P or
NOT P@preS1) is enlisted as an OCL expression in the postconditions
of the step Sn, and the finite sequence of steps S1, S2 . . . Sn has been
executed successfully for the model M .
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(iv) If a finite sequence of steps (S1, S2 . . . Sn) preserves a property P for an
input model M without conditions in SRHS

n for the property P , then
the expression (NOT P or P@preS1) and (P or NOT P@preS1) as
an OCL expression can be enlisted in SRHS

n , and the finite sequence of
steps S1, S2 . . . Sn also preserves the property P for the model M .

The preservation property is important for the individual node attributes and
for the relation between certain nodes. For example if a matched node has a
property called History with the value Deep, then after rewriting the generated
node which corresponds to the matched node also has a History property with the
value Deep (Fig. 6).

Figure 6: Example for the preservation of a property

3.5 General Guarantee

Similarly to the general validation and the general preservation, and using the
guarantee property we can introduce the concepts of general guarantee.

Proposition 3. General guarantee (Sufficient and necessary condition)

(i) A step S guarantees a property P for an input model M if the property
P is enlisted in the postconditions of the step S, and the step S has
been executed successfully for the model M .
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Proof. Assuming that the property P is enlisted in SRHS , and the step
S has been executed successfully for the model M , but the step S does
not guarantee the property P .

This is a contradiction, because the property P is enlisted in SRHS ,
and the step S has been executed successfully for the model M , and
it means that the property P is true after the execution of the step S,
which is equivalent to the definition of the guarantee. Hence the step
S guarantees the property P .

(ii) If a step S guarantees a property P for a model M without a postcon-
dition in the step S for the property P , then the property P can be
enlisted in SRHS and the step S also guarantees the property P for the
model M .

Proof. Assuming that (a) step S guarantees a property P for a model
M without postcondition in the step S for the property P , (b) one
enlists the property P in SRHS , but in this case, because of the newly
added constraint, the step S does not guarantee the property P for the
model M .

This is a contradiction, because in the first case (a) the step S guar-
antees the property P . In the second case (b) the enlisted property
P is equivalent to the definition of guarantee, hence the step S also
guarantees the property P in the second case (b).

(iii) A finite sequence of steps (S1, S2 . . . Sn) guarantees a property P for an
input model M if (a) the property P is enlisted in the preconditions of
step Si (where 1 ≤ i ≤ n), and Si, Si+1 . . . Sn preserve the property P ,
or (b) the property P is enlisted in the postconditions of step Si (where
1 ≤ i ≤ n), moreover Si+1, Si+2 . . . Sn preserve the property P , and
the finite sequence of steps S1, S2 . . . Sn has been executed successfully
for the model M .

(iv) If a finite sequence of steps (S1, S2 . . . Sn) guarantees a property P for
an input model M without conditions in SRHS

n for the property P , then
the property P can be enlisted in SRHS

n , and the finite sequence of steps
S1, S2 . . . Sn also guarantees the property P for the model M .

In the statechart model of the case study every state has a property called
IsCodeAlreadyGenerated. If this property is true, it means that this state already
has a generated CodeDOM model. Exhaustively executing our rewriting rule, it
guarantees that the IsCodeAlreadyGenerated property of every state - which is
not isolated (Cleaning the tank) - will be true.
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3.6 Validation, Preservation and Guarantee Algorithms

After specifying a constraint, we can apply it to an individual step or to the whole
transformation. The pseudo codes of the algorithms are the following:

VALIDATION (VMTSConstraint const, VMTSControl control,

VMTSMatch match): bool

1 VMTSRule firstRule = control.getFirstRule()

2 VMTSRule lastRule = control.getLastRule()

3 ADD_PRECONDITION_TO_RULE(firstRule, const)

4 ADD_POSTCONDITION_TO_RULE(lastRule, const)

5 return EXECUTE_CONTROL(control, match)

Three parameters are passed to the validation algorithm, the first parameter is
a V MTSConstraint which contains the constraint we want to validate, the second
one is a V MTSControl, which contains the rewriting rules in an ordered sequence,
and the third one is a V MTSMatch which contains the matched nodes. The vali-
dation algorithm selects the first and the last rules from the control, and enlists the
given constraint as a precondition in the selected first step and as a postcondition
in the selected last step. This will be proper if the control contains only one step,
and also if the control contains a finite sequence of steps, because if there is only
one step in the control, the getF irstRule and the getLastRule queries return the
same step. Finally the algorithm calls the EXECUTE CONTROL method and
retrieves its return value.

The second pseudo code describes the EXECUTE CONTROL method, which
is used by all three (validation, preservation, guarantee) algorithms.

EXECUTE_CONTROL (VMTSControl control, VMTSMatch match): bool

1 foreach VMTSRule rule of control.getRulesInOrderedSequence()

2 if rule.hasPrecondition and not (CHECK_PRECONDITIONS(rule, match))

3 then return false

4 end if

5 FIRE_RULE(rule, match)

6 if rule.hasPostcondition and not (CHECK_POSTCONDITIONS(rule, match))

7 then return false

8 end if

9 end foreach

10 return true

The EXECUTE CONTROL method applies the rewriting rules contained by
the given control to the passed match. If a step has a precondition, the methods
calls the CHECK PRECONDITIONS method, and if it returns false, then the
execution of the step and the whole finite sequence of steps fails, and the algorithm
returns false. Otherwise the method calls the FIRE RULE function, and after
that if the rule has a postcondition then the procedure is similar to the case of
preconditions.
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PRESERVATION (VMTSConstraint const, VMTSControl control,

VMTSMatch match): bool

1 VMTSRule firstRule = control.getFirstRule()

2 VMTSRule lastRule = control.getLastRule()

3 ADD_POSTCONDITION_TO_RULE(lastRule, (NOT const ||

const@pre_firstRule) && (const || NOT const@pre_firstRule))

4 return EXECUTE_CONTROL(control, match)

The preservation algorithm selects the first and the last rules from the con-
trol, creates a constraint expression based on the given constraint: (NOT P or
P@preS1) and (P or NOT P@preS1), enlists this created expression as an OCL
expression in the postconditions of the selected last step, and finally calls the EX-
ECUTE CONTROL method and obtains its return value.

GUARANTEE (VMTSConstraint const, VMTSControl control, VMTSMatch match,

int indexOfMarked): bool

1 if (control.Rules.Length == 1 || indexOfMarked < 0)

2 then ADD_POSTCONDITION_TO_RULE(control getLastRule(), const)

3 else

4 ADD_POSTCONDITION_TO_RULE(control.getRuleByIndex(indexOfMarked),

const)

5 for i = indexOfMarked + 1 to control.Rules.Length

6 ADD_PRECONDITION_TO_RULE(control.getRuleByIndex(i), const)

7 ADD_POSTCONDITION_TO_RULE(control.getRuleByIndex(i), const)

8 end for

9 end if

10 return EXECUTE_CONTROL(control, match)

The fourth parameter of the guarantee algorithm - indexOfMarked - contains
the index of a marked step, this step guarantees the given property, and the steps
after this marked step preserve this property. If the given control has exactly one
step, or if the given indexOfMarked is less than zero (there is no marked step),
the algorithm enlists the given constraint in the postconditions of the last step.
If the parameter indexOfMarked contains valid index, the algorithm enlists the
given constraint in the postconditions of the step specified by the indexOfMarked,
and enlists the constraint in both the pre- and the postconditions of the steps
SindexOfMarked+1, . . . Sn. Finally the algorithm calls the EXECUTE CONTROL
method and retrieves its return value.

4 Conclusions

Our metamodel-based specification of the rules allows assigning OCL constraints
to the rules, and they are able to express local constraints. However, it does not
mean that validating them does not involve checking other model elements in the
input model. OCL constraints enlisted in the rules have effect on the instances of
these rules, on the matched and the replaced subgraphs.
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We have shown the relationship between the pre- and postconditions and OCL
constraints, and how we can use the OCL constraints enlisted in the rewriting rules
to check validation, preservation and guarantee properties, or simply how to check
models with the help of metamodel-based graph rewriting. If the developer is fa-
miliar with UML, then this method seems quite natural, hence the UML knowledge
can be transferred with a little justification.

In this paper the concepts of general validation, general preservation and general
guarantee have been discussed. It is presented that if a rewriting rule (a finite
sequence of steps) specified adequately with the help of constraints, and the rule
(the finite sequence of steps) has been executed successfully for the input model,
then the generated output model is in accordance with the expected result, which
is described by the rewriting rule (the finite sequence of steps) refined with the
constraints. It means that the modeler’s task is to create adequate rules and specify
them fully with constraints (pre- and postconditions), and if the execution of the
rewriting rule (finite sequence of steps) finishes successfully, it produces a valid
result.

The main limitation of the presented method is the local-nature of the rules.
If one wants to specify a constraint for an element, (i) it must be included in
a rewriting rule, or (ii) it must be referenced by the OCL traversal expressions
assigned to the rule elements. Consequently, this method does not provide an
easy way to check global constraints such as dead lock examination. For those
parts of the graphs that are not affected by a rewriting rule we can not specify
constraints. But there are numerous cases such as the elaborated code generation
from statechart model, where the whole right side is generated, thus all the output
model elements can be validated.
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