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ε-Sparse Representations : Generalized Sparse

Approximation and the Equivalent Family of SVM

Tasks

Zoltán Szabó∗ and András Lőrincz†

Abstract

Relation between a family of generalized Support Vector Machine (SVM)
problems and the novel ε-sparse representation is provided. In defining
ε-sparse representations, we use a natural generalization of the classical ε-
insensitive cost function for vectors. The insensitive parameter of the SVM
problem is transformed into component-wise insensitivity and thus overall
sparsification is replaced by component-wise sparsification. The connection
between these two problems is built through the generalized Moore-Penrose
inverse of the Gram matrix associated to the kernel.

1 Introduction

Girosi [3] has shown the equivalence of the classic Support Vector Machine (SVM)
regression and the sparse approximation scheme [6], similar to the Basis Pursuit De-
Noising algorithm [2] under the assumption of noiseless observation. The novelty of
the approach is that the approximation is introduced directly in the Reproducing
Kernel Hilbert Space (RKHS) and thus it avoids the empirical estimation of the
estimation error. Equivalence is understood in the sense that the two optimization
problems give rise to the same Quadratic Programming (QP) task.

Equivalence can be shown similarly to [3], but under the condition of noisy
observation for linear and quadratic ε-insensitive SVM approximation costs [5].
The noise process was included into an extended RKHS. In both cases, however,
the ε of the approximation cost is transformed onto the scalar multiplier of the
parameter vector, which determines the linear combination in the approximation.
We ask (i) if it is possible to embed the insensitivity parameter into a constraint
on the searched representation, i.e, directly into the cost function, and (ii) if there
is an extension of the SVM problems characterized by pair (C, ε) (where C is the
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multiplier of the ε-insensitive cost term of the cost function [12, 3]) to more general
problems favoring sparse coding.

The paper is constructed as follows: Section 2 is about the notations and defi-
nitions used throughout this work. In Section 3 we sketch earlier correspondences
between sparse coding and SVM. Section 4 defines the two generalized problem
classes, ε-sparse problem class and the corresponding SVM problem class. These
classes will be transformed onto each other in this section. Conclusions are drawn
in Section 5.

2 Notations and Basic Concepts

For the sake of clarity, our notations and the basic concepts are provided.

2.1 Letter Types, Number Sets

Numbers (b), vectors1 (b), and matrices (B) are distinguished from each other by
letter types. Natural number sets are represented by N, that is, N := {0, 1, 2, . . .},
whereas R stands for real numbers. Subsets restricted for positive values are indi-
cated by + sign, e.g., N

+ and R
+.

2.2 Vectors and Matrices

Relations concerning vectors (e.g.,: ≥) are to be meant for each coordinate sep-
arately. The ith component of vector v is denoted by vi, the ijth component of
matrix V by Vi,j . ε-insensitive cost of vectors is defined as

‖v‖r :=
∑

i

|vi|ri
,

where |v|r := {0, if |v| ≤ r; |v| − r, otherwise} is the usual ‘ε-insensitive’ cost func-
tion2, which is shown in Fig. 1.

Operations vT , v ◦ z, and V ⊗ Z represent transposition, multiplication by
elements and the Kronecker product, respectively. Symbol 1 has special meaning,
it represents a vector having only 1s, i.e., 1 := [1, . . . , 1]T .

The Moore-Penrose generalized inverse of matrix G ∈ R
n×m is a unique matrix

G− ∈ R
m×n, which has the following features:

GG−,G−G : symmetric matrices (1)

GG−G = G (2)

G−GG− = G−. (3)

1 Vector means column vector.
2 Notice that r ≡ 0 gives rise to the L1 norm for vectors.
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Figure 1: Vapnik’s |v|ε ε-insensitive cost function. One may think of this cost
function that it represents a resolution not better than ε and errors smaller than
ε are not detected and give rise to no cost. Errors larger than ε are, however,
detected and – for mathematical tractability – make linear contributions to the
cost function.

2.3 RKHS, Feature Mapping, Gram Matrix

Here, we review some basic properties of Reproducing Kernel Hilbert Spaces
(RKHS), necessary for our considerations. For further details, the interested reader
is referred to the literature [12, 11, 1, 4].

An RKHS is denoted by H. We shall select functions from this space to approxi-
mate sample points {xi, yi}i=1..l, where xi ∈ X form the input space and yi ∈ R (see,
e.g, [7]). In space H, the scalar product is computed by means of kernel k. Kernel
k is also used to define the basic functions of the RKHS: φ(x) := k(·,x) : X → H.
Such functions are called feature mappings and function φ(x) is interpreted as the
representation of x in space H. Now, the scalar product of feature mappings is
defined as

〈φ(s), φ(t)〉
H

= 〈k(·, s), k(·, t)〉
H

= k(s, t) (s, t ∈ X). (4)

It can be shown that the kernel satisfies the following reproducing property

〈f(·), k(·, t)〉
H

= f(t) (t ∈ X, ∀f ∈ H). (5)

This means that k(·, t) can be seen as the evaluation functional at position t of space
H. The Gram matrix of k defined by {x1, . . . ,xl} l-tuples assumes the following
form

G := [Gi,j ]i,j=1...l = [k(xi,xj)]i,j=1...l. (6)

2.4 SVM

Function approximation based on sparse data is often hard and is typically ill-posed
[4]: existence, uniqueness and stability conditions may not be met in these cases.
Regularization theory [10] can be of help under these conditions. To solve such
problems, Vapnik, in his pioneering works, formulated the Support Vector Machine
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(SVM) problem family [12, 11]. In the SVM problem, the approximating functions
are searched in the form

fw,b(x) = 〈w, φ(x)〉
H

+ b, (7)

subject to ε-insensitive cost function

V (u, z) = |u− z|ε , (8)

and with regularizer [10] of the form ‖w‖
2

H
with norm ‖·‖

H
defined by kernel k of

RKHS H = H(k). Then the SVM task is as follows:

min
w,b

H [w, b] := C

l
∑

i=1

|yi − fw,b(xi)|ε +
1

2
‖w‖

2

H
(C > 0). (9)

Optimization of Eq. (9) can be executed, e.g., by solving a Quadratic Programming
(QP) task formulated in the dual space

min
d∗,d

[

1

2
(d∗ − d)

T
G (d∗ − d)− (d∗ − d)

T
y + (d∗ + d)

T
ε1

]

(10)

provided that







C1 ≥ d∗,d ≥ 0

(d∗ − d)
T

1 = 0







.

For the derivation, see, e.g., [9]. Here, matrix G is the Gram matrix introduced
before.

3 Previous Results

3.1 Noiseless Case

Starting from the work [2] Girosi has formulated a modified sparse approximation
task in RKHS [3]:

min
a





1

2

∥

∥

∥

∥

∥

f(·)−

l
∑

i=1

aik(·,xi)

∥

∥

∥

∥

∥

2

H

+ ε ‖a‖
1



 . (11)

The first term is about quadratic approximation but instead of R it is formulated
through the norm ‖·‖

2

H
on Hilbert space H. The second term is the sparse con-

straint, or sparsifying cost term. Girosi has shown that Eq. (11) is equivalent to
the SVM task of Eq. (9) provided that

1. objective f is in H and that 〈f, 1〉
H

= 0,3

3 This restriction gives rise to constraint
P

i

ai = 0.
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2. data are noise-free, that is f(xi) = yi (i = 1, . . . , l),

3. C →∞.

Equivalence is to be understood in the sense that by breaking the searched vector
a into positive and negative parts, such as

a = a+ − a−, where a+, a− ≥ 0, and a+ ◦ a− = 0 (12)

then the task for pair (a+, a−) is identical to the optimal solution (d∗,d) for Eq. (10)
in the dual QP space.

3.2 The Noisy Case

The solution was extended to the noise case [5]: the connection was formulated for
the regression problem and for linear and quadratic ε-insensitive SVM approxima-
tion. The equivalence is based on a larger RKHS space, which encapsulates the
noise process, too. For detailed description and for other similar equivalences, the
interested reader is referred to the original work [5].

In the cited cases [3, 5], the insensitive parameter (ε) was transformed into the
multiplier of the sparsifying cost term (compare, e.g., Eq. (9) and Eq. (11)). Our
question is if the constant multiplier of the ε-insensitivity loss can be transformed
directly into the different components of the loss function by generalizing uniform
sparsification to a component-wise sparsification problem.

For notational simplicity, instead of approximating in semi-parametric form
(e.g., f + b, where f ∈ H), we shall deal with the so called non-parametric scheme
[8] (f ∈ H). This approach is well grounded by the representer theorem [8].

4 Generalized Problems

In this section we shall introduce the generalizations of the previous SVM and
sparse tasks and we shall show that they are equivalent. Given this equivalence,
the two problem family will be referred jointly as ε-sparse representations.

4.1 The (c, e)-SVM Task

Below, we introduce an SVM task family, which can be connected to regularization
theory and satisfies the conditions of the representer theorem [8]. The usual SVM
task – Eq. (9) – is modified as follows:

1. We shall approximate in the form fw(x) = 〈w, φ(x)〉
H

. The representer
theorem warrants that it is satisfactory to approximate in this special form
from H.

2. We shall use approximation errors that may differ for each sample point.

3. We shall use weights that may differ for each sample point.
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Introducing vector e for the ε-insensitive costs and c for the weights, respectively,
the generalized problem has the following form:

min
w

[

l
∑

i=1

ci |yi − fw(xi)|ei
+

1

2
‖w‖2

H

]

(c > 0, e ≥ 0). (13)

This task shall be called the (c, e)-SVM task. The original task of Eq. (9) corre-
sponds to the particular choice of ((C, ε)⊗ 1) and b = 0. Alike to the original SVM
task, the new (c, e)-SVM task also has its quadratic equivalent in the dual space,
which is as follows

min
d∗,d

[

1

2
(d∗ − d)

T
G (d∗ − d)− (d∗ − d)

T
y + (d∗ + d)

T
e

]

, (14)

provided that { c ≥ d∗,d ≥ 0 },

where G denotes the Gram matrix of kernel k that belongs to points xi.

4.2 The (p, s)-Sparse Task

Let us consider the optimization problem

min
a

F [a] :=
1

2

∥

∥

∥

∥

∥

f(·)−

l
∑

i=1

aik(·,xi)

∥

∥

∥

∥

∥

2

H

+

l
∑

i=1

pi |ai|si
(p > 0, s ≥ 0) (15)

on sample points {xi, yi}i=1..l that intends to approximate objective function f ∈
H(k). This problem shall be referred to as p-weighted and s-sparse task, or (p, s)-
sparse task, for short. The particular choice of ((ε, 0)⊗ 1) recovers the sparse
representation form of Eq. (11).

4.3 Correspondence Between the Tasks

The tasks defined by Eq. (13) and Eq. (15), respectively will be connected to each
other by means of the following theorem:

Theorem 1. Let X denote and arbitrary non-empty set, k be a kernel on X,
{xi, yi}i=1..l a sample set of l elements, where xi ∈ X, yi ∈ R. Assuming that the
values of RKHS objective f ∈ H = H(k) can be observed in points xi (f(xi) = yi),
then under the approximation

fw(x) = 〈w, φ(x)〉
H

the dual problems of the

min
w

[

l
∑

i=1

ci |yi − fw(xi)|ei
+

1

2
‖w‖

2

H

]

(c > 0, e ≥ 0)
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(c, e)-SVM task and that of

min
a





1

2

∥

∥

∥

∥

∥

f(·)−
l

∑

i=1

aik(·,xi)

∥

∥

∥

∥

∥

2

H

+
l

∑

i=1

pi |ai|si



 (p > 0, s ≥ 0)

the (p, s)-sparse task can be transformed onto each other through the generalized
inverse G− of Gram matrix

G := [Gi,j ]i,j=1...l = [k(xi,xj)]i,j=1...l,

or, shortly,

Dual [(c, e)–SVM]
G−

←→ Dual [(p, s)–sparse]

under correspondence

(d∗,d,G,y)↔ (d+,d−,G−GG−,G−y) = (d+,d−,G−,G−y).

Proof. We shall modify Eq. (15) under the assumption of f(xi) = yi (i = 1, . . . , l).

Given that norm ‖·‖
2

H
is induced by a scalar product on H, and utilizing the bilinear

property of scalar products, we have

F [a] =
1

2
‖f‖

2

H
−

∑

i

ai 〈f(·), k(·,xi)〉H + (16)

+
1

2

∑

i,j

aiaj 〈k(·,xi), k(·,xj)〉H +
∑

i

pi |ai|si
.

The reproducing property of the kernel can be applied to show

〈f(·), k(·,x)〉
H

= f(x) = yi, (17)

〈k(·,xi), k(·,xj)〉H = k(xi,xj) = Gi,j , (18)

where the Gram matrix notation was used. Now, neglecting the first term of F [a],
which is independent of a, one has

1

2
aT Ga− yT a +

∑

i

pi |ai|si
→ min

a
. (19)

Then the s-insensitive terms can be rewritten by introducing slack variables [9] and
the following form can be derived

min
a,a+,a−

[

1

2
aT Ga− yT a + pT

(

s+ + s−
)

]

, (20)

provided that



















a ≤ s + s+

−a ≤ s + s−

0 ≤ s+, s−



















,
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with its dual form given as

max
d+,d−,q+,q−≥0

L(d+,d−,q+,q−) = (21)

=
1

2
aT Ga− yT a+pT

(

s+ + s−
)

− (q+)T s+ − (q−)T s− −

−(d+)T (s + s+ − a)− (d−)T (s + s+ + a).

According to the condition on the saddle-point, the derivatives of Langrangian L

taken by the prime variables disappear at optimum, that is

0 =
dL

da
= aT G− yT + (d+ − d−)T , (22)

0 =
dL

ds+
= pT − (d+)T − (q+)T , (23)

0 =
dL

ds−
= pT − (d−)T − (q−)T . (24)

Reordering and transposing Eq. (22), we have

aT G =
(

y − (d+ − d−)
)T

, (25)

Ga =
(

y − (d+ − d−)
)

, (26)

where the symmetric property of Gram matrix G was exploited. One can replace
matrix G of the Lagrangian by GG−G according to Eq. (2). Also, considering
that

aT Ga = aT (GG−G)a = (aT G)G−(Ga) (27)

one can insert the expressions for aT G and Ga from Eqs. (25) and (26), respectively.
Equations (23) and (24) can also be applied for Lagrangian L. Variables q+,q−

disappear from Lagrangian L, but the non-negativity conditions Eqs. (23) and (24)
give rise to constraints p ≥ d+ and p ≥ d− for variables d+ and d−. We can also
change the minimization of Lagrangian L to maximization by changing the sign.

Taken together, we have the QP task

min
p≥d+,d−≥0

[

1

2
(y − (d+ − d−))T G−(y − (d+ − d−)) + (d+ + d−)T s

]

. (28)

The terms of the quadratic expression can be expanded and reordered. Upon
dropping terms not containing variables d+ or d−, and making use of the symmetric
property of G− inherited from G, one has

min
p≥d+,d−≥0

[

1

2
(d+ − d−)T G−(d+ − d−)− (d+ − d−)T G−y + (d+ + d−)T s

]

.

(29)
Now, we are in the position to compare this optimization task with Eq. (14) by
making use of the generalized inverse G− of Gram matrix G. The result is that
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Dual[(c, e)–SVM] ↔ Dual[(p, s)–sparse] .

In short, we proved that the two tasks transform onto each other through G− in
the following way

(d∗,d,G,y)↔ (d+,d−,G−GG−,G−y) = (d+,d−,G−,G−y), (30)

where in the last step, property G−GG− = G− of the generalized inverse (Eq. (3))
was exploited.

5 Conclusions

We have extended the concept of sparse representation in RKHSs to a larger class
of tasks, where individual components can have individual sparsifying terms. We
showed that alike to the original sparse formulation, the generalized ε-sparse ap-
proach also has an equivalent SVM task family. This novel formulation may gain
applications in signal processing, clustering and categorization problems.
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