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Demonic Fixed Points

Fairouz Tchier
∗

Abstract

We deal with a relational model for the demonic semantics of programs.
The demonic semantics of a while loop is given as a fixed point of a function
involving the demonic operators. This motivates us to investigate the fixed
points of these functions. We give the expression of the greatest fixed point
with respect to the demonic ordering (demonic inclusion) of the semantic
function. We prove that this greatest fixed coincides with the least fixed point
with respect to the usual ordering (angelic inclusion) of the same function.
This is followed by an example of application.

Keywords: demonic fixed points, demonic functions, while loops, relational de-
monic semantics.

1 Introduction

We use relations to define the input-output semantics of nondeterministic programs.
The relational operators ∪ and ; have been used for many years to define the so-
called angelic semantics , which assumes that a program goes right when there is a
possibility to go right. On the other hand, the demonic operators t and � (to be
introduced below) do the opposite: if there is a possibility to go wrong, a program
whose semantics is given by these operators goes wrong; it is the demonic semantics
of nondeterministic programs.

The concept of fixed points has received increasing attention from researchers in
a wide range of scientific areas, especially in computer science. Many important no-
tions in demonic relational semantics are given as fixed points of some monotonic
functions involving the demonic operators [4, 16, 25, 39, 44]. In this paper, we
concentrate on while loops. We will present some relevant results about the fixed
points of the function f(X) = QuP � X (these operators will be defined later). By
considering certain conditions on the domains of P and Q, one gets the demonic
semantics we have assigned to while loops in previous papers [22, 47, 48, 49, 50].
Other similar definitions of while loops can be found in [28, 38, 43, 51, 52, 53]. Our
results can be applied also to the program verification and construction; while there
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is no systematic way to calculate the relational abstraction of a while loop directly
from the definition it is possible to check the correctness of any candidate abstrac-
tion by theorem 30. For deterministic programs, Mills has described a checking
method [34, 35].

The approach to demonic input-output relation presented here is not the only
possible one. In [28, 29, 30], the infinite looping has been treated by adding to
the state space a fictitious state ⊥ to denote nontermination. In [9, 24, 32, 40],
the demonic input-output relation is given as a pair (relation,set). The relation
describes the input-output behavior of the program, whereas the set component
represents the domain of guaranteed termination. In [19, 17, 18, 31], they abstract
from relational semantics to the setting of modal Kleene algebras, an extension of
Kozen’s Kleene algebra with tests.

We note that the preponderant formalism employed until now for the description
of demonic input-output relation is the wp-calculus. For more details see [1, 3, 23].

The rest of the paper is organized as follows. In Section 2, we present our math-
ematical tool, namely relation algebra [13, 42, 45]. First, we recall the basic laws
(Subsection 2.1). In Section 3, we present notions related to fixed points followed
by a description of our refinement ordering (Section 4) and finally in Section 5, we
give our main results. In Section 6, we give an application.

2 Relation algebras

2.1 Definition and basic laws

Our mathematical tool is abstract relation algebra [13, 42, 45], which we now
introduce.

Definition 1. A (homogeneous) relation algebra is a structure (R,∪,∩, , ˘, ;) over
a non-empty set R of elements, called relations. The following conditions are sat-
isfied.

• (R,∪,∩, ) is a complete Boolean algebra, with zero element Ø, universal
element L and ordering ⊆.

• Composition, denoted by (;), is associative and has an identity element, de-
noted by I.

• The Schröder rule is satisfied: P ;Q ⊆ R ⇔ P̆ ;R ⊆ Q ⇔ R ;Q̆ ⊆ P .

• L ;R ;L = L ⇔ R 6= Ø (Tarski rule).

The relation R̆ is called the converse of R. The standard model of the above
axioms is the set ℘(S × S) of all subsets of S × S. In this model, ∪,∩, are
the usual union, intersection and complement, respectively; the relation Ø is the
empty relation, the universal relation is L = S × S and the identity relation is
I = {(s, s′) | s′ = s}. Converse and composition are defined by

R̆ = {(s, s′) | (s′, s) ∈ R} and Q ;R = {(s, s′) | ∃s′′ : (s, s′′) ∈ Q∧ (s′′, s′) ∈ R}.
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The precedence of the relational operators from highest to lowest is the follow-
ing: and ˘ bind equally, followed by ;, then by ∩, and finally by ∪. From now on,
the composition operator symbol ; will be omitted (that is, we write QR for Q ;R).
From Definition 1, the usual rules of the calculus of relations can be derived (see,
e.g., [9, 13, 42]). We assume these rules to be known and simply recall a few of
them.

Theorem 2. Let P, Q, R be relations. Then,

(a) Q ∪ R = Q ∩ R,

(b) Q ∩ R = Q ∪ R,

(c) Q ∩ R ∪ R = Q ∪ R,

(d) P ∩ Q ⊆ R ⇔ P ⊆ Q ∪ R,

(e) Q ⊆ R ⇔ R ⊆ Q,

(f) P (Q ∩ R) ⊆ PQ ∩ PR,

(g) (P ∩ Q)R ⊆ PR ∩ QR,

(h) P (Q ∪ R) = PQ ∪ PR,

(i) (P ∪ Q)R = PR ∪ QR,

(j) Q ⊆ R ⇒ PQ ⊆ PR,

(k) Q ⊆ R ⇒ QP ⊆ RP .

(l) RLL = RL,

(m) PQ ∩ R ⊆ P (Q ∩ P̆R),

(n) (P ∩ QL)R = PR ∩ QL,

(o) (
⋂

i∈X
RiL)L =

⋂

i∈X
RiL.

We now give a definition of various properties of relations.

Definition 3. A relation R is functional iff R̆R ⊆ I. A relation v is a vector [42]
iff v = vL.

In the standard model, a relation R on a set S is functional iff (s, s′) ∈ R ∧
(s, s′′) ∈ R ⇒ s′ = s′′. A vector is a relation of the form T × S, where T ⊆ S. A
vector can also be viewed as a point set or a predicate. For example, if S = {0, 1, 2}
and T = {0, 1}, then t := T×S = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2)} is a vector
that corresponds to the point set T . For any relation R, the relation RL is a vector
that characterizes the domain of R. For instance, with R := {(0, 1), (0, 2), (2, 1)}
(on set S = {0, 1, 2}), we obtain RL = {(0, 0), (0, 1), (0, 2), (2, 0), (2, 1), (2, 2)}; this
vector indeed characterizes the domain of R, which is {0, 2}.

2.2 Relative implication

In our work we need to define an operator called relative implication. In previous
work, we used the monotype and residual operators see [49, 47, 48]

Definition 4. A binary operator /, called relative implication [50], is defined as
follows :

Q / R := QR.
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This operator has a dual operator (Definition 10), ., given by :

Q . R := QR.

The most interesting case is when the right argument is a vector RL, in other
words Q/RL. If x.R denotes the set of the images of x by R, then x ∈ dom(Q/RL)
⇔ x.Q ⊆ dom(R).

The operators / and . bind equally but less than (;) and more than ∩ and ∪.
In the next lemma we give some interesting properties satisfied by the operator /.
The properties of . can be obtained by dualization of those of the operator / [50].

Lemma 5. Let P , Q and R be relations.

(a) Q / R = QR,

(b) Q . R = QR,

(c) P / Q ∩ P / R = P / (Q ∩ R),

(d) P / R ∩ Q / R = (P ∪ Q) / R,

(e) PQ / R = P / (Q / R),

(f) PQ ∩ P / R = P (Q ∪ R) ∩ P / R,

(g) P / Q ⊆ PQ ∪ PL,

(h) P ⊆ Q ⇒ Q / R ⊆ P / R,

(i) P ⊆ Q ⇒ R / P ⊆ R / Q

(j) Q vector ⇒ P / Q vector.

We note that the properties (c) and (e) are similar to those of the logical oper-
ators →, ∧ and ∨. For example, the property (e) corresponds to (P ∧ Q → R) ↔
(P → (Q → R)).

3 Fixed points

Let f be a monotonic function with respect to ⊆. The least fixed point of f is
⋂

{X | f(X) = X}. Similarly,
⋃

{X | f(X) = X} is the greatest fixed point of f .
Because we assume our relation algebra to be complete (Definition 1), least and
greatest fixed points of monotonic functions exist. We will denote the least fixed
point of the function f(X) := E(x), where E is some relational expression, by µf

or by µ(X : E(X)), when it is desired not to introduce a function name. Similarly,
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νf and ν(X : E(X)) denote the greatest fixed point of f . The following properties
of fixed points are used below:

(a) µf =
⋂

{X |f(X) = X} =
⋂

{X |f(X) ⊆ X},
(b) νf =

⋃

{X |f(X) = X} =
⋃

{X |X ⊆ f(X)},
(c) µf ⊆ νf,

(d) f(Y ) ⊆ Y ⇒ µf ⊆ Y,

(e) Y ⊆ f(Y ) ⇒ Y ⊆ νf.

(1)

We need some auxiliary notions.

Definition 6. A function f between complete lattices is strict if f(Ø) = Ø and
co-strict if f(L) = L. Further, f is called continuous if for every chain C one has
f(

⋃

C) =
⋃

f(C), and co-continuous if for every chain C one has f(
⋂

C) =
⋃

f(C).

Every universally disjunctive function is continuous and strict; every universally
conjunctive function is co-continuous and co-strict. Moreover, every continuous or
co-continuous function is monotonic.

Theorem 7. [44] (Knaster-Tarski) Every monotonic endofunction on a complete
lattice has a least fixed point µf , which is equal to its least pre-fixed point and
a greatest fixed point ν(f) which is equal to its greatest post-fixed point. If f is
continuous, then µ(f) =

⋃

{f i(Ø) : i ∈ IN}. If f is co-continuous, then ν(f) =
⋂

{f i(L) : i ∈ IN}.

Here,

f0(x) = x ,

f i+1(x) = f(f i(x)) .

For more details about these notions see [12, 15]. The comparison of fixed points
is sometimes very useful to compare the program semantics. The next proposition
will present some results in this direction.

Proposition 8. Let (X,≤) be an ordered set f and g endofunctions. Let also the
relation � on the set of endofunctions on X, defined as follows :

f � g ⇔ (∀x : x ∈ X : f(x) ≤ g(x)).

We have the following properties (+ is a monotonic binary operation on X) :

(a) µ monotonic f � g ⇒ µ(f) ≤ µ(g),
(b) permutation law µ(f ;g) = f(µ(g ;f)),
(c) diagonal law µ(x 7→ x + x) = µ(x 7→ µ(y 7→ x + y)),
(d) µ-fusion law f ;g = g ;h ⇒ µ(f) = g(µ(h)),

(g is continuous and strict).
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3.1 Transitive reflexive closure

Another operation that occurs in the definition of the while program semantics is
the reflexive transitive closure. The reflexive transitive closure is a unary operation
denoted ∗ and defined for every relation R by :

R∗ = µ(X 7→ I ∪ RX). (2)

The operation ∗ is defined as a least fixed point ; by the monotonicity of ∪ and
of (;), and the Knaster-Tarski Theorem (7) this operation is well defined and it
satisfies,

R∗ = I ∪ RR∗ = I ∪ R∗R. (3)

The unary operations ∗,˘and bind equally. We can also define a similar operation
to ∗, called transitive closure, denoted +, and defined for every relation R by :

R+ = µ(X 7→ R ∪ RX). (4)

and,

(a) R+ = R∗R = RR∗ = R ∪ RR∗,

(b) R∗ = I ∪ R+.

(5)

The operations ∗ and + bind equally. The operation ∗ satisfies also

R∗ =
⋃

i≥0

Ri, (6)

where R0 = I and Ri+1 = RRi.
We give some properties of the operation ∗. The properties of the operation +

are easily deduced from the equations 5 and of the properties of ∗.

R∗Q = µ(X 7→ Q ∪ RX), (7)

Proposition 9. Let P , Q and R be relations. We have,

• PQP = PQ ⇒ (PQ)∗P = PQ∗,

• QR = Ø ⇒ (Q ∪ R)∗ = R∗Q∗,

• RQ = Ø and QR = Ø ⇒ (R ∪ Q)∗ = R∗ ∪ Q∗,

We need the notion of dual function.

Definition 10. Let f be an endofunction on a Boolean lattice. The dual function
of f is f#(x) := f(x).

The next Lemma states the relationship between the fixed points of a function
on a Boolean lattice and those of its dual function.
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Lemma 11. Let f be an endofunction on a Boolean lattice and f# its dual function.
If x is a fixed point of f , then

(a) x is a fixed point of f#,

(b) ν(f#) = µ(f),

(c) µ(f#) = ν(f).

3.2 The initial part of a relation

In the sequel, we describe notions that are useful for the description of the set of
initial states of a program for which termination is guaranteed. These notions are
the initial part of a relation and progressive finiteness. The initial part of a relation
R, denoted L(R), is the vector characterizing the set of points s0 such that there
is no infinite chain s0, s1, s2, . . ., with (si, si+1) ∈ R, for all i ≥ 0. The algebraic
definition is

Definition 12. [42] The initial part of a relation R, denoted L(R), is given by :

L(R) :=
⋂

{x | R / x = x},

where x takes its value in the set of the vectors (by Theorem 2(o), L(R) is a vector).
(see [41, 42]); in other words, L(R) is the least fixed point of the ⊆-monotonic
function g(x) := R/x, where x is a vector (the least fixed point of g exists since the
set of vectors is also a complete lattice [42]). A relation R is said to be progressively
finite iff L(R) = L, in other words if there is no infinite path by R. Progressive
finiteness of a relation R is the same as well-foundedness of R̆. (Mnemonics : L
for loop because, in the program semantics, L(R) represents the set of states from
which no infinite loop is possible.)

We find in [50] an equivalent definition of L(R) on the set of relations instead
of vectors. This definition is given in the next proposition

Proposition 13. Let R be a relation.

(a) L(R) =
⋂

{X | R / X = X}
=

⋂

{X | R / X ⊆ X}
=

⋂

{X | RX = X}
= µ(X 7→ R / X)

and
(b) L(R) =

⋃

{X | X = RX}
=

⋃

{X | X ⊆ RX}
= ν(X 7→ RX).

Proof. These results can be easily deduced from the Equations 1, 13(a), of the
definition of / and certain Boolean laws.
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Let us give the formal definition of a progressively finite relation.

Definition 14. A relation R is called progressively finite [42] iff L(R) = L. In
an omega algebra [14] the complement of the initial part is known as the infinite
iteration.

By using the results of Proposition 13, we have :

R is progressively finite ⇔ L(R) = Ø ⇔ (∀X : X ⊆ RX ⇒ X = Ø). (8)

The next proposition presents some properties of the initial part of a rela-
tion [50]. The properties (a), (b) and (c) can be found also in [42].

Proposition 15. Let Q and R be relations.

(a) L(R) ⊆ R∗RL,

(b)
⋃

i≥0 RiL ⊆ L(R),

(c) R deterministic ⇒ L(R) = R∗RL,

(d) Q ⊆ R ⇒ L(R) ⊆ L(Q),

(e) R / L(R) = L(R) (equivalent to RL(R) = L(R)),

(f) L(R) = L(R+),

(g) R∗/L(R) = R+/L(R) = L(R) (equivalent to R∗L(R) = R+L(R) = L(R)),

(h) Q progressively finite ⇒ Q ∩ R progressively finite,

(i) R ∩ L(R) is progressively finite.

Proof. See [50].

4 A demonic refinement ordering

We now define the refinement ordering we will be using in the sequel. This ordering
induces a complete join semilattice, called a demonic semilattice. The associated
operations are demonic join (t), demonic meet (u) and demonic composition ( � ).
We give the definitions and needed properties of these operations. For more details
on relational demonic semantics and demonic operators, see [6, 7, 8, 9, 21, 22, 50].

Definition 16. We say that a relation Q refines a relation R [33], denoted by
Q v R, iff

Q ∩ RL ⊆ R ∧ RL ⊆ QL.
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Thus, for instance,





1 0 1
1 1 0
1 0 0



 v





1 0 1
0 0 0
1 0 0



 , but

(

1 0
0 0

)

6v

(

1 1
1 0

)

(these Boolean matrices represent relations over sets by the well-known correspon-
dence).

Proposition 17. Let Q and R be relations. We have,

(a) The greatest lower bound (wrt v) of relations Q and R is

Q t R = (Q ∪ R) ∩ QL ∩ RL.

And here is an example of this operation:





1 1 0
1 0 0
0 0 0



 t





0 0 0
0 1 0
0 1 1



 =





0 0 0
1 1 0
0 0 0



 .

This operation corresponds to a demonic non-deterministic choice, since
the possibility of failure (row 3 of the first matrix or row 1 of the second) is
reflected in the result. For the middle row, failure is not possible, and the
set of allowed results is the union of the results of the two operands.

(b) If Q and R satisfy the condition QL ∩ RL = (Q ∩ R)L, their least upper
bound is

Q u R = (Q ∩ R) ∪ QL ∩ R ∪ Q ∩ RL,

otherwise, the least upper bound does not exist see [11, 22].

The existence condition simply means that on the intersection of their domains,
Q and R have to agree for at least one value.

Figure 1 shows the general structure of (A∪R,v), for a given R. It is shown in
[22] that it is a complete join semilattice. Let f be a monotonic function (wrt v)
having at least one fixed point. Because (A∪R,v) is a complete join semilattice,
the following properties of fixed points can be transferred from Equations 1.

(a) νf =
⊔

{X |f(X) = X} =
⊔

{X |X v f(X)},
(b) Y v f(Y ) ⇒ Y v νf.

(9)

In the sequel we will introduce some operation, related to the usual relational
composition, the so-called demonic composition. Its definition is

Definition 18. Q � R := QR ∩ Q / RL.
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Figure 1: General structure of a semilattice ordered by v.

A pair (s, t) belongs to Q � R if and only if it belongs to QR and there is no
possibility of reaching, from s, by Q, an element u that does not belong to the
domain of R. For example, if Q = {(0, 0), (0, 1), (1, 2)} and R = {(0, 0), (2, 3)}, one
finds that Q � R = {(1, 3)}; the pair (0, 0), which belongs to QR, does not belong
to Q � R, since (0, 1) ∈ Q and 1 is not in the domain of R. Note that we assign to
� the same binding power as that of ;.

Proposition 19.

(a) Q deterministic ⇒ Q � R = QR,

(b) P deterministic ⇒ P � (Q u R) = PQ u PR,

(c) R total ⇒ Q � R = QR,

(d) PL ∩ QL = Ø ⇒ P u Q = P ∪ Q,

(e) PL ∩ QL = Ø ⇒ P t Q = Ø,

(f) PL ∩ QL = Ø ⇒ (P ∪ Q) � R = P � R ∪ Q � R,

(g) P v Q ∧ R v S ∧
(P ∩ RL) ∪ (R ∩ SL) ⊆ (Q ∩ PL) ∪ (S ∩ RL) ⇒ P ∪ R v Q ∪ S.

The next proposition demonstrates a number of additional properties. Of par-
ticular interest is item (c), which shows that demonic composition distributes on
the right over intersection when one of the intersected entities is a vector.

Lemma 20. Let Q, R be relations and u, v vectors. We have,

(a) (v ∩ Q) � R = v ∩ Q � R,

(b) R � v = RL ∩ R / v,
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(c) Q � (v ∩ R) = Q � v ∩ Q � R, [26, 43]

(d) Q v R ⇔ v ∩ Q v v ∩ R ∧ v ∩ Q v v ∩ R,

(e) u v v ⇒ P / u ∩ Q v P / v ∩ Q,

(f) R v v ∩ R,

(g) v ∩ Q v R ⇒ Q v R.

5 Demonic Fixed points

During the execution of a program in an input state, by considering a demonic
point of view (if there is a possibility for the program not to terminate normally
then it will not terminate normally), three cases may happen: normal termination,
abnormal termination and infinite loops. In this section, we will give formally the
input-output relation of a program and show that is equal to the greatest fixed
point of the the semantic function of the while loop do P → Q od. We will give a
few facts about fixed points.

The next theorem highlights the importance of progressive finiteness in the
simplification of fixed point-related properties.

Theorem 21. [5] Let f(X) := Q ∪ PX be a function. If P is progressively finite,
the function f has a unique fixed point which means that ν(f) = µ(f) = P ∗Q.

Because Y L is a vector characterizing the domain of relation Y , the following
theorem qualifies the range of domains of fixed points of f . We note that in the
case when the relation P is progressively finite, we find the results of Theorem 21.

Theorem 22. Every fixed point Y of f(X) := Q ∪ PX satifies

P ∗Q ⊆ Y ⊆ P ∗Q ∪ L(P )

and P ∗Q and P ∗Q ∪ L(P ) are respectively the least and the greatest fixed point of
the function f .

For proof see [5]. The next corollary is about the fixed points of the function
g(X) := Q ∩ P / X .

Corollary 23. Every fixed point Y of g(X) := Q ∩ P / X satisfies

P ∗ / Q ∩ L(P ) ⊆ Y ⊆ P ∗ / Q

P ∗ / Q ∩ L(P ) and P ∗ / Q are respectively the least and the greatest fixed points of
the function g.

Proof. It is easy to verify that g is the dual function (Definition 10) of f(X) :=
Q ∪ PX . By Lemma 11, Y is a fixed point of f . By Theorem 22, Y verifies
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P ∗Q ⊆ Y ⊆ P ∗Q ∪ L(P ).

By applying DeMorgan Laws, this is equivalent to

P ∗Q ∩ L(P ) ⊆ Y ⊆ P ∗Q.

Finally, by Definition 4,

P ∗ / Q ∩ L(P ) ⊆ Y ⊆ P ∗ / Q.

We note that, if the relation P is progressively finite, the function g has a unique
fixed point which is P ∗ / Q.

We introduce the next Abbreviations:

Abbreviation 24. Let P and Q be relations. The Abbreviations d, dL and A(P, Q)
are defined as follows (x is a vector) :

d(X) := (Q ∪ PX) ∩ P / XL,

dL(x) := (PL ∪ QL) ∩ P / x,

A(P, Q) := P ∗ / (PL ∪ QL)
S := P ∗Q ∩ A(P, Q) ∩ L(P ).

(Mnemonics : the subscript L refers to the fact that dL is obtained from d by
composition with L; A stands for abnormal, since it represents states from which
abnormal termination is not possible; finally, S stands for semantics, since it rep-
resents states from which no infinite loop is possible.

5.1 Intuition

• The function d can be considered as a generalization of the semantic function
of the while loop do P → Q od.

• In a nondeterministic loop while P do Q, P is iteratively applied to a state s

until Q holds. As, P is nondeterministic s can have many outputs. If among
these outputs there is a state which can lead outside the domain of P or of
Q, so this state is excluded (abnormal termination of the loop). So, A(P, Q)
represents the states from which no abnormal termination is possible.

• We note that S is an intersection of three terms; P ∗Q, A(P, Q) and L(P ) .
By taking in consideration the intuition behind these terms, it is easy to see
that the relation S represents the set of states from which the termination is
guaranteed because all the states from which there is a possibility of nonter-
mination (abortion or infinite loop) are excluded by the terms A(P, Q) and
L(P ).

The following lemma presents the relationship between the fixed points of the
functions d and dL (Abbreviation 24).
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Lemma 25. If Y is a fixed point of d then Y L is a fixed point of dL.

Proof. Suppose that d(Y ) = Y .

dL(Y L)

= 〈 Definition of dL (24). 〉

(PL ∪ QL) ∩ P / Y L

= 〈 L = Y L ∪ Y L. 〉

(QL ∪ P (Y L ∪ Y L) ∩ P / Y L

= 〈 Boolean laws, Theorem 2(i) and Lemma 5(f) . 〉

(Q ∪ PY )L ∩ P / Y L

= 〈 Lemma 5(j) and Theorem 2(n). 〉

((Q ∪ PY ) ∩ P / Y L)L

= 〈 Definition of d (24) and d(Y ) = Y . 〉

Y L

In the sequel we give the bounds of the fixed points of dL and show that, these
bounds are also fixed points of dL.

Theorem 26. If Y is a fixed point of d, then

(a) A(P, Q) ∩ L(P ) ⊆ Y L ⊆ A(P, Q),

(b) A(P, Q) ∩ L(P ) and A(P, Q) are fixed points of dL.

Proof.

1. By Lemma 25, Y L is a fixed point of dL. By taking Q := PL ∪ QL in
Corollary 23, we find,

P ∗ / (PL ∪ QL) ∩ L(P ) ⊆ Y L ⊆ P ∗ / (PL ∪ QL);

by using Abbreviation 24, we find

A(P, Q) ∩ L(P ) ⊆ Y L ⊆ A(P, Q).

2. By Corollary 23, we deduce that A(P, Q)∩L(P ) and A(P, Q) are fixed points
of dL.

The next theorem characterizes the domain of S (24). This domain is the set
of points for which normal termination is guaranteed (no possibility of abnormal
termination or infinite loop).
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Theorem 27. Let S given by the Abbreviation 24. We have

SL = A(P, Q) ∩ L(P ).

Proof. SL

= 〈 Abbreviation 24. 〉

(P ∗Q ∩ A(P, Q) ∩ L(P ))L

= 〈 Theorem 2(n). 〉

P ∗QL ∩ A(P, Q) ∩ L(P )

= 〈 Abbreviation 24 and Lemma 5(f). 〉

(P ∗QL ∪ P ∗PL ∪ QL) ∩ A(P, Q) ∩ L(P )

= 〈 Theorem 2(b,h). 〉

P ∗(QL ∪ PL ∩ QL) ∩ A(P, Q) ∩ L(P )

= 〈 Theorem 2(c). 〉

P ∗(QL ∪ PL) ∩A(P, Q) ∩ L(P )

= 〈 Theorem 2(h). 〉

P ∗QL ∩ A(P, Q) ∩ L(P ) ∪ P ∗PL ∩ A(P, Q) ∩ L(P )

= 〈 Proposition 15(a) and Boolean Law. 〉

A(P, Q) ∩ L(P )

In what follows, we will present some interesting properties satisfied by S and
relations that have the same domain as S.

Lemma 28. Let R be a relation and S given by Abbreviation 24. Then

R � S = RP ∗Q ∩ R / (A(P, Q) ∩ L(P )),

Proof. R � S

= 〈 Definition 18 and Theorem 27. 〉

RS ∩ R / (A(P, Q) ∩ L(P ))

= 〈 Abbreviation 24, Theorem 2(c,h), Lemma 5(f) and Boolean law.
〉

R(P ∗Q ∩ A(P, Q) ∩ L(P ) ∪ A(P, Q) ∩ L(P )) ∩ R / (A(P, Q) ∩ L(P ))

= 〈 Theorem 2(c,h) and Lemma 5(f). 〉

RP ∗Q ∩ R / (A(P, Q) ∩ L(P ))

In the following theorem, we will show that S is a fixed point of d (Abbreviation
24 and demonic composition 18). The function d can be also given by,

d(X) = Q ∩ P / XL ∪ P � X (10)
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Theorem 29. S (Abbreviation 24) is a fixed point of d.

Proof. d(S)

= 〈 Abbreviation 24 and Theorem 27. 〉

(Q ∪ PS) ∩ (P / (A(P, Q) ∩ L(P )))

= 〈 Theorem 2(h). 〉

Q ∩ (P / (A(P, Q) ∩ L(P ))) ∪ PS ∩ (P / (A(P, Q) ∩ L(P )))

= 〈 Q ⊆ QL ∪ PL and Theorem 27. 〉

Q ∩ (PL ∪ QL) ∩ (P / (A(P, Q) ∩ L(P ))) ∪ PS ∩ P / SL

= 〈 Definition 18, Abbreviation 24 and Theorem 26(b). 〉

Q ∩ (A(P, Q) ∩ L(P )) ∪ P � S

= 〈 Lemma 28. 〉

Q ∩ A(P, Q) ∩ L(P ) ∪ PP ∗Q ∩ P / A(P, Q) ∩ L(P )

= 〈 PP ∗Q ⊆ PL ∪ QL, Theorem 26(b) and Boolean law. 〉

(Q ∪ PP ∗Q) ∩ (A(P, Q) ∩ L(P ))

= 〈 Theorem 2(i) and Equation 3. 〉

P ∗Q ∩ (A(P, Q) ∩ L(P ))

= 〈 Abbreviation 24. 〉

S

The following theorem is a generalization to a nondeterministic context of the
while statement verification rule of Mills [34, 35]. It shows that the least fixed point
W of d (Abbreviation 24) is uniquely characterized by conditions (a) and (b), that
is, by the fact that W is a fixed point of d and by the fact that no infinite loop
is possible when the execution is started in a state that belongs to the domain of
W . Half of this theorem (the ⇐ direction) is also proved by Sekerinski (the main
iteration theorem [43]) in a predicative programming setup.

Theorem 30. W is the least fixed point wrt ⊆ of d (Abbreviation 24) (W = µ⊆(d))
iff

(a) W = d(W ),
(b) WL ⊆ L(P ).

Proof. (⇒) : As W is the least fixed point of d then, (a) is evident. Since W =
µ(d) ⊆ S, then WL = µ(d)L ⊆ SL, by using Theorem 27, we have WL ⊆
L(P ).

(⇐) : By Hypothesis (a), W is a fixed point of d. Then, by Theorem 26, A(P, Q)∩
L(P ) ⊆ WL ⊆ A(P, Q). But, by using Hypothesis (b), WL ⊆ L(P ), then
WL = A(P, Q) ∩ L(P ).

W
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= 〈 Hypothesis 〉

d(W )

= 〈 Abbreviation24. 〉

(Q ∪ PW ) ∩ P / WL

= 〈 (Q ∪ PW ) ⊆ (PL ∪ QL) and WL = A(P, Q) ∩ L(P ) 〉

(Q ∪ PW ) ∩ (PL ∪ QL) ∩ P / (A(P, Q) ∩ L(P, Q))

= 〈 Lemma 28(b) 〉

(Q ∪ PW ) ∩ A(P, Q) ∩ L(P )

= 〈 Theorem 2(n)and Boolean law. 〉

Q ∩ A(P, Q) ∩ L(P ) ∪ (P ∩ A(P, Q) ∩ L(P ))W

So W is a fixed point of the function g(X) := Q ∩ A(P, Q) ∩ L(P ) ∪ (P ∩
A(P, Q) ∩ L(P ))X . Since, by Proposition 15(i,h), P ∩ A(P, Q) ∩ L(P ) is
progressively finite, invoking Theorem 21 shows that g has a unique fixed
point which is the least fixed point µ(d). We conclude that W = µ(d).

The next theorem shows that S is the least fixed point of d wrt ⊆ (S = µ⊆(d)).

Theorem 31. S (Abbreviation24) is the least fixed point of d wrt ⊆ (S = µ⊆(d)).

Proof. It suffices to prove that S satisfies the conditions of the Theorem 30. By
Theorem 29, S is a fixed point of d. So, the condition (a) is satisfied. By Theorem
27, SL = A(P, Q) ∩ L(P ), so that condition (b) holds too.

In the sequel, we show that S is the greatest fixed point with respect to v of
d (Equation 10). In other words, we will show that the least fixed point of d wrt
⊆ is equal to the greatest fixed point of the same function d wrt v. But before we
have to prove that d is monotonic wrt v.

Lemma 32. The function d (Abbreviation 24) is monotonic wrt v.

Proof. Let X and Y be relations such that X v Y .
As � is monotonic, we have P � X v P � Y and XL v Y L. By Proposition

20(e), we have Q ∩ P / XL v Q ∩ P / Y L.
By taking in Proposition 19(g) P := P � X∧Q := P � Y ∧R := Q∩P /XL∧S :=

R := Q ∩ P / Y L, it is easy to see that the conditions are satisfied, whence we
conclude that d(X) v d(Y ). Thus, d is monotonic wrt v

As the function d is monotonic (wrt v)(Lemma 32), by Theorem 7 and Equation
9(a) the greatest fixed point S of d exists and is given by

S =
⊔

{X |X = Q ∩ P / XL ∪ P � X}; (11)

(Since S is a fixed point of d (Theorem 29) and thus
⊔

{X |X = Q ∩ P / XL ∪
P � X} is well defined, by completness of the

⊔

-semilattice; for more information
about the properties of the

⊔

-semilattice see [22]).
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In the next theorem, we show that S is the greatest fixed point with respect to
v of d (Equation 10).

Theorem 33. S is the greatest fixed point with respect to v of d (S = νv(d)).

Proof. Let W = νv(d). Let’s show that W = µ⊆(d). Then S v W , by Definition
16 and Theorem 26, WL ⊆ SL ⊆ L(P ). Also, we have W = d(W ). By Theorem
30, W = µ⊆(d). Hence W = S.

The following example is an application of our results. It is rather contrived,
but it is simple and fully illustrate the various cases that may happen.

6 Application

In [7, 8], Berghammer and Schmidt propose abstract relation algebra as a practical
means for the specification of data types and programs. Often, in these specifica-
tions, a relation is characterized as a fixed point of some function. Can demonic
operators be used in the definition of such a function? Let us now show with a
simple example that the concepts presented in this paper give useful insights for
answering this question.

In [7, 8], it is shown that the natural numbers can be characterized by the
relations z and S (zero and successor) and the laws

(a) Ø 6= z = zL ∧ zz̆ ⊆ I (z is a point),

(b) SS̆ = I ∧ S̆S ⊆ I (S is a one to one function.),
(c) Sz = Ø (z has no predecessor),

(d) L =
⋂

{x|z ∪ S̆x = x} (generation principle).

(12)

By Proposition 19(a,c) these equations imply,

(a) Ø 6= z = z � L ∧ z � z̆ ⊆ I (z is a demonic point),

(b) S � S̆ = I ∧ S̆ � S ⊆ I (S is a one to one function.),
(c) S � z = Ø (z has no demonic predecessor),

(d) L =
⋂

{x|z ∪ S̆ � x = x} (demonic generation principle).

(13)

By Proposition 19(a), Theorem 22 and the last axiom, the function

g(X) = z ∪ S̆ � X (14)

obviously has a unique solution for X , namely, X = L and this solution is expressed
by

L = S̆∗z (15)

However, it is easy to show that z t S̆ � X ⊆ X , obtained by replacing the join in
Equation 14 by its demonic counterpart, has infinitely many solutions. Indeed, from
S � z = Ø, Proposition 19(c) and the Schröder rule, it follows that z ∩ S̆ � L = Ø,
so by Proposition 19(e), we have z t S̆ � X = Ø.
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Hence, any relation R is a solution to z t S̆ � X ⊆ X . Looking at Figure 1, one
immediately sees why it is impossible to reach L by joining anything to z (which
is a point and hence is an immediate v-predecessor of Ø), since this can only lead
to z or to Ø.

Let us now go ‘fully demonic’ and ask what is a solution to z t S̆ � X v X1.
By the discussion above, this is equivalent to Ø v X , which has a unique solution,
X = Ø. This raises the question whether it is possible to find some fully demonic
function similar to (14), whose fixed point is X = L. Because L is in the middle
of the demonic semilattice (Figure 1), there are in fact two possibilities: either
approach L from above or from below.

For the approach from above, consider the function

h(X) := z u S̆ � X. (16)

In other words, we have to find the post-fixed point of this function (wrt v). By
Proposition 19(d), we have, z u S̆X = z ∪ S̆X. This means that 16 reduces to

h(X) := z ∪ S̆X. (17)

By Equation 15 and Theorem 33, L is the greatest fixed point of k (wrt v); so
L =

⊔

{X |X v z u S̆ � X}.
Now consider n≥0S̆

n
� z, where S̆n is an n-fold demonic composition defined

by S̆0 = I and S̆n+1 = S̆ � S̆n. By axiom 12(b), S̆ is deterministic, so that,
by 19(a) and associativity of demonic composition, S̆n

� z = S̆nz. In the sequel,
we will prove that

n≥0S̆
n

� z is defined and is equal to L.

First,

n≥0S̆
n

� z defined

⇔
n≥0S̆

nz defined

⇔ 〈 Proposition 17(a). 〉

L ⊆ (
⋂

n≥0 S̆nz ∪ S̆nzL)L

⇔ 〈 Axiom 12(a), zL = z and thus S̆nz ∪ S̆nzL = L. 〉

true.

Second,

n≥0S̆
n

� z

= n≥0S̆
nz

= 〈 Proposition 17(b). 〉

(
⋂

n≥0 S̆n ∪ S̆nzL) ∩ (
⋃

n≥0 S̆nzL)

1This inequation contains the conversion operator, which is not a demonic operator. However,

it could be suppressed by using relation P := S̆ as a basic constant in specification 12, rather

than using S.
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= 〈 Axiom 12(a), zL = z and thus S̆nz ∪ S̆nzL = L. 〉
⋃

n≥0 S̆nz

= 〈 15. 〉

L.

�

So,
n≥0S̆

n
� z =

⊔

{X |X v z u S̆ � X}.

It is easy to show that for any n ≥ 0, S̆nz is a point (it is the n-th successor
of zero) and that m 6= n ⇒ S̆mz 6= S̆nz. Hence, in (RL,v), {S̆nz|n ≥ 0} (i.e.
{S̆n

� z|n ≥ 0}) is the set of immediate predecessors of Ø; looking at Figure 1
shows how the universal relation L arises as the greatest lower bound n≥0S̆

n
� z

of this set of points.
Note that, whereas there is a unique solution to 14, there are infinitely many

solutions to 16 (equivalently, to 17), for example
⊔

n≥h
Sn (=

⋃

n≥k
Sn), for any

k.
For the upward approach, consider

k(X) := z̆ t X � S. (18)

We will find the pre-fixed point of k (wrt v) Here again there are infinitely many

solutions to this case; in particular, any vector v, including Ø and L, is a solution

to 18. Because (R,v) is only a join semilattice, it is not at all obvious that the

least fixed point of k(X) := z̆ t X � S exists. It does, however, since the following

derivation shows that
⊔

n≥0 z̆ � Sn (=
⊔

n≥0 kn(z̆), where k0(z̆) = z̆) is a fixed

point of k and hence is obviously the least solution of 18:

z̆ t (
⊔

n≥0 z̆ � Sn) � S

= 〈 Associativity of � , and S � I = SI = S. 〉

z̆ � I t (
⊔

n≥0 z̆ � Sn+1)

= 〈 S0 = I . 〉

z̆ � S0 t (
⊔

n≥1 z̆ � Sn)

=
⊔

n≥0 z̆ � Sn.

Because z̆ and S are functions, Proposition 19(a) implies that z̆ � Sn = z̆Sn, for
any n ≥ 0. But z̆Sn is also a function (it is the inverse of the point S̆nz) and hence
is total, from which, by Proposition 17(a), law 2(l) and equation 15,

⊔

n≥0

z̆ � Sn =
⊔

n≥0

z̆Sn =
⋃

n≥0

z̆Sn = (
⋃

n≥0

S̆nz)˘ = L̆ = L.

This means that L is the least upper bound of the set of mappings {z̆ � Sn|n ≥ 0}.
Again, a look at Figure 1 gives some intuition to understand this result, after
recalling that mappings are minimal elements in (RL,v) (though not all mappings
have the form z̆ � Sn).

Thus, building L from below using the set of mappings {z̆ � Sn|n ≥ 0} is sym-
metric to building it from above using the set of points {S̆n

� z|n ≥ 0}. �
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