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Finitely Presentable Tree Series 

Symeon Bozapalidis* and Olympia Louskou-Bozapalidou^ 

Abstract 

Tree height is known to be a non-recognizable series. In this paper, we 
detect two remarkable classes where this series belongs: that of polynomially 
presentable tree series and that of almost linearly presentable tree series. 

Both the above classes have nice closure properties, and seem to consti-
tute the first levels of a tree series hierarchy which starts from the class of 
recognizable treeseries. 

1 Introduction 

It is well known that some tree functions of wide use in computer science fail to 
be recognizable, that is they can not be obtained as behaviors of tree automata 
weighted over a certain semiring. Berstel and Reutenauer proved that the tree 
series height: Tr —> N sending every tree t over the ranked alphabet T to its height 
is non-recognizable (cf. [BR]). Therefore it is quite natural to search for classes 
having good closure properties in which this tree series belongs. 

In this paper, we give two such classes: the class PP of polynomially presentable 
tree series and the class ALP of almost linearly presentable tree series. 

Both PP and ALP are closed under sum, scalar product, top-catenation, left 
derivative and semiring morphism. 

Given a finite ranked alphabet T and a semiring K we denote by K ((Tr)) the 
set of all tree series S : Tr —> K, equipped with the standard operations of sum, 
scalar product and top-catenation. 

We say that a tree series S \TY K is polynomially presentable whenever it 
belongs to a finitely generated invariant subalgebra of K ((Tr)). Also, S : Tr —> K 
is said to be linearly presentable whenever it belongs to a finitely generated invariant 
/i-subsemimodule of K ((Tr)). 

The reader is assumed to be familiar with semirings, semimodules etc (for de-
tails, see [SS], [KS]). 
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2 Basic Facts 

2.1 Trees 
In this subsection we briefly exhibit the tree substitution operations used through-
out this paper. 

Given a finite ranked alphabet T = (Ffc)fc>0 and a set of variables Xn = 
{ x i , . . . , x n } , we denote by 7V (X„) the smallest set verifying next two items: 

• r 0 U Xn C Tr (Xn) and 

• for / 6 r fc, k > 1, and tu ..., tk £ Tr (X n ) the word / ( i i , . . . ,tk) £ Tr (X n ) . 

For n — 0, Tp (Xn) is written as Tr- The elements of Tr (Xn) are called trees 
over r indexed by the variables x\,..., xn. 

The height of a tree t £ Tr, denoted by height (t) is inductively defined by 

• height (c) = 0, for all c £ To and 

• height (/ ( i i , . . . , tn)) = 1 + max {height (U) \ 1 < i < n} . 

Consider trees 

where we assume that the variable Xi occurs exactly Xi > 0 times in the tree t. We 
use the notation: 

• t [ti/xi,..., tn/xn] or simply t[t\,..., tn] for the result of substituting ti for 
every occurrence of x, in t. 

Consider now the subset Pr of Tr (x) consisting of all trees where the variable 
x occurs once. Pr becomes a monoid, with multiplication the substitution at x; 
precisely, if r, 7r £ Pr, rn is the tree obtained by substituting n for x in r. Actually, 
Pr is the free monoid generated by the trees of the following form: 

t£Tr(Xn),t1,.. . £ Tr (Xn), 1 <i<n 

. . . for the occurrences of Xj in t from left to right (1 < i < n). 

a 

a£Tp,p>l,tj£Tr,(j^i). 

11 ti—J x it+i tp 

Figure 1: 
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On other hand, Pr acts canonically on Tp : 

PrxTr -> Tr (r, i) h-> rt = T [t/x\. 

For r £ Pr, |r| denotes its length in the free monoid Pp. If r is as in.Figure 1 
then |t| = 1 while if r = t\ • T2, then |r| = |n| + |r2|. 

2.2 Formal Series on Trees 
Assume a ranked alphabet T and a set of variables Xn = { x i , . . . , x n } are given, as 
well as a semiring K. 

The functions S : Tr (Xn) —> K are called tree series. 
The value of S at t £ Tr(Xn) is denoted by (S, t) and is refered to as the 

coefficient of S at t. 
The set K ((Tr (Xn)}} of tree series on Tr (Xn) is converted into a K-

semimodule when addition and scalar multiplication are point wisely defined: 

(Si + S2,i) = (Si,i) + (S2,i) 
(AS, i) = A (S, t) 

for all t £ Tr (Xn), A 6 K and S i , S 2 , S e K ((Tr (Xn))). 
Moreover a partial infinite addition on K ((Tr (Xn))) can be defined as follows: 

we say that a family of tree series ( S i ) i 6 / is locally finite whenever for each t £ 
Tr (Xn) the set {i | (Si,t) ± 0} is finite. Then J2 Si exists and is given by 

ie/ 

(E Si, t) = £ (Si, t) for all t £ Tr (Xn). 
\i€l J i£l 

According to this discussion every S £ K ((Tr (Xn))) can be represented as an 
infinite sum 

S= £ (S,t)t. 
t€Tr(Xn) 

The support of a series S : Tr (Xn) —* K is the tree language 

supp(S) = {t£Tr(Xn)\(S,t)^0}. 

Series S £ K ((Tr (Xn))) whose support is finite are termed polynomials and 
their set is denoted by K (Tr (Xn)). 

Given a £ Tp and Si , . . . ,SP £ K ((Tr (Xn ) ) ) , the a-top catenation series 

a (Si, . . . , Sp) : Tr (Xn) -> K 

is defined as follows. For t £ Tr (Xn) 

(a (S i , . . . , Sp) ,i) = (Si, ti) • • • (Sp, tp) iit = a(ti,...,tp) and 0 else. 
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More generally, for every n > 0, t £ Tr (Xn) and S i , . . . , S „ G K ((Tr)) we 
define the series 

inductively by the clauses 

• a; i[5i,. . . ,5„] = Si, 1 <i<n 

• c [Si, . . . ,S„] = c, c £ T0 

• CT(ii,...,ip)[Si,...,S„] = a (<i [Si,.. •, S „ ] , . . . , ip [Si , . . . , S„]), for a £ 
rp,tj G T r ( X n ) . 

Proposition 1. For every n > 1,t G Tr (Xn) ,Si,...,Sn£K {(Tr)) and s G Tr, 

(t [Si,.. .,Sn],s) = (Si, i<1}) • • • (SL t j j ) • • • (Sn , t<n)) • • • (Sn , t j j ) 

¿/ there are ..., t^j G Tr, 1 < i < n such that 

and (t [S i . . . , S„], s) = 0, otherewise. 
By linear extension, we can define p [Si , . . . , Sn] for any polynomial p G 

K(Tr(Xn)) 
p[S1,...,Sn}= Y, (p,t)t[Si,...,Sn]. 

terr(xn) 

The last operation we need is derivation. The derivative of S G K ((Tr)) at 
T G Pr is a tree series 

t€Tr 

The derivation has the following properties: 

1. T _ 1 (7R-1S) = (7TT)-1 S, for all r, 7R G Pr, S £ K ((Tr)), 

2. r - 1 ( a ( S i , . . . , S p ) ) = n (Sj>tj) 1T~iSi, if T = a ( t i , . . . , t i _ 1 ) 7 r ) t < + i , . . . , i p ) > 

for every r G Pr and S i , . . . , Sp G K ((Tr)), 

3. for every T £ Pr, index set I and family (Si,i £ I) over K ((Tr)), if Si 
iei 

exists, then ^ r _ 1 Si also exists and r _ 1 I ^ Si) = £ T - 1Si. 
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2.3 Recognizable Tree series 
Recall that a X-r-tree automaton is a triple M = (Q, /1, T) consisting of a finite set 
Q of states, a final state function T : Q —> K and a T-indexed family of functions 

describing the moves of M . 

The function : Qn —> KQ is multilinearly extended into a function fi, : (*«)" - & 
by the formula 

p,f(x i,...,x„)= xi (̂ i)" ••xn(qn)v-f (qi, •••,qn) • 

Then the behaviour of M is the series \M\ : Tr —> K defined by 

(|-M|,t) = 5 > * (t) (q) • T (q) 
96 Q 

where hm Tr —» K Q is inductively given by the clause 

fJ'M (f(ti,...,tn)) = p./ (hm (h),...,HM (tn)), / € Tn,n > 0,ii,.. .,tn e Tr. 

A tree series 5 : Tr —̂• K is called recognizable whenever it is the behaviour of 
a Jf-r-tree automaton. REC (K,.T) stands for the so obtained class. 

The tree series S : Tr —> N sending every tree t € Tr to its size (i.e. the number 
of symbols of T occurring in f), is recognizable. On the contrary, the tree series 
height: Tr —> N fails to be recognizable (cf. [BR]). 

3 Subalgebras of K (<Tr>) 
A subset AQK ((Tr)) closed under sum, scalar product and a-top catenation (for 
all a £ Tp,p > 1) is termed a subalgebra of K ((Tr)). 

Proposition 2. A C K ((Tr)) is a subalgebra iff for each polynomial p € 
K (Tr (Xn)) and a sequence of series Si,... ,Sn € A,p [Si,..., Sn] G A. 

The intersection of any family of subalgebras of K ((Tr)) is again a subalgebra 
and thus we can speak of the subalgebra generated by a subset S C K ((Tr)). It is 
denoted by (S)K V. 

Proposition 3. For every S C K ((Tr)), we have 
(S)K,r = {p\Si, • • • ,Sn) | P 6 K (Tr (Xn)) ,Si, . . . ,S„ S S,n > 0} . 
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Proof. Let 

U = {p[Si,..., S„] I V € K (Tr (Xn)), S i , . . . , S„ G S,n > 0} . 
Certainly S C U. Next we show that U is a subalgebra of K {(Tr)), i.e., that for 

every n>0,peK (Tr (Xn)) and Pi G K (Tr (Xki)), s f \ . . . , S ^ G S 1 < i < n it 
holds 

• • > akn p[pi [s™ ...,s£>] [s<B\ 
We introduce the polynomial pi, 1 < i < n by setting 

Pi - Pi, 

P2 = P2 [Xki + l/Xi,. • . ,Xkl+k2/Xk; 

G U. 

Pn =Pn [xk1+-+kn-i + l/xi,...,Xkl+...+kn-1+kn/Xkn] • 

Then 
(n) 
fcn 

P[P i P„ S-; 

p[pi , • • • ,Pn] s[l)/xit..., s^/xkl,s[2)/xkl+u..., 

•SfcjVzfci+fc*. • • •. 5,in)/®fci+-+fc„_i+i. • • •. 5 t " ) / ï i i f - + t „ ] • 
Since p [pi,. . . ,pn] G K {(Tr (Xkl+...+k7l))) the result comes by aplying Propo-

sition 2. 
Now, let U be a subalgebraof K ((Tr)) including S. Then for any p [S^ . . . , Sn] G 

U with p G K (Tr (Xn)) and S i , . . . , S„ G S, we have p [Si , . . . , S„] G U and thus 
U is the smallest subalgebra of K {(Tr)) including S, i.e. U = (S)K r . • 

A subalgebra AC K ((Tr)) is said to be invariant if it is closed under derivation, 
i.e. 

S G A and T G Pr implies r _ 1 S G A. 

Proposition 4. The subalgebra (S) generated by S Ç K (Tr) is invariant iff it 
contains the derivatives of all its generators 

Proof. One direction is obvious. 
To establish the opposite direction we first show that if a G and Si,... ,Sk G 

S then 
T~1a(S\,..., Sfc) G (S), for all r G Pr-

Indeed, if r = cr(t\,..., £*—i, 7r, t*+i, • • • ,tk) then for all t eTr 

(T-ïa(Su...,Sk),t) = (a(Sl,...,Sk),Tt) 

= Y [ { S j , t j ) { S i t i r t ) 

= a(n~1Si, t), 
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where a = Tl(Sj,tj). In other words 

T-1a{S1,...,Sk) = air-1Sie(S), a€K 

since, by hypothesis, (S) contains all the derivatives of its generators. 
In all other instances of r, it holds 

r - V ( 5 i , . . . , 5 f c ) = oe (S ) . . 

By induction on the complexity of t £ Tr(Xn) we show that r _ 1 i [5 i , . . . , Sn] € (S). 
For t e To U Xn we have nothing to prove. Let t = a(ti,..., tk); then 

T-1t[Si,...,Sn]=T-1*(t1,...,tk)lS1,...,Sn] 

= T^aihiSu . . . , Sn ] , . . . ,tk[Si, ...,Sn}) € (S) 

Furthermore, for any polynomial p € K (Tr(Xn)) we have 

T-VISI, ..., Sn] = EteTr{Xn)(p, ty-HlSu ..., Sn] € (S) 

where the above sum is finite. • 

4 Finitely Presentable Tree series 
A series S S K ((Ir)) is said to be linearly presentable if there exist series 
Si, • • •, Sn G K ((Tp)} with the following two properties 

1. There are Ai , . . . , A„ S K such that S is expressed as a linear combination of 
them 

S = AiSi + • • • + AnSn, Aj € K 

and 

2. for each index i (1 < i < k) and each r € Pr, there are ...,ßik 6 K such 
that for each index i (1 < i < n) and each r G Pr 

n 
T_15i = VijSj, ßij € K, 1 < i < n. 

j=l 

We denote by LP (K, T) the class of linearly presentable tree series. 

Proposition 5. REC (I\ K) C LP (I\ K). 

Proof. Consider a fsf-r-tree automaton M — (Q, ß, T), its associated system 

xi = ßf{Qu---,Qk){q)f(xqi,...,xgk) ( E M ) 
fc>o,/€rfc 11 Ik 
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and for all q € Q, the if-r-tree automaton Mq = (Q, n, q) with q : Q —> K defined 
by q(p) = 1, if p = q and q(p) = 0, else. 

It is known [Bo2] that the tuple (|M9|)9€q is the unique solution of (EM) 

\Mq\ = £ M(lu---,qk)(q)f(\Mqi\,..., \Mqk\). (*) 
/6rt,fc>0 «1 9fc6(J 

By construction we have 

\M\ = J2T(q)\Mg\ 
9€Q 

that is lA Î is linear combination of the series \Mq\, q e Q. The proof will be 
completed if for each tree r € Pr of the form r = g (t\,..., ij_i, x, ti+i,..., tk), g € 
Tk,t 6 Tr and for each state q € Q show that r _ 1 \M.q\ can also be written as 
linear combination of \Mq\ ,q € Q. 

Derivating (*) at r we get 

(t-Mm,!,*) = I\MQ\,T8) 

/ 6 rt,fc>0 91 9fc£<5 

£ AIFF (91, • (9) (5 1, •••,1-M,J), rs ) 

Ik 

= £ a**« 1.*) • 

In other words 
r-1\Mq\=YJK,r \Mqt\ 

«¡60 
as wanted. • 

A tree series S £ K ((Tr)) is said to be polynomially presentable if there is a 
finite subset S C K ((Tr)) satisfying the following two conditions: 

1. there is a polynomial p € K (Tr (Xn)) and there are S i , . . . , Sn € S such that 
S = p[Si , . . . ,S„] and 

2. for every r e Pr and S & S, there is a polynomial pT<s € K (Tr (Xn)) and 
Si S „ € S such that r _ 1 (S) = pT,s [Si, . . . , S„]. 
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Let us denote the class of polynomially presentable tree series by PP (K, T). 
It should be clear that linearly presentable tree series are also polynomially pre-
sentable, hence LP (I\ K) C PP (r, K). 

Moreover, by Proposition 2 and the definition of an invariant subalgebra, S 
is polynomially presentable if and only if it is an element of an invariant, finitely 
generated subalgebra of K ((Tr)). 

Closure properties of polynomially presentable tree series are examined below. 

Proposition 6. The family PP (K, T) of polynomially presentable series of 
K ((Tr)) is an invariant subalgebra of K ((Tr)). Moreover if (j> : K —> A 
is a semiring morphism and S £ PP (K, T) , then S o (j> £ PP (r, A), where 
(S o (j,, t) = <j> (S (t)), for all t € Tr. 

Proof. According to Proposition 4, if A and A! are invariant subalgebras of K ((Tr)) 
generated by the lists Ti , . . . ,Tk and T{,... ,T'X respectively, then the subalgebra 
generated by the joint list T\,..., Tk, T[,... T'x is automatically invariant. In other 
words we may assume that any finite set of finitely presentable series is included 
into the same invariant finitely generated subalgebra. 

Thus, if Si,...,Sn € PP(K,T) and p £ K (Tr>, then there exist series 
T\,...,Tk so that 

Si=pi[T1,...,Tk], Pi G K(Tr(Xk)),i = l,...,n 

and for all r £ Pr 

T ' % = PjtT Pi , . . •, Tfc], pj,T € K (Tr (Xk)) , j = 1 , . . . , k. 

We have 

p[5i , . . . ,Sn] =p[pi [Ti,... ,T f c],... ,pn [Ti,... ,Tk}} - p[pi, . . . ,pn] [Ti,. -.,T fc]. 

Since p [pi,. . . , pn] is polynomial, we get 

p[Su...,sn]€PP(K,r). 

Therefore, by virtue of Proposition 2, PP (K , T) is a subalgebra of K ((Tr)). 
Next we establish the following identities 

T - 1 (<j>o S) = <f>o ( r - 1 5 ) , <j) o (p[Si,..., 5„]) = (<p op)[(j> o Si,... ,(j>o ¿"„J 

holding for all r € Pr, S, Si,..., Sn £ K ((Tr)) ,p £ K (Tr (Xn)) and any semiring 
morphism <j): K —* A. 

Indeed for all s £ Tr we have 

(T-1 (<t>oS),s)=(<t>o s, rs) = 4> (S, rs) = <j> (t~1S, s) = (cj> o (T - 1S) , s) 
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and 

(0 ° (P [Si, • • •, S„]), s) = <j>(p [Si,.. •, Sn], s) 

= <t>(p,t) ( s i , • • • (si,,£>) • • • (si,s(xn)) • • • (si,,<»>) 
= (<fi O p, t) (<j> O Si, s[1]) • • • O Si, ••• (4 oSu s(,n)) • • • (<£ ° Si, s ^ ) 

= {{<j>op)\<j>oSu...,<f>oSn},s) 

where 
s = i ^Sj , . . . ,sfei J ,..., ^ ,...,skn J . 

Now assume that S € K ((Tr)) is polynomially presentable, i.e. there exists a 
finite list S i , . . . , Sn e K ((Tr)) so that 

S = p [SMI, • • •, SiJJt ] and T ^ Si = T{ Sj1,..., SJA( j 

for some polynomials p £ K(Tr(Xk)), € K (Tr (X\i)) and . . . , /Xfc, 
Ji, • • • e {1,2,. . . ,n } ,1 < i < n. Then <£oS = (<£op) [<t> o SM l , . . . o SMJ and 
r _ 1 (<£ o Si) — (4>on) (j) o Sj, J..., <j> o SjA. and so ^ o S is again a polynomially 
presentable series. • 

By Proposition 4 and the remark made after the definition of polynomially 
presentable tree series, we have REC (K, T) C LP (K, T) C PP (K , T). Next we 
show that PP (K, T) - REC (K, T) + 0. 

Proposition 7. The series height: Tr —» N is polynomially presentable. 

Proof. Let A be the subalgebra of N ((Tr)) generated by the set {1, height} , where 
1 is the tree series over K and P whose all coefficients are equal to 1. Certainly, 
height G A. Let us show that A is invariant. Since, for every r 6 P r , r _ 1 (1) = 1, 
it is sufficient to show that, for every r € Pr, there is a polynomial p € N (Tr (X2)) 
such that T - 1 (height) = p [1, height]. 

We distinct the cases: 
Case 1 height (r) > |r|. Then 

71 
T"1 height = £ (height (r) - |r| - height (tk)) ifc + |r| • 1 + height 

k=1 

where ..., tn are all the trees verifying 

height (tk) < height (r) — |r|. 

Case 2 height (r) < |r|. Then it holds 

T_ 1 height = |R| • 1 + height. 

Hence, in any case r~l height £ A, as claimed. • 
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Corollary 8. PP (N, T) - REC (N, T) + 0. 

Proof. We only have to combine the previous result together with the fact that 
height is a non-recognizable tree series. • 

In [Bol], linearly presentable series are obtained as matrix representations and 
as behaviours of the so called tree modules. On the other hand, when K is a field, 
recognizable and linearly presentable series coincide (cf. [BA]). 

It is an open question whether LP (K, T) - REC (K, T) ^ 0 or PP (K, T) -
LP (K , r ) / 0 for semirings which are not fields. 

5 Almost Presentable Tree series 
We define the tree series S,S' : Tr K to be almost equal and write S = S' 
whenever (S, t) — (S',t) for all but a finite number of i's. 

The above equivalence relation is compatible with sum, scalar product and 
derivation, i.e. 

Si = SJ (¿ = 1,2), S = S', \£K,r£Pr 

imply 
Si + S2 = Si + S ,̂ AS = AS', = S'. 

Call a series S £ K ((Tp)) almost linearly presentable whenever there is a finite 
list of series Si , . . . , Sn £ K ((Tp)) such that S = AiSi + • • • + AnSn for some 
Ai, . . . , An £ K and for all T £ Pr and i = 1 , . . . , n we have T - 1Si = MiSi + • • • + 
HNSN for some . . . , FIN £ K. 

The tree series height is almost linearly presentable since for all r £ Pp it holds 

r~1height = |T| • 1 + height. 

Hence the class ALP (K, T) of almost linearly presentable series properly con-
tains that of almost recognizable tree series. 

Moreover ALP (K,T) is an invariant subalgebra of K ((Tp)). 
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