
Acta Cybernetica 17 (2006) 617–632.

Word Order and Discontinuities in Dependency

Grammar

C. Bartha∗, T. Spiegelhauer†, R. Dormeyer†, and I. Fischer†

Abstract

Natural languages are always difficult to parse. Two phenomena that

constantly pose problems for different formalisms are word order—what part

of a sentence has to be placed where—and discontinuities—words that belong

together but are not placed into the same phrase. Dependency grammar, a

linguistic formalism based on binary relations between words, is very adequate

for handling both problems. A parser for dependency grammar together with

its grammar writing formalism is described in this paper. Word order and

discontinuities in Hungarian are handled based on this formalism.

1 Introduction

When taking a look in the standard literature [9] on computational linguistics, long
introductions in phrase structure grammars invented by Chomsky can be found.
They have been in the focus for nearly fifty years now. Phrase structure grammars
turned out to be a helpful method when modeling English; quite a lot of parsers can
be found together with extensive grammars. But it also turned out that they are
not useful when it comes to languages with free or semi-free word order. Discontinu-
ous constituents and long distance dependencies pose difficulties, too. Several work
arounds and extensions have been invented to overcome these problems. Some of
these extensions and new developments, e.g. Head-Driven Phrase Structure Gram-
mar [13], are similar to dependency grammar. Dependency grammar, invented by
Lucien Tesnière [14], [15], is popular in Europe and Japan. In this paper, a parser
for dependency grammar [4] is described. Currently grammars are written for sev-
eral different languages. Grammar fragments for English, German and Latin have
been written [4]. These languages differ in their word order. English has a fixed
word order, e.g. the subject has to come first in a declarative sentence. In German,
the word order is semi-free. For noun phrases, it is fixed; on the sentence level, the
verb has to be in the second position in a declarative sentence. Other elements can

∗Siemens PSE Hungary, Szeged, CSS IBS5, E-mail: csongor.barta@siemens.com
†Lehrstuhl für Informatik 2, Friedrich–Alexander Universität Erlangen–Nürnberg, Martensstr.

3., 91058 Erlangen, Germany, E-mail: tilly79@gmx.de, ricarda@dormeyer.de,

Ingrid.Fischer@informatik.uni-erlangen.de

617

618 C. Bartha, T. Spiegelhauer, R. Dormeyer, and I. Fischer

keresi

�
�

H
H

János Marit

Figure 1: A dependency tree for János keresi Marit.

take the other positions, no restrictions are given here. In Latin there are even less
word order restrictions. Words can be placed nearly everywhere.

But not only word order is of special interest. Another problem are words
that belong together but are not placed next to each other in the sentence. This
phenomenon can be found in all languages analyzed. An English example is fronting
as in Ann John told me he had seen. In German and Hungarian verb prefixes can
be separated from the verb and move to another position.

At the moment especially non-indo-European languages are researched. Cur-
rently grammars for Japanese [17] and Hungarian are developed. For Japanese, a
lot of different dependency grammar implementations exist. This is not the case
for Hungarian. Only one international publication could be found containing a
dependency grammar for Hungarian [18]. The grammar described in [18] differs
a lot from our approach. In [18] first all prefixes and suffixes are separated from
word stems. The resulting string is the input for the dependency parser. In our
approach this separation does not take place, a sentence is analyzed in its original
writing.

In the sequel, our dependency parser and the Hungarian grammar developed
up to now are described. In Section 2 the basics of dependency grammar are
introduced. After this linguistic introduction, our dependency parser is specified
in Section 3. Special features of our Hungarian grammar are given in Section 4. In
Section 5 we describe the underlying algorithm. We end with a conclusion.

2 A Short Overview on Dependency Grammar

In dependency grammar binary relations between the words of a sentence are used
as the basic construct. The most important part of a sentence is the verb, it opens
several slots for other parts of the sentence. Taking the verb keresi (to seek)1 it
opens two slots, one for a noun in the nominative case, which is the subject, and
one for a noun in the accusative case, the object. In the sentence János keresi Marit
(János seeks Mari) these slots are occupied by János, the subject, and Marit, the
object. Normally the relations are visualized with the help of trees. A tree for the
running example is given in Figure 1.Please note, that every combination of the
three words results in the same dependency tree: János Marit keresi, Marit keresi
János,

1All Hungarian examples used throughout this paper including the English translations are
cited from [11]. This example is taken from page 2, example (1).

Word Order and Discontinuities in Dependency Grammar 619

hiszem

azt

hogy

elfogadja

�
��

H
HH

javaslatot

a

János

Figure 2: A dependency tree for János azt hiszem hogy elfogadja a javaslatot.
(János, I think, that (he) accepts the proposal.)

The subject and object can also open new slots. A simple noun opens a slot
for e.g. one determiner and any number including zero of adjectives. This means
that several different kinds of slots are necessary. First slots are used that must
be filled, with one element. If the element is missing, the corresponding sentence
is grammatically not correct. In Figure 1 exactly one object is needed. In English
each verb needs exactly one subject. Then there are slots that are optional, they
can be filled but do not have to be filled. Time and place are optional for most
verbs. They can be added, but they can also be left out. Another example for this
is the subject in Hungarian. Finally there are slots that can be filled several times,
e.g. a noun can take several adjectives. A word opening a slot is also called the
head, the word filling the slot will be called the dependent in the rest of the paper.

Long distance dependencies or discontinuous constituents are another phe-
nomenon that pose constant problems to formal grammars and the corresponding
parsers. In Hungarian long distance dependencies have been described by different
researchers with the earliest publication stemming from the beginning of the last
century [11]. In dependency grammar a relation between a head and a dependent
is considered discontinuous if not all words between this head and this dependent
depend on one of the two. A Hungarian example with discontinuous constituents
is given in the following table: 2

János azt hiszem hogy elfogadja a javaslatot
János that-acc I think that accept the proposal
János, I think that (he) accepts the proposal

János depends on the verb elfogadja (accepts). Between the head elfogadja and
the dependent János, the words azt hiszem hogy are found. hiszem (I think) as the
main verb is the head of the sentence. All other words including elfogadja (accepts)
and János depend somehow on hiszem. elfogadja depends of the head hogy (that)
wich depends directly from azt (that-acc). azt (that-acc) finally depends on hiszem

2This example including the English translation is taken from [11], page 258, example 77.

620 C. Bartha, T. Spiegelhauer, R. Dormeyer, and I. Fischer

(I think). Also azt (that-acc) and hogy (that) form a discontinuity as hiszem (I
think) in between does not depend on either of the two but azt (that-acc) depends
on hiszem.

The corresponding tree is given in Figure 2. The linear structure of the words in
this sentence cannot be reconstructed from Figure 2. In this tree only the syntactic
structure is given.

In phrase structure grammar linear and syntactic structure are combined in one
tree leading to crossing edges in the phrase structure tree for this sentence. Trees
with crossing edges cannot be constructed with context-free grammars.

3 A Parser for Dependency Grammar

Our parser [16] is based on three concepts. The parsing algorithm itself is similar to
the well–known Cocke–Kasami–Younger algorithm for context-free phrase structure
grammars [9]. The first dependency parser based on this idea was presented in [12].
Words are described by feature structures [9] enriched by a few symbols necessary
for dependency grammars. Feature structures are combined with the help of graph
unification. Our handling of discontinuous constituents and word order restrictions
differs from [12].

3.1 Word Order

In Tesnière’s original approach, word order was unimportant for syntactic descrip-
tion. Any order was allowed. This is not useful for parsers, too many wrong
sentences would be accepted. The order between head and dependent must be
considered as well as the order between the different dependents of one head. Also
the number of elements following or preceding a word can be important. E.g. in
German the verb in a declarative sentence must fill the second position. In our
approach each word has a position list where positions of the word itself and other
words are described. This includes as a minimum a position for the word itself.
Then each dependent of a word can have a fixed position in this position list. Free
positions within the position list are also possible, a free position can take every de-
pendent that is not marked as fixed. The position list makes parsing easier: When
a fixed position is following according to this list, the parser has to check for just
one element. If the next element is free, only free elements have to be checked.

3.2 Discontinuous Constituents

Linguistically, a discontinuous dependency can be regarded as a ternary relation,
i.e. a relation between a dependent, its syntactic head and its linear head [1]. The
syntactic head is the word containing a slot for the discontinuous dependent. But
because the syntactic head’s constituent is discontinuous, the dependent is posi-
tioned in the position list of the linear head. In the example sentence, the syntactic
head for János) is elfogadja (accept) and its linear head is hiszem (I think). The

Word Order and Discontinuities in Dependency Grammar 621

Word "Angéla" <"Name"> [

lexeme: Angéla;

gender: fem;

case: nom;]

Word "olvas" <"VerbPres"> [

lexeme: olvas;

mood: declarative;

number: sing;

person: 3;]

Template "Name" [

category: noun;

special: propername;

number: sing;

person: 3;]

Template "VerbPres" [

category: verb;

form: finite;

tense: present;

sentence: declarative;

subj: oslot [

category: noun;

cont: +;

case: nom;];

order: (%1 %2 i %3);]

%1 = slot [cont: +;];

%2 = mslot [cont: +;];

%3 = mslot [cont: +;];

Figure 3: Simple grammar with templates for Angéla olvas (Angéla reads)

dependent fills a slot of its syntactic head, but occupies a position of the linear
head’s position list. Because of this, the processing of discontinuous dependencies
has to work with linear and syntactic head. The parser must allow for all possible
orders between syntactic head, linear head and dependent in a sentence.

3.3 Other Approaches

Over the years several other parsers for dependency grammar have been proposed.
In [1] linear order and syntactic order are strictly separated, something we tried to
avoid in our approach, because it makes grammar writing less intuitive and parsing
less efficient. Fraser’s parser [5] is based on backtracking and uses a parsing stack.
Covington’s approach [2] is cited very often. He invented a simple backtracking
algorithm for free word order. But his approach is not well suited for semi-free
word order phenomena. Finally there are several dependency parsers based on
constraint resolution, a completely different approach [3].

4 Parsing Hungarian

In this section two Hungarian sentences are analyzed. With these examples our
grammar description language is described.

4.1 Grammar Description Language and Free Word Order

The grammar description language is important, as it must be easy to learn and
to handle for the linguist writing grammars for the parser. We will introduce
it with the help of the easy example Angéla olvas (Angéla reads.). In Figure 3,
the corresponding grammar is given. Please note that due to space our example
grammars are not complete.

622 C. Bartha, T. Spiegelhauer, R. Dormeyer, and I. Fischer

To shorten the grammar, templates as introduced by [6] are possible. Templates
encode parts of the feature structures that are used very often. Within the entries
for words template names are used instead of complete feature structures. As a
first step, the lexicon is transformed before parsing. Template names are removed,
the feature structure parts these names described are unified with the rest of the
feature structure.

Feature structures are started by “[” and ended with “]”, features and values
are separated by “:” and feature-value-pairs are separated by “;”. In Figure 3 two
word entries and two templates are given. The lexical entry for Angéla contains a
template named Name, which is also given. Feature structures for Name and Angéla
are unified leading to an entry where agreement features as number, gender, case

(not all possible cases are given) and person are described. Also the lexeme and
category are shown. The verb olvas (reads) is also composed with the template for
verbs in present tense. This template is more interesting. It contains an optional
slot for a subject indicating that in Hungarian, the subject can be left out. At the
end the special feature order indicates possible positions. As this position list is
used for every word in present tense, it is more complicated than necessary for our
small example. The symbol i stands for the position of the word itself, in this case
the current verb. Before this verb at least one element must be placed. %1 must
be a slot, this slot must be filled. %2 is marked mslot (multiple slot). A multiple
slot can be filled with an arbitrary number of elements but can also be empty. An
arbitrary number of elements can also follow after the verb. It can also be described
that the subject must go in the first position; in this case %1 has to be added to
the subject slot. Please note that this is a lexicalised grammar, i.e. all information
is stored in the lexicon, no extra grammar rules are needed.

4.2 An Example With a Discontinuity

Our treatment of free word order has already been introduced in the previous
Section 4.1. Now a more complicated example introduced in Section 2 János azt
hiszem hogy elfogadja a javaslatot. (János, I think, that (he) accepts the proposal.)
is used to show how discontinuities are handled. The dependency tree has already
been shown in Figure 2. In Figure 4 a short and not complete grammar for the
example sentence is given. Templates are left out for simplicity. In the grammar,
continuity and discontinuity are marked using special features. A feature cont is
used to specify whether a dependency may be realized only continuously (”+”), only
discontinuously (”-”), or both (not specified); a second feature cont-const is used
to specify whether dependents may be extracted from the constituent headed by
a certain word3. Both features can be applied to lexical entries of words, to slots,
or to positions in a position list. Specification of dependents, slots or positions as
continuous will stop this process from taking place.

To parse the sentence for example 4, the parser first encounters the words János
and azt (that-acc). Azt (that-acc) contains an open slot for a subjunction and

3No example for cont-const is given.

Word Order and Discontinuities in Dependency Grammar 623

Word "János" [

number: sing;

person: 3;

gender: masc;

case: nom;

lexeme: János;

special: propername;

category: noun;]

Word "azt" [

conj: slot [

category: subjunction;];

lexeme: az;

category: defpronoun;

case: acc;

order: (i);]

Word "hiszem" [

category: verb;

sentence: declarative;

dir-obj: %2 slot [

case: acc;

category: defpronoun;];

lexeme: hisz;

numerus: sing;

person: 1;

order: (%1 %2 i %3);]

%1 = oslot [];

%3 = oslot [];

Word "hogy" [

category: subjunction;

lexeme: hogy;

prop: %1 slot [

category: verb;

cont: +;];

order: (i %1);]

Word "elfogadja" [

category: verb;

lexeme: elfogad;

subj: oslot [category: noun;

case: nom;];

dir-obj: slot [category: noun;

case: acc];

order: (%1 i %2);]

Word "a" [

category: determiner;

lexeme: a;]

Word "javaslatot" [

category: noun;

case: acc;

lexeme: javaslat;

spec: %1 oslot [

category: determiner;

cont: +;];

order: (%1 i);]

Figure 4: Simple grammar for János azt hiszem hogy elfogadja a javaslatot. (János,
I think, that (he) accepts the proposal.)

therefore cannot act as head for János. The next word hiszem (I think) has an
open slot for an definite pronoun in accusative. This slot can be filled with azt
(that-acc). This slot is marked with %2 and in the feature order of hiszem (I
think) it is indicated, that it has to be positioned in front of the verb itself. János
can fill position %1 in this list. %1 is not bound to any slot of the verb hiszem
(I think) so the syntactic head of János is not available yet. The open slot of
azt (that-acc) can not be filled with any word between azt (that-acc) and hiszem
(I think), so this slot is passed up to the syntactic head of azt (that-acc) which
is hiszem (I think). After hiszem (I think), hogy (that) is found by the parser.
hogy (that) can fill the slot of azt (that-acc) that has been passed up to hiszem (I
think). Additionally in the feature order of hiszem (I think), hogy (that) can fill
the position %3. hogy (that) has an open slot for an subordinate clause with a verb
as head. cont:+ indicates that this slot cannot be moved up. The next word word
elfogadja (accepts) fills this slot and opens two new ones. One slot is for the subject,
that is optional in Hungarian, he second slot is for an object. This object slot is
filled by the final two words a javaslatot (the proposal). javaslatot (proposal) opens
a slot for a determiner. This slot can not be moved up and the determiner must

624 C. Bartha, T. Spiegelhauer, R. Dormeyer, and I. Fischer

be positioned in front of javaslatot (proposal). javaslatot (proposal) then fills the
object slot of elfogadja (accepts). The subject slot of elfogadja (accepts) remains
unfilled up to now. Because this slot can be discontinuous, it is now moved up the
dependency tree until it reaches hiszem (I think), where it can be filled with János.
Similarly the sentences Azt hiszem hogy János elfogadja a javaslatot, A javaslatot
azt hiszem hogy János elfogadja., . . . can be parsed with the help of this grammar.
They have a similar meaning than the original sentence but stress different parts.

5 Algorithmic Description

The first subsection describes the simpler variant of the algorithm, which cannot
deal with discontinuities [4], [16]. The subsequent subsections describe the exten-
sions necessary to deal with discontinuities.

5.1 Parsing Sentences without Discontinuities

In the description of the algorithm, lexical entries without the complete feature
structures will be used. The words’ lexical entries are based on the part-of-speech
K of a word and three lists:

• First for each word an unsorted list of empty slots L, that can be filled, is
necessary.

• Additionally, each lexical entry contains a position list P , that is split in two
parts:

– P← contains the positions to the left side of the word described and

– P→ contains positions to its right side.

Both lists start with the position that is closest to the current word, the
following entries are sorted according to the distance from the word described.
Positions are named according to their entry in L with their part of speech
from the unsorted list of empty slots or x, if they have no corresponding
empty slot. Those x labelled entries can be filled by any word.

The basic data structure of the algorithm is a chart. When parsing a sentence
w0w1 . . . wn−1 consisting of n words, the chart is an (n + 1)× (n + 1) table. In this
table, sets of chart entries are stored. Entries are never removed from the chart
and are immutable after creation. A chart entry at the position (i, j) contains
information about the partial derivation of the part of the sentence ranging from
the word wi to the word wj−1. A chart entry is also referred to as chart edge. A
chart edge is inactive if the lists L, P← and P→ are empty or contain only multiple
and optional slots, written as 〈〉. Otherwise an entry is active, because it still has
positions which have to be filled. Based on the chart, the parsing Algorithm 5.1 is
used.

Word Order and Discontinuities in Dependency Grammar 625

Algorithm 5.1 main loop (continuous)

1: for j := 1 to n do

2: for all lexical entries (Kj ,Lj , P←j , P→j) of a word aj do

3: Insert (Kj ,Lj , P←j , P→j) in mj−1,j

4: As long as changes are possible:
5: for all i, k < j do

6: if k1 = (D, 〈〉, 〈〉, 〈〉) ∈ mi,k ∧ k2 = (R,LR, P←, P→) ∈ mk,j ∧ P← 6= 〈〉
then

7: extend(k1, k2, i, j)
8: end if

9: if k1 = (R,LR, 〈〉, P→) ∈ mi,k ∧ k2 = (D, 〈〉, 〈〉, 〈〉) ∈ mk,j ∧ P→ 6= 〈〉
then

10: extend(k2, k1, i, j)
11: end if

12: end for

13: end for

14: end for

15: if m0,n contains an inactive edge then

16: return true
17: else

18: return false
19: end if

mi,j is the set of chart entries at (i, j). At the beginning all sets are empty. An
active chart entry (R,LR, P←, P→), which serves as a head, can be extended with
an inactive chart entry (D, 〈〉, 〈〉, 〈〉), which serves as a dependent, if one entry is
contained in mi,k and one entry is contained in mk,j . The constituents described
by these chart entries have to lie next to each other in the sentence which is parsed.
The extension of chart edges is described in the Procedure 5.2 extend.

If the extension of a chart edge from mi,k and a chart edge mk,j was successful,
the new edge is inserted in mi,j in the chart, as it contains a derivation for the
words wi . . . wj−1. It is only inserted into the chart if it is not contained in the
chart yet. Therefore each entry is contained in the chart only once. If P←, the
list containing the open slots left of the head is empty, i.e. all positions left of the
head are filled, the algorithm tries to fill the first position on the right side of the
head. A position can be filled if the parts of speech of the head and the position
match.4 For an example of a sentence with no discontinuities, which is parsed with
this algorithm, see [16].

4And the corresponding feature structures can be unified in the parser.

626 C. Bartha, T. Spiegelhauer, R. Dormeyer, and I. Fischer

Procedure 5.2 extend(k1, k2, i, j) (continuous)

Require: k1 = (D, 〈〉, 〈〉, 〈〉)
Require: k2 = (R,LR, P←, P→)
1: if P← = 〈〉 then

2: p := head (P→)
3: P→ := tail(P→)
4: else

5: p := head (P←)
6: P← := tail(P←)
7: end if

8: if p = x then

9: for all (d, X) ∈ LR with X = D do

10: write (R,LR − (d, X), P←, P→) in mi,j

11: end for

12: else

13: for all (d, X) ∈ LR with d = p ∧ X = D do

14: write (R,LR − (d, X), P←, P→) in mi,j

15: end for

16: end if

5.2 Parsing Sentences with Discontinuities

The extension of Algorithm 5.1 to be able to handle discontinuities relies on the
following observation. A discontinuous dependency is always part of a continuous
constituent, as was described in Section 2. When a discontinuous dependency is
established, it cannot be established a single step. It must be estalished in two steps,
which might be separated by an arbitrary numbers of steps, because Algorithm 5.7
only tries to combine constituents which lie next to each other. The continuous
constituent which contains both the dependent and head of the discontinuity and
furthermore contains the position which the dependent fills was called head. A
discontinuity is a relation between three words, a dependent, a syntactic head,
which contains the slot for the dependent, and a linear head, which contains the
position for the dependent. When encountering a discontinuity, two cases must
be distinguished. Either the dependent or the syntactic head of the discontinuity
appear first in the sentence. For an example where the dependent appears before
the syntactic head take a look at the example sentence from Section 2, Figure 2. The
dependent János is attached discontinuously to its syntactic head elfogadja (accepts)
and János appears before elfogadja (accepts) in the sentence. The linear head of the
discontinuity of János and elfogadja (accepts) is hiszem (I think), because hiszem
(I think) contains the position which the word János fills.

The following extensions were made to handle parsing with discontinuous con-
stituents. A word is not a quadruple (K,L, P←, P→) as in the continuous case,
but becomes a quintuple (K,L, P←, P→, T), because words can be temporarily at-
tached to other words. Temporarily attached words are stored in the list T and

Word Order and Discontinuities in Dependency Grammar 627

are a mechanism to enable the parsing of discontinuities. Temporarily attached
words are used to handle a discontinuity of the type where the parser encounters
a dependent before its syntactic head. As the discontinuous variant of the parsing
algorithm only attempts to unify constituents which are adjacent in the sentence, a
dependent cannot fill a slot of its syntactic head directly. Therefore the dependent
is attached temporarily to the linear head, until the slot from the syntactic head,
which the dependent is supposed to fill, is moved up to the linear head. Then
the dependent fills the slot. The slot from the syntactic head might be moved up
several times before it reaches the linear head. When the dependent is attached to
its linear head temporarily, it fills a position. This position must be a free position,
which means it cannot be connected to a slot. Were the position connected to a
slot, the dependent would fill a position and a slot, and would therefore be attached
continuously.

Another mechanism mentioned in the paragraph above dealing with disconti-
nuities is moving up slots. This extension deals with a discontinuity of the type
where the syntactic head appears in the sentence before the dependent, as well as
with the type of discontinuity mentioned in the above paragraph. As the syntactic
head and the dependent cannot be combined directly, the slot which the dependent
eventually fills is moved up to the feature structure of the head of the syntactic
head when the syntactic head acts as a dependent and fills the slot of another
constituent. This slot may be moved up several times, until it finally reaches the
linear head. Then the dependent can fill the slot which was moved up.

If a chart entry has an open slot that can be realized discontinuously, this entry
can be used as a dependent. This differs from the continuous algorithm. When
parsing with continuous constituents, all slots must be filled before a chart entry
can be used as a dependent. As mentioned before, discontinuous open slots can be
moved up to be filled later. Therefore the Procedure 5.3 extend must be changed.
To deal with linear heads and the position x (a position which is not connected to
a slot) a new Procedure 5.4 extend free is introduced. Words that fill a position
from the position list of a linear head, are not unified with a slot L as in the
continuous case. They are attached to a possibly linear head temporarily. Later
the temporarily attached words will eventually have to fill a slot. What happens in
that case is described in the Procedure 5.5 reduce. If a word or a constituent fills a
position p 6= x from L, it is treated the same way as if it were attached to a word
which cannot be a linear head.

5.2.1 Moving Up Slots and Attaching Words Temporarily

The Procedure 5.3 extend must be changed to move up slots and attach words
temporarily. If this procedure is called, the possible dependent contains no tem-
porarily attached words and both its position lists are empty. If the next position to
be filled is connected to a slot, then the possible dependent is unified with the slot.
A successful unification results in a new chart entry. If the next position to be filled
is a free position, then the Procedure 5.4 extend free deals with the dependent. The
Procedure 5.4 extend free checks whether the head can be a linear head. If that is

628 C. Bartha, T. Spiegelhauer, R. Dormeyer, and I. Fischer

Procedure 5.3 extend(k1, k2, i, j) (discontinuous)

Require: k1 = (D,LD , 〈〉, 〈〉, 〈〉)
Require: k2 = (R,LR, P←, P→, TR)
1: if P← = 〈〉 then

2: p := head (P→)
3: P→ := tail(P→)
4: else

5: p := head (P←)
6: P← := tail(P←)
7: end if

8: if p = x then

9: extend free(D,LD, R,LR, P←, P→, TR, i, j)
10: else

11: for all (d, X) ∈ LR with d = p ∧ X = D do

12: if not (LD 6= 〈〉 ∧ (d, X) must be a continuous constituent) then

13: insert (R,LR − (d, X) + LD, P←, P→, TR) in mi,j

14: end if

15: end for

16: end if

the case the dependent is temporarily attached to the possibly linear head and a
new chart entry is created. Otherwise the head and the dependent are treated the
same as in Procedure 5.3 extend.

5.2.2 Filling Open Slots with Temporarily Attached Words

Another extension necessary to be able to handle discontinuities, is to deal with
temporarily attached words. At some point during the parse those temporarily
attached words eventually have to fill slots in the word w they have been attached
to. Because this is an expensive operation, it is delayed as long as possible. For
this reason, filling the remaining slots with temporarily attached words is only
done, if the word’s positions lists are empty and the word itself could possibly
be attached to another word as a dependent. For every open slot the algorithm

Procedure 5.4 extend free (D,LD, R,LR, P←, P→, TR, i, j) (discontinuous)

1: if head can be a linear head then

2: insert (R,LR, P←, P→, TR + (D,LD)) in mi,j

3: else

4: for all (d, X) ∈ LR with X = D do

5: if not(LD 6= 〈〉 ∧ (d, X) must be a continuous constituent) then

6: insert (R,LR − (d, X) + LD, P←, P→, TR) in mi,j

7: end if

8: end for

9: end if

Word Order and Discontinuities in Dependency Grammar 629

Procedure 5.5 reduce(k, i, j) (discontinuous)

1: if T = 〈〉 then

2: insert (R,L, 〈〉, 〈〉, 〈〉) in mi,j

3: else

4: if L 6= 〈〉 then

5: for all (d, X) ∈ L do

6: for all (D,LD) ∈ T with X = D do

7: if not(LD 6= 〈〉 ∧ (d, X) must be a continuous constituent) then

8: insert (R,L − (d, X) + LD , 〈〉, 〈〉, T − (D,LD)) in mi,j

9: end if

10: end for

11: end for

12: end if

13: end if

attempts to unify every temporarily attached word with the open slot. For every
successful unification, the result is stored in the chart. It should be noted that a
temporarily attached word need not necessarily be attached discontinuously, that
depends solely on the slot it fills. If the temporarily attached word fills a slot which
was moved up, it is attached discontinuously. Otherwise it is attached continuously,
see Procedure 5.5.

5.2.3 Checking for Possible Dependents

Another necessary extension is a method for determining whether a word is a
possible dependent, the Procedure 5.6 check dep. As before, all words which do
not contain any slots can become a dependent. But in contrast to the continuous

Procedure 5.6 check dep(k) (discontinuous)

Require: k = (D,LD, 〈〉, 〈〉, 〈〉)
1: if LD = 〈〉 then

2: return true
3: else

4: if LD has continuous empty slots then

5: return false
6: else

7: if Lexical entry of k must be continuous then

8: return false
9: else

10: return true
11: end if

12: end if

13: end if

630 C. Bartha, T. Spiegelhauer, R. Dormeyer, and I. Fischer

case, a word with open slots can become a dependent, if the open slots can be filled
discontinuously and the word does not have to be a continuous constituent.

5.2.4 Main Parsing Algorithm

The main loop (Procedure 5.7) incorporates all the extensions made so far. Four
different cases are considered in the main loop. The first and the second case are
similar to those in the continuous main loop. One difference is that more words
may be possible dependents, and open slots in a dependent are moved up when
the dependent is attached to its head. A dependent may also be attached to its
head temporarily. In the first case the dependent is to the left of the head, in

Algorithm 5.7 main loop (discontinuous)

1: for j := 1 to n do

2: for all lexical entries (Kj ,Lj , P←j , P→j) of a word aj do

3: Insert (Kj ,Lj , P←j , P→j) in mj−1,j

4: for all i, k < j do

5: if k1 = (D,LD , 〈〉, 〈〉, 〈〉) ∈ mi,k ∧ check dep(k1) ∧ k2 =
(R,LR, P←, P→, TR) ∈ mk,j ∧ P← 6= 〈〉 then

6: extend(k1, k2, i, j)
7: end if

8: if k1 = (R,LR, 〈〉, P→, TR) ∈ mi,k ∧ k2 = (D,LD , 〈〉, 〈〉, 〈〉) ∈ mk,j ∧
check dep(k2) ∧ P→ 6= 〈〉 then

9: extend(k2, k1, i, j)
10: end if

11: if k1 = (D,LD, 〈〉, 〈〉, TD) ∈ mi,k∧TD 6= 〈〉∧k2 = (R,LR, P←, P→, TR) ∈
mk,j ∧ P← 6= 〈〉 then

12: reduce(k1, i, k)
13: end if

14: if k1 = (R,LR, 〈〉, P→, TR) ∈ mi,k ∧ k2 = (D,LD , 〈〉, 〈〉, TD) ∈ mk,j ∧
TD 6= 〈〉 ∧ P→ 6= 〈〉 then

15: reduce(k2, k, j)
16: end if

17: end for

18: end for

19: end for

20: for all k ∈ m0,n with empty position list and non-empty list T do

21: reduce(k, 0, n)
22: end for

23: if m0,n contains an inactive edge then

24: return true
25: else

26: return false
27: end if

Word Order and Discontinuities in Dependency Grammar 631

the second case to the right. If temporarily attached words are removed from the
words they are attached to, the third and the fourth case come into play. Words
are removed from the list T of a word w only if w might be a dependent. Finally
temporarily attached words must be removed from chart entries m0,n, which span
the whole sentence. Otherwise possible solutions may not be found.

6 Conclusion and Future Work

Word order phenomena and discontinuity in Hungarian were modelled for a depen-
dency parser. It turned out that, as for the other languages tested, it was possible
and easy to write down. Nevertheless there is still a lot of work to do. Up to now
only special problems of Hungarian have been modeled as a proof of concept for
the parser. Next a full-flexed Hungarian grammar should be developed.

It is most important to add a Hungarian morphology to the parser. Up to now,
the parser works with a full form lexicon for Hungarian. This might be a solution
for other languages, but it does definitely not work for Hungarian due to the high
number of possible word endings.

Acknowledgements

The authors thank Szilvia Svada and Gabriella Kókai for explaining all the tricky
details of the Hungarian grammar.

References

[1] Norbert Bröker, Separating surface order and syntactic relations in a depen-
dency grammar, in Proceedings of the 36th Annual Meeting of the ACL and
17th International Conference on Computational Linguistics, Montreal, 1998.

[2] Michael A. Covington, Parsing discontinuous constituents in dependency gram-
mar, Computational Linguistics, 16(4):234-236, 1990.

[3] Ralph Debusmann, Denys Duchier and Geert-Jan Kruijff Extensible Depen-
dency Grammar: A New Methodology, Recent Advances in Dependency Gram-
mar, COLING 2004.

[4] Ricarda Dormeyer, Syntaxanalyse auf der Basis der Dependenzgrammatik,
PhD Thesis, Computer Science, Friedrich-Alexander University Erlangen-
Nuremberg, 2004.

[5] Norman M. Fraser, Parsing and dependency grammar, UCL Working Papers
in Linguistics, 1:296-319, 1989.

[6] Peter Hellwig, Chart parsing according to the slot and filler principle, in Pro-
ceedings of the 12th International Conference on Computational Linguistics,
pages 242-244, Budapest, 1988.

632 C. Bartha, T. Spiegelhauer, R. Dormeyer, and I. Fischer

[7] Richard Hudson, Word Grammar, Blackwell, Oxford, 1984.

[8] Richard Hudson, Towards a computer-testable word grammar of English, UCL
Working Papers in Linguistics, 1:321-338, 1989.

[9] Daniel Jurafsky and James H. Martin, Speech and Language Processing, An
Introduction to Natural Language Processing, Computational Linguistics, and
Speech Recognition, Prentice Hall, New Jersey, 2000.

[10] László Keresztes, Hungaro Lingua: Praktische ungarische Grammatik, Debre-
ceni Nyári Egyetem, 1999.

[11] Katalin Kiss, The Syntax of Hungarian, Cambridge Syntax Guides, Cambridge
University Press, 2002.

[12] Michael C. McCord, Slot grammar. A system for simpler construction of prac-
tical natural language grammars, in Rudi Studer, editor, Natural Language
and Logic, pages 118-145. Springer, Berlin, Heidelberg, 1990.

[13] Ivan Sag, Thomas Wasow and Emily Bender: Syntactic Theory. A Formal
Introduction, Second Edition, Stanford: Univ. of Chicago Press, 2000.

[14] Lucien Tesnière, Esquisse d’une syntaxe structurale, Klincksieck, Paris, 1953.

[15] Lucien Tesnière, Eléments de syntaxe structurale, Klincksieck, Paris, 1959.

[16] Thomas Tröger, Ein Chartparser für natürliche Sprache auf der Grundlage der
Dependenzgrammatik, Master Thesis, Computer Science, Friedrich-Alexander
University Erlangen-Nuremberg, 2003.

[17] Alexandra Pröll, Eine Dependenzgrammatik für das Japanische, Bachelor The-
sis, Computer Science, Friedrich-Alexander University Erlangen-Nuremberg,
2004.

[18] Gábor Prószéky, Ilona Koutny and Balázs Wacha, A dependency syntax of
Hungarian, in Dan Maxwell and Klaus Schubert, eds., Metataxis in Practice,
pages 151-182. Foris Publications, Dordrecht, 1989.

[19] Markus Schulze, Ein sprachunabhängiger Ansatz zur Entwicklung deklara-
tiver, robuster LA-Grammatiken, PhD Thesis, Computer Science, Friedrich-
Alexander University Erlangen-Nuremberg, 2004.

