On a Class of Discrete Functions

Dimiter Stoichkov Kovachev*

Abstract

We consider classes of functions which depend in a certain way on their variables. The relation between the number of H-functions of n variables of the k-valued logic and the number of n-dimensional Latin hypercubes of order k is found. We have shown how from an arbitrary Latin hypercube we can "construct" (present in table form) an H-function and vice versa - how every H-function can be represented as a Latin hypercube. We extend the concepts of H-function and Latin hypercube.

Keywords: H-function, subfunction, range, spectrum, Latin hypercube.

1 Introduction

In the paper we interpret the H-function as Latin squares or Latin hypercubes. On the other side the Latin squares and Latin hypercubes are well known combinatorial structures which are widely used in different areas of mathematics and its applications, in theoretical and applied computer science, etc. They are very important in Statistics, Coding Theory, Cryptography, Tournament Design, etc. ([3], see $\S 1.4, \S 12.1-12.4 ; \S 1.5, \S 13.1-13.5 ; \S 14.1-14.4 ; \S 1.6, \S 16.5$, respectively), Design Experiment, Security of Information, Decision Making, etc.

Let $P_{n}^{k}=\left\{f: E_{k}^{n} \longrightarrow E_{k} / E_{k}=\{0,1, \ldots, k-1\}, k \geq 2\right\}$.
Definition 1. [1] We say that $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is H -function if for every variable $x_{i}, 1 \leq i \leq n, n \geq 2$ and for every $a_{1}, \ldots, a_{i-1}, a^{\prime}, a^{\prime \prime}, a_{i+1}, \ldots, a_{n} \in E_{k}$ for $a^{\prime} \neq a^{\prime \prime}$ we have $f\left(a_{1}, \ldots, a_{i-1}, a^{\prime}, a_{i+1}, \ldots, a_{n}\right) \neq f\left(a_{1}, \ldots, a_{i-1}, a^{\prime \prime}, a_{i+1}, \ldots, a_{n}\right)$.

Definition 2. [4] The number $R n g(f)$ of different values of the function f is called range of f.

Denote by X_{f} and $P_{n}^{k, q}$ respectively, the set of variables of function f, and the set of all functions of P_{n}^{κ} with range $q, 1 \leq q \leq k$.

Definition 3. [2] The function h is called a subfunction of the function $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ with respect to the set of variables $R=\left\{x_{j_{1}}, x_{j_{2}}, \ldots, x_{j_{r}}\right\}$,

[^0]$R \subseteq X_{f}$, if h is obtained from f by replacement the variables from R respectively by values $c_{1}, c_{2}, \ldots, c_{r}$. We will denote the subfunction h in one of the following ways $h \stackrel{R}{\prec} f$ or $h=f\left(x_{j_{1}}=c_{1}, x_{j_{2}}=c_{2}, \ldots, x_{j_{r}}=c_{r}\right)$.

Let $M, M \subseteq X_{f}$, be a set of variables and G be the set of all subfunctions of f with respect to $X_{f} \backslash M$, i.e. $\quad G=G(M, f)=\left\{g: g{ }^{X_{f} \backslash M}{ }^{\gamma} f\right\}$.
Definition 4. [4] The set $\operatorname{Spr}(M, f)=\bigcup_{g \in G}\{R n g(g)\}$ is called spectrum of the set M for the function f.

A matrix B with m rows and m columns is denoted by $B=\left(b_{i j}\right)_{1}^{m}$. Matrix $A=\left(a_{j_{1} j_{2} \ldots j_{n}}\right)_{1}^{k}$ is an n-dimensional matrix of order k.

Definition 5. Latin n-dimensional hypercube of order k based on the set E_{k} is defined as every matrix $A=\left(a_{j_{1} j_{2}} \ldots j_{n}\right)_{1}^{k}$, such that for every $s, s=1,2, \ldots, n$ we have

$$
\left\{a_{i_{1} \ldots i_{s-1} 1} 1 i_{s+1} \ldots i_{n}\right\} \bigcup\left\{a_{i_{1} \ldots i_{s-1}} 2 i_{s+1} \ldots i_{n}\right\} \bigcup \ldots \bigcup\left\{a_{i_{1} \ldots i_{s-1}} \mathbf{k} i_{s+1} \ldots i_{n}\right\}=E_{k}
$$

i.e.

$$
\begin{equation*}
\left|\bigcup_{j=1}^{k}\left\{a_{i_{1} \ldots i_{s-1}} \mathbf{j} i_{s+1} \ldots i_{n}\right\}\right|=\left|E_{k}\right|=k . \tag{1}
\end{equation*}
$$

The set of all Latin n-dimensional hypercubes of order k will be denoted by $L H C_{n}^{k}$.
Theorem 6. Each matrix $A=\left(a_{j_{1} j_{2} \ldots j_{n}}\right)_{1}^{k}$, for which

$$
a_{j_{1} j_{2} \ldots j_{n}}=\left[\sum_{r=1}^{n} f_{r}\left(j_{r}-1\right)+c\right] \bmod k
$$

where $f_{r} \in P_{1}^{k, k}, c$ is a natural number, belongs to $L H C_{n}^{k}$.
Proof. Each function $h \in P_{1}^{k, k}$, is of the form $h=\left(\begin{array}{cccc}0 & 1 & \ldots & k-1 \\ l_{1} & l_{2} & \ldots & l_{k}\end{array}\right)$, where $l_{1}, l_{2}, \ldots, l_{k}$ is a permutation of the numbers $0,1, \ldots, k-1$, and $h(t)=$ $l_{t+1}, t=0,1, \ldots, k-1$. Assume that the matrix $A \notin L H C_{n}^{k}$ and there exists $s, s \in\{1,2, \ldots, n\}$, such that $\left|\bigcup_{j=1}^{k}\left\{a_{i_{1} \ldots i_{s-1}} \mathrm{j} i_{i_{s+1} \ldots i_{n}}\right\}\right| \neq E_{k}$. Therefore there exist $\alpha, \beta, \alpha \neq \beta$, such that $a_{i_{1} \ldots i_{s-1} \alpha i_{s+1} \ldots i_{n}}=a_{i_{1} \ldots i_{s-1} \beta i_{s+1} \ldots i_{n}}$. From the last equality it follows that $f_{s}(\alpha-1)=f_{s}(\beta-1)$ and from $f_{s} \in P_{1}^{k, k}$, we have $\alpha=\beta$: a contradiction. Therefore $A \in L H C_{n}^{k}$.

Function $h_{1}(x)=(a x+b) \bmod k$, where a, b are natural numbers, $(a, k)=1$ belongs to $P_{1}^{k, k}$. As a corollary of Theorem 6 we obtain that matrix $B=\left(b_{j_{1} j_{2} \ldots j_{n}}\right)_{1}^{k}$, for which $b_{j_{1} j_{2} \ldots j_{n}}=\left(a_{1} j_{1}+a_{2} j_{2}+\ldots+a_{n} j_{n}+c\right) \bmod k$, for $\left(a_{i}, k\right)=1, i=$ $1,2, \ldots, n$ belongs to $L H C_{n}^{k}$.

Each function from $P_{1}^{k, k}$ can be represented by a table or by interpolating polynomial and, based on Theorem 6, can be used for "constructing" elements of $L H C_{n}^{k}$.

Example 7. Construct Latin 2-dimensional hypercube of order 4 and Latin 3dimensional hypercube of order 3.

Let $f_{1}=\left(\begin{array}{llll}0 & 1 & 2 & 3 \\ 3 & 0 & 2 & 1\end{array}\right)$ and $f_{2}=\left(\begin{array}{cccc}0 & 1 & 2 & 3 \\ 2 & 3 & 1 & 0\end{array}\right)$, be arbitrary functions from $P_{1}^{4,4}$. Let matrix $C=\left(c_{i j}\right)_{1}^{4}$ be such that $c_{i j}=\left[f_{1}(i-1)+f_{2}(j-1)\right] \bmod k$. Then $c_{11}=\left[f_{1}(1-1)+f_{2}(1-1)\right] \bmod 4=[3+2] \bmod 4=1$. Similarly we obtain the remaining elements of matrix C. So we have

$$
C=\left(c_{i j}\right)_{1}^{4}=\left(\begin{array}{cccc}
1 & 2 & 0 & 3 \\
2 & 3 & 1 & 0 \\
0 & 1 & 3 & 2 \\
3 & 0 & 2 & 1
\end{array}\right) \in L H C_{2}^{4} ; D=\left(d_{i j l}\right)_{1}^{3}, D \in L H C_{3}^{3}
$$

where $d_{i j l}=(2 i+j+2 l+1) \bmod 3$.

2 Spectrum of H -functions and Latin Hypercubes

Theorem 8. The function $f\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in P_{n}^{k}$ is H-function if and only if for each variable $x_{i}, i=1,2, \ldots, n$ we have $\operatorname{Spr}\left(x_{i}, f\right)=\{k\}$.

Proof. (Necessity) Let f be H-function, x_{i} be arbitrary variable of f. Then for every set of constants $a_{1}, \ldots, a_{i-1}, a_{i+1}, \ldots, a_{n}$ we have

$$
\begin{equation*}
f\left(a_{1}, \ldots, a_{i-1}, r, a_{i+1}, \ldots, a_{n}\right) \neq f\left(a_{1}, \ldots, a_{i-1}, t, a_{i+1}, \ldots, a_{n}\right) \tag{2}
\end{equation*}
$$

for each r and t for which $r \neq t, r, t \in E_{k}$.
From Definition 3 and the inequality (2) it follows that every subfunction of f with respect to $X_{f} \backslash\left\{x_{i}\right\}$ assumes exactly k different values, i.e. it has a range equal to k.

For $M=\left\{x_{i}\right\}$, from Definition 4 it follows that $\operatorname{Spr}\left(x_{i}, f\right)=\{k\}$.
(Sufficiency) Let for the variable x_{i} we have

$$
\begin{equation*}
\operatorname{Spr}\left(x_{i}, f\right)=\{k\} \tag{3}
\end{equation*}
$$

From Definition 4 for $M=\left\{x_{i}\right\}$ and (3) it follows that every subfunction of f with respect to $X_{f} \backslash\left\{x_{i}\right\}$ has a range equal to k. This means that for an arbitrary $n-1$ tuple of values $<c_{1}, \ldots, c_{i-1}, c_{i+1}, \ldots, c_{n}>$, the subfunction $f\left(x_{1}=\right.$ $c_{1}, \ldots, x_{i-1}=c_{i-1}, x_{i}, x_{i+1}=c_{i+1}, \ldots, x_{n}=c_{n}$) has a range k, i.e. it assumes exactly k different values. Because x_{i} can also assume exactly k different values, we obtain that for every $c^{\prime}, c^{\prime \prime} \in E_{k}, \quad\left(c^{\prime} \neq c^{\prime \prime}\right)$, the following inequality holds $f\left(c_{1}, \ldots, c_{i-1}, c^{\prime}, c_{i+1}, \ldots, c_{n}\right) \neq f\left(c_{1}, \ldots, c_{i-1}, c^{\prime \prime}, c_{i+1}, \ldots, c_{n}\right)$.

Since the variable x_{i} and the set of values $\left\langle c_{1}, \ldots, c_{i-1}, c^{\prime}, c^{\prime \prime}, c_{i+1}, \ldots, c_{n}\right\rangle$ are arbitrary, from Definition 1 it follows that f is an H-function.

Remark 9. More that Theorem 8 can also be used as a definition of an H-function, where the restriction $n \geq 2$ can be eliminated, i.e. the definition holds for the functions of one variable as well.

Theorem 10. The number of all H-functions of P_{n}^{k} is equal to the number of all Latin n-dimensional hypercubes of order k.

Proof. Let $\left\langle c_{1 i}, c_{2 i}, \ldots ; c_{n i}\right\rangle, i=1,2, \ldots, k^{n}$ be all the possible n-tuples of constants and $f \in P_{n}^{k}$ be an arbitrary function for which

$$
\begin{equation*}
f\left(x_{1}=c_{1 i}, x_{2}=c_{2 i}, \ldots, x_{n}=c_{n i}\right)=a_{i}, i=1,2, \ldots, k^{n}, a_{i} \in E_{k} \tag{4}
\end{equation*}
$$

Let the mapping $\varphi_{f}: E_{k}^{n+1} \longrightarrow E_{k}$ be such that it maps a_{i} from any equality (4) into an element of the matrix $D_{1}=\left(d_{j_{1} j_{2} \ldots j_{n}}\right)_{1}^{k}$,

$$
\begin{equation*}
d_{j_{1 i} j_{2 i} \ldots j_{n i}}=a_{i}=\varphi_{f}\left(c_{1 i}, c_{2 i}, \ldots, c_{n i}, a_{i}\right), i=1,2, \ldots, k^{n} \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
j_{1 i}=c_{1 i}+1, j_{2 i}=c_{2 i}+1, \ldots, j_{n i}=c_{n i}+1, i=1,2, \ldots, k^{n} \tag{6}
\end{equation*}
$$

Conversely, to every element of the matrix D_{1} from (5), through the equalities (6), the constant a_{i} from equality (4) is assigned uniquely.

If we take into consideration Definitions 1 and 5 as well, we draw the conclusion that to each H-function of P_{n}^{k} we can assign, using φ_{f}, a Latin n-dimensional hypercube of order k, and vice versa. Therefore, the number of H-functions of P_{n}^{k} is equal to the number of the Latin n-dimensional hypercubes of order k.
: Using the mapping φ_{f}, every Latin n-dimensional hypercube of order k, which elements are in the set E_{k}, can be used for the "construction"(i.e. tabular representation) of an H-function of P_{n}^{k}.

Corollary 11. Every H-function of P_{n}^{k} can be represented as Latin n-dimensional hypercube of order k and vice versa, every Latin n-dimensional hypercube of order k can be represented as H-function.

In the general case, the sum of the H-functions of P_{n}^{k} can be an H-function, but this is not always true.

Example 12. Indeed, if $f_{1} \in P_{n}^{k}$ is an arbitrary H-function, then $f_{2}=k-1-f_{1}$ is also an H-function. However the sum $f_{1}+f_{2}=k-1$ is a constant and it is not an H-function.

Example 13. Let k be an odd number and $f \in P_{n}^{k}$ be an arbitrary H-function. For every number $a \in E_{k}=\{0,1, \ldots, k-1\}$ the function $f_{a}, f_{a}=f+a(\bmod k)$ is also an H-function. In addition, the sum $f+f_{a}=2 . f+a(\bmod k)$ is an H-function.

The problem for finding necessary and sufficient conditions under which the sum of two H-functions is again an H-function remains open.

From Definitions 1, 2, 3 it follows that a function of P_{n}^{k} is an H-function if each of its subfunctions of one variable takes k different values, i.e. if it has a range equal to k.

3 Generalizations of H-functions

We extend the concept of H-function in two directions - increasing the number of the variables on which the function depends in a certain way (each of its subfunctions of $m \geq 2$ variables takes $q, 1 \leq q \leq k$, different values, i.e. it has a range equal to q) and changing the number of different values which the function assumes in this dependence.

Let m, q be integers such that $1 \leq m \leq n, 1 \leq q \leq k$, and M be an arbitrary set of m variables of the function $f \in P_{n}^{k}$.
Definition 14. We say that the function $f\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in P_{n}^{k}$ is an $H[m ; q]$ function, if for every set $M, M \subseteq X_{f},|M|=m$, we have

$$
\begin{equation*}
\operatorname{Spr}(M, f)=\{q\} . \tag{7}
\end{equation*}
$$

The set of all functions of P_{n}^{k} for which (7) holds will be denoted by $H[m ; q]_{n}^{k}$. When $m=k$, the set $H[1 ; m]_{n}^{k}$ coincides with the set of all H-functions from P_{n}^{k}.

From Definition 14 it follows that a function of P_{n}^{k} is an $H[m ; q]$ function if each of its subfunctions of m variables takes q different values, i.e. it has a range equal to q.

We will prove a necessary and sufficient condition for a function to be an $H[m ; q]$ function, which generalizes Theorem 8.

Theorem 15. A function $f \in P_{n}^{k}$ is an $H[m ; q]$ function if and only if each of its subfunctions, depending on at least m variables, is an $H[m ; q]$ function.
Proof. (Necessity) Let $f \in P_{n}^{k}$ be an $H[m ; q]$ function and let h be an arbitrary subfunction of f, for which $\left|X_{h}\right| \geq m$. We will prove that h is an $H[m ; q]$ function. Let us suppose that h is not an $H[m ; q]$ function. Therefore there is a set of variables $M,|M|=m, M \subseteq X_{h}$, such that

$$
\begin{equation*}
\operatorname{Spr}(M, h) \neq\{q\} \tag{8}
\end{equation*}
$$

From (8) it follows that a subfunction h_{1} exists, $h_{1} \stackrel{X_{h} \backslash M}{\prec} h$, such that $R n g\left(h_{1}\right) \neq q$. Since $h_{1} \stackrel{X_{h} \backslash M}{\prec} h, h \prec f$, it follows that $h_{1} \stackrel{X_{f} \backslash M}{\prec} f$ and $R n g\left(h_{1}\right) \neq q$.
From Definition 4 and Definition 14 it follows that $\operatorname{Spr}(M, f) \neq\{q\}$ and f is not an $H[m ; q]$ function. This is a contradiction.
(Sufficiency) Let each subfunction of f, depending on at least m variables, be an $H[m ; q]$-function. We will prove that f is an $H[m ; q]$-function. Let us suppose that f is not an $H[m ; q]$-function, i.e. there exists a set of variables $M,|M|=m$, $M \subseteq X_{f}$, such that

$$
\begin{equation*}
\operatorname{Spr}(M, f) \neq\{q\} \tag{9}
\end{equation*}
$$

From (9) it follows that there is a subfunction $g, g \stackrel{X_{f} \backslash M}{\prec} f,\left|X_{g}\right|=m$, for which $\operatorname{Rng}(g) \neq q$. Therefore the subfunction g is not an $H[m ; q]$-function which contradicts the given condition. The contradiction is due to the assumption that f is not an $H[m ; q]$-function.

As a corollary of Theorem 15 for $m=1, q=k$ we get:
Corollary 16. A necessary and sufficient condition for the function $f \in P_{n}^{k}$ to be an H--function is that every of its subfunctions, depending on at least one variable, is an. H-function.

Definition 17. An n-dimensional matrix $W=\left(w_{i_{1} i_{2} \ldots i_{n}}\right)_{1}^{k}$ of order k, the elements of which are in the set E_{k}, such that when we fix arbitrary $n-m$ of its indices, we get an m-dimensional matrix of order k, in which there are exactly q different elements of the set E_{k}, is called an n-dimensional $H[m ; q]$-hypercube of order k, generated by E_{k}.

The set of all n-dimensional $H[m ; q]$-hypercubes of order k, generated by the set E_{k}, will be denoted by $H H C[m ; q]_{n}^{k}$.

It is obvious that for $m=1, q=k, L H C_{n}^{k}=H H C[1 ; k]_{n}^{k}$ holds, i.e. the Latin n-dimensional hypercubes of order k are special cases of the n-dimensional $H[m ; q]$ hypercubes of order k.

Example 18. If the elements of the matrix of an arbitrary Latin hypercube of the set $L H C_{n}^{k}$ are taken by modulo q, then we will get the matrix of an $H[1 ; q]-$ hypercube of the set $H H C[1 ; q]_{n}^{k}$. In the matrix obtained in this way there will be exactly q different elements of E_{k}.

Let the matrix C from Example 7 be taken by modulo 3 and the new matrix we get be denoted by C_{1}

$$
C=\left(\begin{array}{cccc}
1 & 2 & 0 & 3 \\
2 & 3 & 1 & 0 \\
0 & 1 & 3 & 2 \\
3 & 0 & 2 & 1
\end{array}\right) \in L H C_{2}^{4}, C \frac{q=3}{\bmod 3} \rightarrow C_{1}=\left(\begin{array}{cccc}
1 & 2 & 0 & 0 \\
2 & 0 & 1 & 0 \\
0 & 1 & 0 & 2 \\
0 & 0 & 2 & 1
\end{array}\right) \in H H C[1 ; 3]_{2}^{4}
$$

Of course, there are matrices in the set $H H C[1 ; q]_{n}^{k}$ which cannot be obtained from matrices of the set $L H C_{n}^{k}$ by taking modulo q. Below in Example 20 we have shown such a matrix. The matrix B is constructed in which the number of different elements is more that $q,(q=3)$.

Theorem 19. Each matrix $B=\left(b_{j_{1} j_{2} \ldots j_{n}}\right)_{1}^{k}$, for which

$$
b_{j_{1} j_{2} \ldots j_{n}}=\left[\sum_{r=1}^{n} g_{r}\left(j_{r}-1\right)\right] \bmod k
$$

where $g_{r} \in P_{1}^{k, q}, r=1,2, \ldots, n$, is an n-dimensional $H[1 ; q]$-hypercube of order k.

Proof. If $f_{1} \in P_{1}^{k, q}$ then $f_{2},\left(f_{2}=\left(f_{1}+c_{0}\right) \bmod k, c_{0}\right.$ is a natural number $)$ also belongs to $P_{1}^{k, q}$. By fixing any $n-1$ indices of the matrix B we will obtain a function of $P_{1}^{k, q}$ and according to Definition $17, B \in H H C[1 ; q]_{n}^{k}$.

Because each function $g_{r} \in P_{1}^{k, q}, r=1,2, \ldots, n$, can be chosen in $\left|P_{1}^{k, q}\right|$ ways it follows that $\left|H H C[1 ; q]_{n}^{k}\right| \leq\left|P_{1}^{k, q}\right|^{n}$.

Example 20. Construct 2-dimensional $H[1 ; 3]$-hypercube of order 4. Let $g_{1}=$ $\left(\begin{array}{llll}0 & 1 & 2 & 3 \\ 3 & 2 & 2 & 1\end{array}\right)$ and $g_{2}=\left(\begin{array}{llll}0 & 1 & 2 & 3 \\ 2 & 1 & 0 & 1\end{array}\right)$, be arbitrary functions from $P_{1}^{4,3}$ Let matrix $B=\left(b_{i j}\right)_{1}^{4}$ be such that $b_{i j}=\left[g_{1}(i-1)+g_{2}(j-1)\right] \bmod 4$. We compute the elements of the matrix B and we get:

$$
B=\left(b_{i j}\right)_{1}^{4}=\left(\begin{array}{llll}
1 & 0 & 3 & 0 \\
0 & 3 & 2 & 3 \\
0 & 3 & 2 & 3 \\
3 & 2 & 1 & 2
\end{array}\right) \in H H C[1 ; 3]_{2}^{4}, m=1, n=2, q=3, k=4
$$

Proposition 21. The number of hypercubes of the set $H H C[m ; q]_{n}^{k}$ is equal to the number of functions of the set $H[m ; q]_{n}^{k}$, i.e.

$$
\left|H H C[m ; q]_{n}^{k}\right|=\left|H[m ; q]_{n}^{k}\right| .
$$

Using Definitions $2,3,4,14,17$ and the arguments from Theorem 8 we can complete the proof of Proposition 21.

Every n-dimensional $H[m ; q]$-hypercube of order k generated by the set of k elements E_{k} can be used for the "construction"(i.e. tabular representation) of a function of the set $H[m ; q]_{n}^{k}$.

References

[1] Chimev K. N. On a way some functions of P_{k} depend on their arguments., Annuaire Des Ecoles Techniques Superieures, Mathematique, vol. IV, livre. 1, pp. 5-12, 1967.
[2] Chimev K. N. Discrete Functions and Subfunctions, Blagoevgrad, 1991, (in Bulgarian).
[3] Laywine Ch. F., Mullen G. L. Discrete Mathematics Using Latin Squares, John Wiley \& Sons, New York, 1998.
[4] Kovachev D. S. On the Number of Some k-Valued Functions of n Variables, Union of Bulgarian Mathematicians, Mathematics and Education in Mathematics, Proceedings of Thirtieth Spring Conference of the Union of Bulgarian Mathematicians, Borovets, pp. 176-181, April 8-11, 2001.
[5] Kovachev D. S. On the Number of Discrete Functions with a Given Range, General Algebra and Applications, Proceedings of "59th Workshop on General Algebra", Potsdam edited by K. Denecke and H.-J. Vogel, pp.125-134, 2000.

[^0]: *Department of computer science, South-West University "N. Rilski", 2700 Blagoevgrad, P.O.79, E-mail: dkovach@aix.swu.bg and dkovach@abv.bg

