
Acta Cybernetica 18 (2007) 47–60.

A Classification Scheme for Bin Packing Theory

Edward G. Coffman, Jr.∗ and János Csirik†

Abstract

Classifications of published research place new results in a historical con-
text and in so doing identify open problems. An example in wide use classi-
fies results in scheduling theory according to a scheme originated by Graham,
Lawler, Lenstra and Rinnooy Kan [10]. A similar effort was made by Dy-
ckhoff [6] for cutting and packing problems. Such classification schemes can
be combined with comprehensive bibliographies, e.g., the one provided for
scheduling theory by Bruckner1. This paper describes a novel classification
scheme for bin packing which is being applied by the authors to an extensive
(and growing) bibliography of the theory. Problem classifications are supple-
mented by compact descriptions of the main results and of the corresponding
algorithms. The usefulness of the scheme is extended by an online search en-
gine. With the help of this software, one is easily able to determine whether
results already exist for applications that appear to be new, and to assist in
locating the cutting edge of the general theory.

1 Introduction

For given positive reals a1, . . . , an and b1, b2, . . ., classical bin packing algorithms
partition some subset of {a1, . . . , an} into blocks B1, B2, . . . , Bj such that the levels

ℓ(Bi) :=
∑

ak∈Bi
ak satisfy the sum constraints ℓ(Bi) ≤ bi, 1 ≤ i ≤ j. This

definition embraces several packing problems, depending on the way the subset of
the ai’s and the integer j are chosen. In bin packing terms, the ai are called items,
the blocks Bi are called bins with respective capacities or sizes bi, and the partitions
are called packings; the notion of packing items into a sequence of initially empty
bins helps visualize algorithms for constructing partitions. It is also helpful in
classifying algorithms according to the various constraints under which they must
operate in practice. The items are normally given in the form of a sequence or list

L = (a1, . . . , an), although the ordering in many cases will not have any significance.
To economize on notation, we adopt the harmless abuse whereby ai denotes both
the name and the size of the i-th item. The generic symbol for packing is P ; the

∗Department of Electrical Engineering, Columbia University, 1312 S.W. Mudd, 500 West 120th
Street, New York, NY 10027, USA. E-mail: egc@ee.columbia.edu

†Department of Computer Science, University of Szeged, Árpád tér 2, H-6720 Szeged, Hungary.
E-mail: csirik@inf.u-szeged.hu

1Available at http://www.mathematik.uni-osnabrueck.de/research/OR/class/

47

48 Edward G. Coffman, Jr. and János Csirik

number of items in P is denoted by |P| and the norm of the packing is defined as
the sum of the sizes of the nonempty bins: ‖P‖ :=

∑

ℓ(Bi)>0 bi. In the majority

of problems being classified, the entire list is packed, so |P| = n and the index j
of the last occupied bin is the packing measure of interest. It is also common to
have all bin sizes the same, in which case the bin size is denoted simply by b and
ai ≤ b is assumed for all i. Further, when b functions only as a scale factor, it
is usually normalized to 1; in this case, the norm reduces simply to the number of

bins in the packing, i.e., j = ‖P‖. The term wasted space has the obvious meaning,
‖P‖ −

∑n
i=1 ai.

With bin sizes given by context, let PA(L) denote the packing of L produced by
algorithm A. In the literature, one finds the notation A(L) representing properties
such as ‖PA(L)‖; but since A(L) may denote different properties for different prob-
lems (the same algorithm A may apply to problems with different objective func-
tions), we will need the alternative notation on occasion. The more general forms
with b specified are P(L, b) and A(L, b), but the bin size will be omitted whenever
it has been normalized to 1. The minimum of ‖P(L)‖ over all partitions of L sat-
isfying the sum constraints will have the notation: OPT (L) := minP‖P(L)‖, the
notation OPT (L) suffering from the same ambiguity as before, i.e., the objective
function to which it applies is determined by context. Moreover, in contrast with
other algorithm notation, OPT does not denote a unique algorithm.

The classical theory refers to the study of algorithms satisfying various operating
constraints which try to minimize, usually only approximately, the number of bins
‖P(L)‖ under the sum constraints ℓ(Bi) ≤ 1. Dual bin packing changes the sum
constraints to ℓ(Bi) ≥ 1 and asks for a packing which maximizes the number of bins
under these new constraints. Dual bin packing is often called bin covering, a term
that we will use here. These combinatorial optimization problems are NP-hard;
with problems defined on restricted item sizes or number of items per bin being the
major exceptions, this will be the case for nearly all problems in the classifications
below.

To fix ideas, consider the Next Fit (NF), First Fit (FF), and Best Fit (BF)
approximation algorithms for classical bin packing. Each algorithm packs all the
items of L one by one in the sequence a1, a2, . . . , an. NF packs items in B1 until it
encounters an item, say ai, for which ai > 1−

∑

1≤j<i aj ; that is, ai does not fit in
the space left over by a1, . . . , ai−1. At that point B1 is closed in the sense that no
further items can be packed in B1, and ai is placed as the first item in B2. This
bin-by-bin process repeats, packing the items ai, ai+1, . . . , an into B2, B3, . . ., and
continues until no items remain to be packed. The bin being packed at any given
step is called the open bin. Under FF and BF all bins remain open throughout the
packing process. At the i-th step under FF, ai is packed in the lowest indexed bin
with sufficient space (of course, this may have to be the empty bin just beyond the
last nonempty bin). At the i-th step under BF, ai is packed into a bin in which it
fits best, i.e., with the least space left over. In case two or more bins satisfy this
criterion, the lowest indexed of these bins is chosen.

Another dual of classical bin packing, called multiprocessor or makespan schedul-

ing, takes the number, m, of bins to be constant and minimizes the capacity b such

A Classification Scheme for Bin Packing Theory 49

that L can be packed into m bins of capacity b; again, the norm ‖P(L)‖ = mb is
minimized, but in this case via b for fixed m. List scheduling (LS) is a classical
algorithm for this problem and is organized like WORST FIT (a misnomer in the
makespan context): the next item to be packed is put in a least-full bin, with ties
resolved in favor of lower indexed bins.

Problems fixing the number of bins fall within scheduling theory whose origins
in fact predate those of bin packing theory. In scheduling theory, which is very large
in its own right, makespan scheduling is more likely to be described as scheduling
a list of tasks or jobs (items) on m identical processors (bins) so as to minimize
the schedule length or makespan (bin capacity). Our incursion into scheduling
problems will be limited to the most elementary duals and applications of bin
packing problems, such as the one above.

The most common approach to the analysis of approximation algorithms has
been worst-case analysis by which the worst possible performance of an algorithm is
compared with optimal performance. (Detailed definitions will be provided shortly.)
The term performance guarantee puts a more positive slant on results of this type2 .
Probability models also enjoy wide use, and are growing in popularity, as they bring
out typical, average-case behavior rather than the, normally quite rare, worst-case
behavior. In probabilistic or stochastic analysis, algorithms have random inputs;
the items are usually assumed to be independent, identically distributed random
variables. For a given algorithm A, A(Ln) is a random variable whose distribution
becomes the goal of the analysis. Because of the difficulties inherent to these
problems, even for elementary algorithms, one must often settle for weaker results,
such as bounds on tail probabilities and asymptotic (large-n) estimates of expected
values.

An analysis combining aspects of both the combinatorial and probabilistic ap-
proaches is that of stochastic bin packing, in which a typical problem is to find a
packing algorithm that optimizes the expected value of some performance measure.
These problems are almost always substantially more difficult extensions of prob-
lems that are already quite difficult. The classification scheme will have very few
opportunities to cite such results.

The scheme for classifying problems and solutions will take the form of five fields:
arena, objective function, class of algorithms, results, and constraints. The arena
field describes the nature of the bins3, such as whether they have variable capacities;
the objective function to be minimized or maximized under sum constraints refers
to the number of bins of fixed capacity, the capacity of a fixed number of bins,
etc.; the class of algorithms refers to paradigms such as online, offline, bounded
space, etc. as well as to algorithmic approaches such as grouping and fitting, to be
described in Section 3; the results field specifies performance in terms of absolute
or asymptotic worst case ratios, problem complexity, etc.; and constraints refer

2So also does the term competitive analysis, which usually refers to a worst case analysis
comparing an on-line approximation algorithm with an optimal offline algorithm.

3The present classification of one dimensional problems will eventually be extended to higher
dimensions, in which case the arena field will also specify problem dimensionality (e.g., packing
2-dimensional bins and strip packing.

50 Edward G. Coffman, Jr. and János Csirik

to limitations in problem parameters, such as a minimum placed on item sizes,
a restriction of all data to be integers, and so on. The classification scheme is
intended for general use as a compact means for referring to packing problems;
however, in the entries of the bibliography, the classification will be supplemented
by a brief description of the algorithms studied and the results (typically, but not
always, bounds of some kind) derived for the algorithms.

In what follows, Section 2 covers typical results and performance measures,
Section 3 describes fundamental algorithms, and then Section 4 contains the details
of the classification scheme. The many annotated examples in Section 5 are meant
to familiarize the reader with classification criteria and their limitations.

An updated, classified bibliography with a search engine will be available at
http://www.inf.u-szeged.hu/∼csirik.

2 Results

There are many forms results take, but the most common in combinatorial anal-
ysis are performance ratios or guarantees, which give the performance of an ap-
proximation algorithm relative to an optimal algorithm. Hereafter, dependence of
performance ratios on α means that all item sizes satisfy ai ≤ α; this dependence
is omitted if there is no upper bound on item size, i.e. α = b. For classical bin
packing, the asymptotic worst-case ratio (or bound) for algorithm A is defined as

R∞
A (α) := lim sup

k→∞

R
(k)
A (α)

with

R
(k)
A (α) := sup

L:OPT (L)=k

{

A(L)

k

}

where OPT (L) refers to the optimal offline result. A less formal but more instruc-
tive definition describes R∞

A (α) as the smallest multiplicative constant such that
for some additive constant K < ∞,

A(L) ≤ R∞
A (α) · OPT (L) + K

for all L.
The absolute worst-case ratio is simply

RA(α) := sup
L

{

A(L)

OPT (L)

}

.

The comparison of algorithms by asymptotic bounds can be strikingly different
from that by absolute bounds. Generally speaking, the number of items n must
be sufficiently large (how large will depend on the algorithm) for the asymptotic
bounds to be the better measure for purposes of comparison. Note that the ratios
are bounded below by 1; the better algorithms have the smaller ratios.

A Classification Scheme for Bin Packing Theory 51

The performance guarantees for covering have a complementary form. The
asymptotic ratio is

R∞
A := lim inf

k→∞
RA(k)

where

RA(k) := inf
L:OPT (L)=k

{

A(L)

k

}

and the absolute ratio is

RA := inf
L

{

A(L)

OPT (L)

}

Note that the covering ratios are bounded above by 1; the better algorithms have
the larger ratios.

Similar performance guarantees are defined for scheduling and a number of
other problems. As can be seen, the ratio notation above is generic; the context
will determine which definition is in force. When all item sizes are at most the item
size parameter α, these bounds are denoted by R∞

A (α) and RA(α).
The determination of time complexities of fundamental algorithms and their

extensions or adaptations is usually routine. The analysis of parallel algorithms for
computing packings is an example where deriving time complexities is not routine.
However, the research in this area, in which results take the form of complexity
measures, has been very limited.

Several results quantify the trade-off between the running time of algorithms and
the quality of the packings. They produce Polynomial Time (or Fully Polynomial
Time) Approximation Schemes [9], denoted by PTAS (or FPTAS). In simplified
terms, a typical form of such results is illustrated by: “Algorithm A produces
packings with O(ǫ) expected wasted space and has a running time polynomial in
1/ǫ.”

Average-case results may be in the form of expected ratios like ERA(L) or
simply expected performance EA(L), usually in terms of EOPT (L). (These com-
parisons need not be the same of course.) In many cases, tails of the distributions
are estimated in the process of deriving estimates for expected values.

3 Fundamental algorithms

A number of such algorithms will be incorporated directly into the classification
notation. These include the FIT algorithms FF, BF, and WF which we have
already described. In some cases only the algorithmic approach or structure will
be described, with extensive details omitted. The four structures most often used
in defining algorithms are described below.

3.1 Fitting algorithms

These refer not only to those just mentioned, but also their offline decreasing coun-
terparts denoted by NFD, FFD, BFD, and WFD, where the D stands for decreasing.

52 Edward G. Coffman, Jr. and János Csirik

In each case, the algorithm begins with an ordering of L by decreasing item size.
The respective algorithms are then applied to the reordered list. The notation for
the corresponding increasing counterparts simply replaces the D by an I.

Bounded-space algorithms are a subcategory of fitting algorithms and are speci-
fied in many cases by a fitting rule, either FF or BF, and a closing rule. The closing
rule is invoked when the next item to be packed does not fit into any of the open
bins, in which case one of the open bins must be closed and a new bin opened. The
choices for the bin to close are the lowest indexed bin (the First bin) and a bin with
the highest level (a Best bin).

3.2 Grouping algorithms

Grouping is a standard technique that has been studied at great length with many
variations. Essentially, it refers to schemes that pack/schedule items based on
group membership, where groups are defined by item size. A primary example
called HARMONIC and denoted by Hk is based on a partition of the interval (0, 1]
into k subintervals, where the partitioning points are 1/2, 1/3, . . . , 1/k. Each of
these subintervals corresponds to a different group, and each has its own open bin;
items belonging to a given group/subinterval are packed only into the corresponding
open bin. If a new item arrives that does not fit into the open bin of its group,
the bin is closed and a new bin of that type is opened. Thus, the packing of
items in each group is an NF packing. Grouping has been defined on other than
the Hk intervals, and it has been combined with various greedy fitting algorithms.
HARMONIC has received so much coverage in the literature that we adopt, along
with the FIT acronyms, the symbol Hk as part of the notation.

3.3 Iterative algorithms

Iterating an algorithm designed for good performance under one objective function
may be an effective algorithm under another objective function. For example, con-
sider approximation algorithms for the problem of minimizing schedule makespans.
One could iterate BFD on an increasing sequence of “candidate” makespans (bin
capacities) until one is tried with success, which then yields the desired approxima-
tion of the minimum makespan. For iterative versions of fundamental algorithms
we use the prefix I. Thus, the algorithm just mentioned would be called IBFD. In a
similar approach, IWFD could be used as an approximation algorithm for classical
bin packing.

3.4 Limiting item sizes or the number packed per bin

If the number of distinct item sizes is limited, to N say, then when N is relatively
small, substantial improvements in algorithm design and performance are possible.
Moreover, finite (if not actually small) N loses no generality in practice. This as-
sumption leads naturally to integer-program formulations. For example, consider

A Classification Scheme for Bin Packing Theory 53

classical bin packing and define a configuration as any subset of items (with repli-
cation allowed) with a total size at most 1. Let Cjk be the number of items of the
j-th size in the k-th configuration, and let tk ≡ tk(P) be the number of bins of P
with the k-th configuration. If there is a total of M possible configurations, and
if there are mj items of the j-th size in an instance I of the bin packing problem,
then finding the size (norm) of an optimal packing is solving the following integer

program for I : minimize
∑M

k=1 tk subject to
∑M

k=1 tkCjk = mj , j = 1, . . . , N, and

tk ≥ 0, k = 1, . . .M .
Limiting the number of items per bin is a similar restriction, one that has often

been used to greatly simplify average-case analysis. For example, for classical bin
packing, there are simple algorithms packing at most 2 items per bin which yield
smallest possible asymptotic estimates of expected wasted space, when item sizes
are drawn independently and uniformly at random from [0, 1].

4 Classification scheme

The notation takes the form

arena|objective function|algorithm class|results|constraints

This section gives the current lists of entries for each field, with definitions where
needed. The special terms or abbreviations adopted for entries will be given in bold
face.

4.1 Arena

The basic arena as a sequence of one-dimensional bins has already been described.
When sum constraints apply, and all bins have the same size b, then the arena field
will be empty. When this field is not empty, terms like the following will appear.

1. variable bi means that there is more than one bin size and that there is an
unlimited supply for each size.

2. open end refers to problems in which sum constraints are relaxed as follows:
bin Bi can always accommodate an item if ℓ(Bi) < bi but it is closed as soon
as ℓ(Bi) ≥ bi. Other notions of exceeding bin capacity will fall under the
general term overfill.

4.2 Objective function

This function will most often be implicit in a term adopted for the corresponding
combinatorial optimization problem.

1. pack refers to the classical problem of minimizing ‖P(L)‖ subject to the sum
constraints ℓ(Bi) ≤ 1.

54 Edward G. Coffman, Jr. and János Csirik

2. makespan refers to the problem of minimizing the common bin capacity
needed to pack L into a given number of bins. The bin-stretching problem is
a special case of the makespan problem in which the value of the bin size in
the optimal packing is known in advance. For this problem, the term stretch

will be appended to the performance-guarantee notation.

3. deadline abbreviates deadline scheduling and refers to the problem of finding
schedules in which a maximum cardinality subset of the tasks in L finish by
a given deadline (capacity) b on a given number m of processors.

4. pack cover refers to the dual bin packing problem of maximizing ‖P(L)‖
subject to the dual constraints ℓ(Bi) ≥ 1.

5. schedule cover refers to the dual makespan scheduling problem of maximiz-
ing the makespan b for fixed m such that ℓ(Bi) ≥ b.

In principle, there are covering versions of deadline scheduling as well, but we
have encountered no research on these problems. One such problem is:

6. deadline cover names the problem of minimizing the total size of the subset
of tasks needed to cover a given number m of processors with a given deadline
b.

4.3 Algorithm class

1. offline algorithms have no constraints beyond the intrinsic sum constraints;
an offline algorithm simply maps the entire list L into a packing P(L). Ef-
fectively, all items are known in advance, so the ordering of L plays no role.

2. online algorithms sequentially assign items to bins, in the order encountered
in L, without knowledge of items not yet packed. Thus, the bin to which ai

is assigned is a function only of a1, . . . , ai. Note that NF, FF, and BF are all
online.

3. bounded space algorithms decide where an item is to be packed based only
on the current contents of at most a finite number k of bins, where k is a
parameter of the algorithm. Note that FF and BF are not bounded space
algorithms, but NF is, with k = 1. A more precise definition and further
discussion of these algorithms appear later.

4. linear-time algorithms have O(n) running time. In fact, a more precise
statement can be made: all such algorithms classified here take constant time
to pack each item. NF is clearly a linear-time algorithm, but FF and BF are
not.

The three characterizations above are orthogonal. But the literature suggests
that the following convention will allow us to use one term in classifying algo-
rithms most of the time: Bounded space implies linear time and linear time

implies online. Exceptions will be noted explicitly; below (under repack) we
will see how offline algorithms can be linear time.

A Classification Scheme for Bin Packing Theory 55

5. greedy. Any algorithm in a broad class of algorithms variously called rea-
sonable, fair, any-fit, or greedy is required to pack the current item into an
open bin with sufficient space, in case such a bin exists; in particular, it can
not choose to open a new bin in this case. We use the term greedy exclu-
sively to describe such algorithms. Scheduling algorithms satisfying a similar
constraint are sometimes called conservative or work conserving.

6. repack. There have been a number of studies devoted to packing problems
which allow the repacking (possibly limited in some way) of items – moving
an item, say ai, from one bin to another based on the sizes of items aj , j > i.

7. dynamic packing introduces the time dimension; an instance L of this prob-
lem consists of a sequence of triples (ai, ri, di) with ri and di denoting arrival
and departure times, respectively. Under packing algorithm A, A(L, t) de-
notes the number of bins occupied at time t, i.e. the number of bins occupied
by those items ai for which ri < t < di.

Conventions: Along with the algorithm class, the algorithm will be spec-
ified when possible. In many cases, the algorithm will be an adaptation or
variant of some well-known algorithm, like FF for example, in which case the
specification will have the form FF variant.

4.4 Results

Almost all results fall into the broad classes mentioned in Section 2.

1. Asymptotic worst case ratios, where R∞
A

is the general entry with A specified
where appropriate.

2. Absolute worst case, with RA being the entry.

3. Average case: A probabilistic analysis, usually leading only to expected val-
ues, is indicated. The entries adopt standard notation such as EA(Ln) or
Pr{A(Ln) > x}. In parentheses, a distribution or class of distributions will
be given. Examples include U(0, α) (the uniform distribution on [0, α]) and
∆(0, α) (the triangular distribution on [0, α], but if no distribution is spec-
ified then it is assumed to be general. Standard terms like unimodal and
decreasing (referring to a density function), etc. will be encountered. Item
sizes are assumed to be independent random variables in all cases, unless
stated otherwise.

4. Where possible, complexity of the problem will be given in the standard
notation of problem complexity.

5. Complexity of the algorithm refers to running-time complexity and will be
signalled by the entry running-time.

56 Edward G. Coffman, Jr. and János Csirik

Conventions: A paper classified as a worst-case analysis may also have
complexity results (but not conversely, unless both types of results figure
prominently in the paper, in which case both classifications will be given),
and a paper given an average case classification may also have worst case
results; here also, both classifications will be noted only if both worst-case and
average-case analysis play major roles in the paper. Approximation schemes
are classified as complexity results and have entries like PTAS, FPTAS as
noted earlier.

4.5 Constraints

These typically introduce further limitations on the problem instance, or further
properties of the algorithm classification.

1. mutex stands for mutual exclusion and introduces constraints in the form of
a sequence of pairs (ai, aj), i 6= j, signifying that ai and aj can not be put in
the same bin.

2. items/bin ≤ k gives a bound on the number of items that can be packed in
a bin.

3. ai ≤ α or ai ≥ α. These denote bounds on item sizes, the former being far
more common in the literature. In the former case α is usually part of the
result notation (see the next subsection) so in these cases, it is omitted from
the classification. Throughout the bibliography, the symbol α is reserved for

this purpose. These cases are often called parametric cases in the literature.

A constraint that may refer as much to analysis as to algorithm design calls
for discrete sets of items; as such it is not a significant practical constraint.

4. discrete which means that item sizes are all multiples of 1/k with b = 1.
Equivalently, the bin size could be taken as some integer b and item sizes
restricted to the set {1, . . . , b}.

5. restricted sizes refers to the problem where the number of different item
sizes is finite.

6. The symbol * refers to features or properties not classifiable within the
scheme.

Conventions: There are further interesting extensions which occur only in
a few papers. In these cases we will use a special notation; a short description
in each case will be given as a remark.

A Classification Scheme for Bin Packing Theory 57

5 Examples

The following examples should help familiarize the reader with the classification
technique.

1. Reference [4] gives an average-case analysis of the classical, bounded-space
Next Fit algorithm for bin packing:

|pack|bounded space|ENF (Ln), U(0, 1)

Result: ENF (L) = 4
3EOPT (L) + O(1), where item sizes are independent

draws from U(0,1).

Recall that the empty arena component implies that all bin levels are bounded
above by 1, the common bin size.

2. The classification of [13] shows a nonempty arena field:

variable bi|pack|offline| PTAS

3. The classification of [12] gives another such example:

open end|pack|online; offline|R∞
A bound; FPTAS

Results: For the open-end bin packing problem any online algorithm must
have an asymptotic worst-case ratio of at least 2. Next Fit achieves this ratio.
There is a fully polynomial approximation scheme for this problem.

4. The classification of [2] illustrates a makespan problem:

|makespan|online|RA stretch

Results: A combined algorithm achieves a worst case bound of 1.625. The
best lower bound for any online algorithm is 4/3.

5. Reference [3] shows a deadline objective function:

|deadline|offline; WFI, FFI|RA

Results: RWFI = 1
2 , RFFI = 3

4 .

6. Reference [5] is classified as a covering problem.

|pack cover|online|R∞
A bound

Results: Asymptotic bound: R∞
A ≤ 1/2 for any online algorithm A. There

exists an asymptotically optimal online algorithm.

58 Edward G. Coffman, Jr. and János Csirik

7. The classification of [7] is

|pack|offline; combined BF, FFD variant|R∞
A

Algorithm: Combined Best Fit (CBF) which takes the better of the First
Fit Decreasing solution and Best Two Fit (B2F) solution, where the latter
algorithm is a grouping version of Best Fit limiting the number of items per
bin.

Results:

R∞
B2F = 5/4, 227

195 ≤ R∞
CBF ≤ 6

5

Note that the word ‘variant’ may be simplistic in that it occasionally hides
details of relatively complicated algorithms.

8. Reference [8] shows an example for combination of two algorithm classes:

|pack|bounded space, repack|RA

Algorithm: REP3: an adaptation of FFD using three open bins at any
time.

Result: R∞
REP3

≈ 1.69... .

9. The classification of [11] illustrates a constraint:

|pack|offline; FF variant|R∞
A |items/bin ≤ k

Result:
(

27

10
−

⌈

37

10k

⌉)

≤ R∞
FFk

≤

(

27

10
−

24

10k

)

,

where FFk is the obvious adaptation of FF.

10. For [14], the classification mentions yet another constraint:

|pack|bounded space; Hk variant|R∞
A |O(log k) open bins

Result: R∞
SHk

(k) = R∞
Hk

, where SHk is a simplified version of Hk that uses
only O(log k) open bins at any time.

11. Classification of [1] aggregates several results:

|pack cover|offline, online; NF, FFD, IWFD variants|R∞
A

Algorithms: Adaptation of Next Fit called DNF (a new bin is opened when
the current open bin, say B, first overflows with item, say ai, but in this case
ai stays in B); of First Fit Decreasing with a parameter r (FFDr); and of an
iterated version of Worst Fit (IWFD).
Results:

R∞
DNF =

1

2
, FFD∞

r =
2

3
for all r,

4

3
≤ r ≤

3

2
, and R∞

IWFD =
3

4
.

A Classification Scheme for Bin Packing Theory 59

References

[1] S. B. Assman, D. S. Johnson, D. J. Kleitman, and J. Y-T. Leung. On a dual
version of the one-dimensional bin packing problem. J. Algorithms, 5:502–525,
1984.

|pack cover|offline, online; NF, FFD, IWFD variants|R∞
A

[2] Y. Azar and O. Regev. On-line bin-stretching. Theor. Comp. Sci., 268:17–41,
2001.

|makespan|online|RA stretch

[3] E. G. Coffman, Jr., J. Y. Leung, and D. W. Ting. Bin packing: maximizing
the number of pieces packed. Acta Informatica, 9:263–271, 1978.

|deadline|offline; WFI, FFI|RA

[4] E. G. Coffman, Jr., K. So, M. Hofri, and A. C. Yao. A stochastic model of
bin-packing. Inf. and Cont., 44:105–115, 1980.

|pack|bounded space|ENF (Ln), U(0, 1)

[5] J. Csirik and V. Totik. On-line algorithms for a dual version of bin packing.
Disc. Appl. Math., 21:163–167, 1988.

|pack cover|online|R∞
A bound

[6] H. Dyckhoff. A typology of cutting and packing problems. Eur. J. Oper. Res.,
44:145–159, 1990.

[7] D. K. Friesen and M. A. Langston. Analysis of a compound bin-packing algo-
rithm. SIAM J. Disc. Math., 4:61–79, 1991.

pack|offline; combined BF, FFD variant|R∞
A

[8] G. Galambos and G. J. Woeginger. Repacking helps in bounded space on-line
bin-packing. Computing, 49:329–338, 1993.

|pack|bounded space; repack|RA

[9] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to

the Theory of NP-completeness. W. H. Freeman, New York, New York, 1979.

[10] R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan. Op-
timization and approximation in deterministic sequencing and scheduling: a
survey. Annals Disc. Math., 5:287–326, 1979.

60 Edward G. Coffman, Jr. and János Csirik

[11] K. L. Krause, Y. Y. Shen, and H. D. Schwetman. Analysis of several task-
scheduling algorithms for a model of multiprogramming computer systems. J.

ACM, 22:522–550, 1975.

|pack|offline; FF variant|R∞
A |items/bin ≤ k

[12] J. Y.-T. Leung, M. Dror, and G. H. Young. A note on an open-end bin packing
problem. J. of Scheduling, 4:201–207, 2001.

open end|pack|online; offline|R∞
A bound; FPTAS

[13] F. D. Murgolo. An efficient approximation scheme for variable-sized bin pack-
ing. SIAM J. Comput., 16:149–161, 1988.

variable bi|pack|offline| PTAS

[14] G. J. Woeginger. Improved space for bounded-space, on-line bin-packing.
SIAM J. Disc. Math., 6:575–581, 1993.

|pack|bounded space; Hk variant|R∞
A |O(log k) open bins

