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Self-Regulating Finite Automata

Alexander Meduna∗ and Tomáš Masopust∗

Abstract

This paper introduces and discusses self-regulating finite automata. In

essence, these automata regulate the use of their rules by a sequence of rules

applied during previous moves. A special attention is paid to turns defined

as moves during which a self-regulating finite automaton starts a new self-

regulating sequence of moves. Based on the number of turns, the present

paper establishes two infinite hierarchies of language families resulting from

two variants of these automata. In addition, it demonstrates that these hier-

archies coincide with the hierarchies resulting from parallel right linear gram-

mars and right linear simple matrix grammars, so the self-regulating finite

automata can be viewed as the automaton counterparts to these grammars.

Finally, this paper compares both infinite hierarchies. In addition, as an open

problem area, it suggests the discussion of self-regulating pushdown automata

and points out that they give rise to no infinite hierarchy analogical to the

achieved hierarchies resulting from the self-regulating finite automata.

Keywords: regulated automata, self-regulation, infinite hierarchies of lan-

guage families, parallel right linear grammars, right linear simple matrix

grammars

1 Introduction

Over its history, automata theory has modified and restricted classical automata
in many ways (see [3, 5, 6, 7, 8, 16, 22, 24, 26]). Recently, regulated automata have
been introduced and studied in [17, 18]. In essence, these automata regulate the
use of their rules according to which they make moves by control languages. In this
paper, we continue with this topic by defining and investigating self-regulating finite

automata. Instead of prescribed control languages, however, the self-regulating
finite automata restrict the selection of a rule according to which the current move
is made by a rule according to which a previous move was made.

To give a more precise insight into self-regulating automata, consider a finite
automaton, M , with a finite binary relation, R, over M ’s rules. Furthermore,
suppose that M makes a sequence of moves, ρ, that leads to the acceptance of a
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word, so ρ can be expressed as a concatenation of n+ 1 consecutive subsequences,
ρ = ρ0ρ1 . . . ρn, |ρi| = |ρj |, 0 ≤ i, j ≤ n, in which r

j
i denote the rule according to

which the ith move in ρj is made, for all 0 ≤ j ≤ n and 1 ≤ i ≤ |ρj | (as usual, |ρj |

denotes the length of ρj). If for all 0 ≤ j < n, (rj
1, r

j+1
1 ) ∈ R, then M represents

an n-turn first-move self-regulating finite automaton with respect to R. If for all
0 ≤ j < n and all 1 ≤ i ≤ |ρi|, (rj

i , r
j+1
i ) ∈ R, then M represents an n-turn all-move

self-regulating finite automaton with respect to R.

Based on the number of turns, we establish two infinite hierarchies of language
families that lie between the families of regular and context-sensitive languages.
First, we demonstrate that n-turn first-move self-regulating finite automata give
rise to an infinite hierarchy of language families coinciding with the hierarchy re-
sulting from (n + 1)-parallel right linear grammars (see [20, 21, 27, 28]). Recall
that n-parallel right linear grammars generate a proper language subfamily of the
language family generated by (n+ 1)-parallel right linear grammars (see Theorem
5 in [21]). As a result, n-turn first-move self-regulating finite automata accept a
proper language subfamily of the language family accepted by (n + 1)-turn first-
move self-regulating finite automata, for all n ≥ 0. Similarly, we prove that n-turn
all-move self-regulating finite automata give rise to an infinite hierarchy of language
families coinciding with the hierarchy resulting from (n+1)-right linear simple ma-
trix grammars (see [4, 10, 28]). As n-right linear simple matrix grammars generate
a proper subfamily of the language family generated by (n+ 1)-right linear simple
matrix grammars (see Theorem 1.5.4 in [4]), n-turn all-move self-regulating finite
automata accept a proper language subfamily of the language family accepted by
(n+ 1)-turn all-move self-regulating finite automata. Furthermore, since the fam-
ilies of right linear simple matrix languages coincide with the language families
accepted by multitape nonwriting automata (see [5]) and by finite-turn checking
automata (see [24]), the all-move self-regulating finite automata characterize these
families, too. Finally, we summarize the results about both infinite hierarchies.

In the conclusion of this paper, as an open problem area, we suggest the dis-
cussion of self-regulating pushdown automata. Regarding self-regulating all-move
pushdown automata, we prove that they do not give rise to any infinite hierarchy
analogical to the achieved hierarchies resulting from the self-regulating finite au-
tomata. Indeed, zero-turn all-move self-regulating pushdown automata define the
family of context-free languages while one-turn all-move self-regulating pushdown
automata define the family of recursively enumerable languages. On the other
hand, as far as self-regulating first-move pushdown automata are concerned, the
question whether they define an infinite hierarchy or not is open.

2 Preliminaries

We assume that the reader is familiar with the theory of automata and formal
languages (see [1, 2, 9, 11, 12, 13, 15, 19, 25]). For a set Q, |Q| denotes the
cardinality of Q. N = {1, 2, 3, . . .} denotes the set of all natural numbers. For an
alphabet V , V ∗ represents the free monoid generated by V under the operation of



Self-Regulating Finite Automata 137

concatenation. The identity of V ∗ is denoted by ε. Set V + = V ∗−{ε}; algebraically,
V + is thus the free semigroup generated by V under the operation of concatenation.
For w ∈ V ∗, |w| denotes the length of w. Let w ∈ V ∗; then, alph(w) = {a ∈ V : a
appears in w}. For every L ⊆ V ∗, alph(L) =

⋃
w∈L alph(w).

A finite automaton, M , is a quintuple M = (Q,Σ, δ, q0, F ), where Q is a finite
set of states, Σ is a finite input alphabet, δ is a finite set of rules of the form qw → p,
q, p ∈ Q, w ∈ Σ∗, q0 ∈ Q is an initial state, and F is a set of final states. Let Ψ be
an alphabet of rule labels such that |Ψ| = |δ|, and ψ be a bijection from δ to Ψ. For
simplicity, to express that ψ maps a rule qw → p ∈ δ to r, where r ∈ Ψ, we write
r.qw → p ∈ δ; in other words, r.qw → p means ψ(qw → p) = r. A configuration of
M is any word from QΣ∗. For any configuration qwy, where y ∈ Σ∗, q ∈ Q, and
any r.qw → p ∈ δ, M makes a move from configuration qwy to configuration py

according to r, written as qwy ⇒ py [r]. Let χ be any configuration ofM . M makes
zero moves from χ to χ according to ε, written as χ ⇒0 χ [ε]. Let there exist a
sequence of configurations χ0, χ1, . . . , χn, for some n ≥ 1, such that χi−1 ⇒ χi [ri],
where ri ∈ Ψ, i = 1, . . . , n. Then, M makes n moves from χ0 to χn according
to r1, . . . , rn, symbolically written as χ0 ⇒n χn [r1 . . . rn]. We write ϕ ⇒∗ κ [µ] if
ϕ ⇒n κ [µ] for some n ≥ 0. If w ∈ Σ∗ and q0w ⇒∗ f [µ], for f ∈ F , then w is

accepted by M and q0w ⇒∗ f [µ] is an acceptance of w in M . The language of M
is defined as L(M) = {w ∈ Σ∗ : q0w ⇒∗ f [µ] is an acceptance of w}.

For n ≥ 1, an n-parallel right linear grammar, n-PRLG, is an (n + 3)-tuple
G = (N1, . . . , Nn, T, S, P ), where Ni, 1 ≤ i ≤ n, are mutually disjoint nonterminal
alphabets, T is a terminal alphabet, S 6∈ N is an initial symbol, N = N1∪· · ·∪Nn,
and P is a finite set of rules that contains three kinds of rules:

1. S → X1 . . .Xn, Xi ∈ Ni, 1 ≤ i ≤ n;
2. X → wY , X,Y ∈ Ni for some i, 1 ≤ i ≤ n, w ∈ T ∗;
3. X → w, X ∈ N , w ∈ T ∗.

For x, y ∈ (N ∪ T ∪ {S})∗, x⇒ y if and only if

1. either x = S and S → y ∈ P ,

2. or x = y1X1 . . . ynXn, y = y1x1 . . . ynxn, where yi ∈ T ∗, xi ∈ T ∗N ∪ T ∗,
Xi ∈ Ni, and Xi → xi ∈ P , 1 ≤ i ≤ n.

If x, y ∈ (N ∪T ∪{S})∗ and l > 0, then x⇒l y if and only if there exists a sequence
x0 ⇒ x1 ⇒ · · · ⇒ xl, x0 = x, xl = y. Then, we say x ⇒+ y if and only if there
exists l > 0 such that x ⇒l y, and x ⇒∗ y if and only if x = y or x ⇒+ y. The
language generated by an n-PRLG, G, is defined as L(G) = {w ∈ T ∗ : S ⇒+ w}.
Language L ⊆ T ∗ is an n-parallel right linear language, n-PRLL, if there is an
n-PRLG, G, such that L = L(G). The family of n-PRLLs is denoted by Rn.

For n ≥ 1, an n-right linear simple matrix grammar, n-RLSMG, is an (n +
3)-tuple G = (N1, . . . , Nn, T, S, P ), where Ni, 1 ≤ i ≤ n, are mutually disjoint
nonterminal alphabets, T is a terminal alphabet, S 6∈ N is an initial symbol,
N = N1 ∪ · · · ∪Nn, and P is a finite set of matrix rules. A matrix rule can be in
one of the following three forms:



138 Alexander Meduna and Tomáš Masopust

1. [S → X1 . . .Xn], Xi ∈ Ni, 1 ≤ i ≤ n;
2. [X1 → w1Y1, . . . , Xn → wnYn], wi ∈ T ∗, Xi, Yi ∈ Ni, 1 ≤ i ≤ n;
3. [X1 → w1, . . . , Xn → wn], Xi ∈ Ni, wi ∈ T ∗, 1 ≤ i ≤ n.

Let m be a matrix, then m[i] denotes the ith rule of m. For x, y ∈ (N ∪ T ∪ {S})∗,
x⇒ y if and only if

1. either x = S and [S → y] ∈ P ,

2. or x = y1X1 . . . ynXn, y = y1x1 . . . ynxn, where yi ∈ T ∗, xi ∈ T ∗N ∪ T ∗,
Xi ∈ Ni, 1 ≤ i ≤ n, and [X1 → x1, . . . , Xn → xn] ∈ P .

We define x⇒+ y and x⇒∗ y as above. The language generated by an n-RLSMG,
G, is defined as L(G) = {w ∈ T ∗ : S ⇒+ w}. Language L ⊆ T ∗ is an n-right

linear simple matrix language, n-RLSML, if there is an n-RLSMG, G, such that
L = L(G). The family of n-RLSMLs is denoted by R[n].

Let G = (N1, . . . , Nn, T, S, P ) be an n-PRLG, for some n ≥ 1, and 1 ≤ i ≤ n.
By the ith component of G we understand a 1-PRLG G = (Ni, T, S

′, P ′), where P ′

contains rules of the following forms:

1. S′ → Xi if S → X1 . . . Xn ∈ P , Xi ∈ Ni;
2. X → wY if X → wY ∈ P and X,Y ∈ Ni;
3. X → w if X → w ∈ P and X ∈ Ni.

The ith component of an n-RLSMG is defined analogously.
Finally, let REG, CF , and CS denote the families of regular, context-free, and

context-sensitive languages, respectively.

3 Definitions and Examples

In this section, we define and illustrate n-turn first-move self-regulating finite au-
tomata and n-turn all-move self-regulating finite automata.

Definition 1. A self-regulating finite automaton, SFA, M , is a septuple

M = (Q,Σ, δ, q0, qt, F,R),

where

1. (Q,Σ, δ, q0, F ) is a finite automaton,

2. qt ∈ Q is a turn state, and

3. R ⊆ Ψ × Ψ is a finite relation on the alphabet of rule labels.

In this paper, we consider two ways of self-regulation—first-move and all-move.
According to these two types of self-regulation, two types of n-turn self-regulating
finite automata are defined.
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Definition 2. Let n ≥ 0 and M = (Q,Σ, δ, q0, qt, F,R) be a self-regulating finite

automaton. M is said to be an n-turn first-move self-regulating finite automaton,

n-first-SFA, if M accepts w in the following way. There is an acceptance of the

form q0w ⇒∗ f [µ] such that

µ = r01 . . . r
0
kr

1
1 . . . r

1
k . . . r

n
1 . . . r

n
k ,

where k ∈ N, r0k is the first rule of the form qx→ qt, for some q ∈ Q, x ∈ Σ∗, and

(rj
1, r

j+1
1 ) ∈ R

for all 0 ≤ j < n.

The family of languages accepted by n-first-SFAs is denoted by Wn.

Example 3. Consider a 1-turn first-move self-regulating finite automaton, M =
({s, t, f}, {a, b}, δ, s, t, {f}, {(1, 3)}), with δ containing rules 1.sa → s, 2.sa → t,
3.tb→ f , and 4.fb→ f (see Fig. 1).

s t f
a b

a b

Figure 1: 1-turn first-move self-regulating finite automaton M .

With aabb, M makes

saabb⇒ sabb [1] ⇒ tbb [2] ⇒ fb [3] ⇒ f [4].

In brief, saabb ⇒∗ f [1234]. Observe that L(M) = {anbn : n ≥ 1}, which belongs
to CF −REG.

Definition 4. Let n ≥ 0 and M = (Q,Σ, δ, q0, qt, F,R) be a self-regulating finite

automaton. M is said to be an n-turn all-move self-regulating finite automaton, n-

all-SFA, if M accepts w in the following way. There is an acceptance q0w ⇒∗ f [µ]
such that

µ = r01 . . . r
0
kr

1
1 . . . r

1
k . . . r

n
1 . . . r

n
k ,

where k ∈ N, r0k is the first rule of the form qx→ qt, for some q ∈ Q, x ∈ Σ∗, and

(rj
i , r

j+1
i ) ∈ R

for all 1 ≤ i ≤ k, 0 ≤ j < n.

The family of languages accepted by n-all-SFAs is denoted by Sn.
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s t f
ε ε

a, b a, b

Figure 2: 1-turn all-move self-regulating finite automaton M .

Example 5. Consider a 1-turn all-move self-regulating finite automaton, M =
({s, t, f}, {a, b}, δ, s, t, {f}, {(1, 4), (2, 5), (3, 6)}), with δ containing rules 1.sa→ s,
2.sb→ s, 3.s→ t, 4.ta→ t, 5.tb→ t, and 6.t→ f (see Fig. 2).
With abab, M makes

sabab⇒ sbab [1] ⇒ sab [2] ⇒ tab [3] ⇒ tb [4] ⇒ t [5] ⇒ f [6].

In brief, sabab ⇒∗ f [123456]. Observe that L(M) = {ww : w ∈ {a, b}∗}, which
belongs to CS − CF .

4 Results

We prove that the family of languages accepted by n-first-SFAs coincides with the
family of languages generated by (n + 1)-PRLGs. Furthermore, we demonstrate
that the family of languages accepted by n-all-SFAs coincides with the family of
languages generated by n-RLSMGs.

4.1 n-Turn First-Move Self-Regulating Finite Automata

Section 4.1 establishes the identity between the family of languages accepted by
n-first-SFAs and the family of languages generated by (n + 1)-PRLGs. To do so,
we need the following form of parallel right linear grammars.

Lemma 6. For every n-PRLG G = (N1, . . . , Nn, T, S, P ), there is an equivalent

n-PRLG G′ = (N ′

1, . . . , N
′

n, T, S, P
′) that satisfies:

1. if S → X1 . . . Xn ∈ P ′, then Xi does not occur on the right-hand side of any

rule, for 1 ≤ i ≤ n;

2. if S → α, S → β ∈ P ′ and α 6= β, then alph(α) ∩ alph(β) = ∅.

Proof. If G does not satisfy conditions from the lemma, then we will construct a
new n-PRLG G′ = (N ′

1, . . . , N
′

n, T, S, P
′), where P ′ contains all rules of the form

X → β ∈ P , X 6= S, and Nj ⊆ N ′

j , 1 ≤ j ≤ n. For each rule S → X1 . . . Xn ∈ P ,
we add new nonterminals Yj 6∈ N ′

j into N ′

j, and rules include S → Y1 . . . Yn and
Yj → Xj in P ′, 1 ≤ j ≤ n. Clearly,

S ⇒G X1 . . .Xn if and only if S ⇒G′ Y1 . . . Yn ⇒ X1 . . . Xn.
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Thus, L(G) = L(G′).

Lemma 7. Let G be an n-PRLG. Then, there is an (n − 1)-first-SFA, M , such

that L(G) = L(M).

Proof. Informally, M is divided into n parts (see Fig. 3). The ith part represents a
finite automaton accepting the language of G’s ith component, and R also connects
the ith part to the (i+ 1)st part as depicted in Fig. 3.

Formally, without loss of generality, we assume G = (N1, . . . , Nn, T, S, P )
to be in the form from Lemma 6. We construct an (n − 1)-first-SFA M =
(Q, T, δ, q0, qt, F,R), where Q = {q0, . . . , qn} ∪ N , N = N1 ∪ · · · ∪ Nn,
{q0, q1, . . . , qn} ∩ N = ∅, F = {qn}, δ = {qi → Xi+1 : S → X1 . . . Xn ∈
P, 0 ≤ i < n} ∪ {Xw → Y : X → wY ∈ P} ∪ {Xw → qi : X → w ∈
P, w ∈ T ∗, X ∈ Ni, i ∈ {1, . . . , n}}, qt = q1, Ψ = δ with the identity map,
and R = {(qi → Xi+1, qi+1 → Xi+2) : S → X1 . . . Xn ∈ P, 0 ≤ i ≤ n− 2}.

Next, we prove L(G) = L(M). To prove L(G) ⊆ L(M), consider a derivation of
w in G and construct an acceptance of w inM depicted in Fig. 3. This figure clearly

S

⇓

X1

1
X2

1
. . . Xn

1

⇓

x1

1
X1

2
x2

1
X2

2
. . . xn

1
Xn

2

⇓
.
.
.

⇓

x1

1
. . . x1

k−1
X1

k
x2

1
. . . X2

k
. . . xn

1
. . . Xn

k

⇓

w = x1

1
. . . x1

k
x2

1
. . . x2

k
. . . xn

1
. . . xn

k

in G

q0

ε ↓

X1

1

x1

1
↓

X1

2

x1

2
↓
.
.
.

x1

k−1
↓

X1

k

x1

k
↓

q1

ε ↓

X2

1

x2

1
↓

X2

2

x2

2
↓
.
.
.

x2

k−1
↓

X2

k

x2

k
↓

q2

.

.

.

ε ↓

Xn

1

xn

1
↓

Xn

2

xn

2
↓
.
.
.

xn

k−1
↓

Xn

k

xn

k
↓

qn

in M

Figure 3: A derivation of w in G and the corresponding acceptance of w in M .

demonstrates the fundamental idea behind this part of the proof; its complete and
rigorous version is lengthy and left to the reader. Thus, for each derivation S ⇒∗ w,
w ∈ T ∗, there is an acceptance of w in M .

To prove L(M) ⊆ L(G), let w ∈ L(M). Consider an acceptance of w in M .
Observe that the acceptance is of the form depicted on the right-hand side of Fig.
3. It means that the number of steps M made from qi−1 to qi is the same as
from qi to qi+1 since the only rule in the relation with qi−1 → X i

1 is the rule
qi → X i+1

1 . Moreover, M can never come back to a state corresponding to a
previous component. (By a component of M , we mean the finite automaton Mi =
(Q,Σ, δ, qi−1, {qi}), for 1 ≤ i ≤ n.) Now, construct a derivation of w in G. By
Lemma 6, we have |{X : (qi → X i+1

1 , qi+1 → X) ∈ R}| = 1, for all 0 ≤ i <

n − 1. Thus, S → X1
1X

2
1 . . . X

n
1 ∈ P . Moreover, if X i

jx
i
j → X i

j+1, we apply
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X i
j → xi

jX
i
j+1 ∈ P , and if X i

kx
i
k → qi, we apply X i

k → xi
k ∈ P , 1 ≤ i ≤ n,

1 ≤ j < k.
Hence, Lemma 7 holds.

Lemma 8. Let M be an n-first-SFA. There is an (n + 1)-PRLG, G, such that

L(G) = L(M).

Proof. Let M = (Q,Σ, δ, q0, qt, F,R). Consider G = (N0, . . . , Nn,Σ, S, P ), where
Ni = (QΣl ×Q× {i} ×Q) ∪ (Q× {i}×Q), l = max{|w| : qw → p ∈ δ}, 0 ≤ i ≤ n,
and

P = {S → [q0x0, q
0, 0, qt][qtx1, q

1, 1, qi1 ][qi1x2, q
2, 2, qi2 ] . . . [qin−1

xn, q
n, n, qin

] :
r0.q0x0 → q0, r1.qtx1 → q1, r2.qi1x2 → q2, . . . , rn.qin−1

xn → qn ∈ δ,
(r0, r1), (r1, r2), . . . , (rn−1, rn) ∈ R, qin

∈ F}∪

{[px, q, i, r] → x[q, i, r]}∪

{[q, i, q] → ε : q ∈ Q}∪

{[q, i, p] → w[q′, i, p] : qw → q′ ∈ δ}.

Next, we prove L(G) = L(M). To prove L(G) ⊆ L(M), observe that we make
n+ 1 copies of M and go through them similarly to Fig. 3. Consider a derivation
of w in G. Then, in greater detail, this derivation is of the form

S ⇒ [q0x
0
0, q

0
1 , 0, qt][qtx

1
0, q

1
1 , 1, qi1 ] . . . [qin−1

xn
0 , q

n
1 , n, qin

]

⇒ x0
0[q

0
1 , 0, qt]x

1
0[q

1
1 , 1, qi1 ] . . . x

n
0 [qn

1 , n, qin
]

⇒ x0
0x

0
1[q

0
2 , 0, qt]x

1
0x

1
1[q

1
2 , 1, qi1 ] . . . x

n
0x

n
1 [qn

2 , n, qin
] (1)

...

⇒ x0
0x

0
1 . . . x

0
k[qt, 0, qt]x

1
0x

1
1 . . . x

1
k[qi1 , 1, qi1 ] . . . x

n
0x

n
1 . . . x

n
k [qin

, n, qin
]

⇒ x0
0x

0
1 . . . x

0
kx

1
0x

1
1 . . . x

1
k . . . x

n
0x

n
1 . . . x

n
k

and r0.q0x
0
0 → q01 , r1.qtx

1
0 → q11 , r2.qi1x

2
0 → q21 , . . . , rn.qin−1

xn
0 → qn

1 ∈ δ, (r0, r1),
(r1, r2), . . . , (rn−1, rn) ∈ R, and qin

∈ F .
Thus, the list of rules used in the acceptance of w in M is

µ = (q0x
0
0 → q01)(q

0
1x

0
1 → q02) . . . (q

0
kx

0
k → qt)

(qtx
1
0 → q11)(q

1
1x

1
1 → q12) . . . (q

1
kx

1
k → qi1)

(qi1x
2
0 → q21)(q

2
1x

2
1 → q22) . . . (q

2
kx

2
k → qi2 ) (2)

...

(qin−1
xn

0 → qn
1 )(qn

1 x
n
1 → qn

2 ) . . . (qn
kx

n
k → qin

).

Now, we prove L(M) ⊆ L(G). Informally, the acceptance is divided into n+ 1
parts of the same length. Grammar G generates the ith part by the ith component
and records the state from which the next component starts.
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Let µ be a list of rules used in an acceptance of w in M of the form (2), where
w = x0

0x
0
1 . . . x

0
kx

1
0x

1
1 . . . x

1
k . . . x

n
0x

n
1 . . . x

n
k . Then, the derivation of the form (1)

is the corresponding derivation of w in G since [qi
j , i, p] → xi

j [q
i
j+1, i, p] ∈ P and

[q, i, q] → ε, for all 0 ≤ i ≤ n, 1 ≤ j < k.
Hence, Lemma 8 holds.

The first main result of this paper follows next.

Theorem 9. For all n ≥ 0, Wn = Rn+1.

Proof. This proof follows from Lemma 7 and 8.

Corollary 10. The following statements hold true.

1. REG = W0 ⊂W1 ⊂W2 ⊂ · · · ⊂ CS.

2. W1 ⊂ CF .

3. W2 6⊆ CF .

4. CF 6⊆Wn for any n ≥ 0.

5. For all n ≥ 0, Wn is closed under union, finite substitution, homomorphism,

intersection with a regular language, and right quotient with a regular lan-

guage.

6. For all n ≥ 1, Wn is not closed under intersection and complement.

Proof. Recall the following statements proved in [21]:

• REG = R1 ⊂ R2 ⊂ R3 ⊂ · · · ⊂ CS.

• R2 ⊂ CF .

• CF 6⊆ Rn, n ≥ 1.

• For all n ≥ 1, Rn is closed under union, finite substitution, homomorphism,
intersection with a regular language, and right quotient with a regular lan-
guage.

• For all n ≥ 2, Rn is not closed under intersection and complement.

These statements and Theorem 9 imply statements 1, 2, 4, 5, 6 of Corollary 10.
Moreover, observe that {anbnc2n : n ≥ 0} ∈W2 − CF , which proves 3.

Theorem 11. For all n ≥ 1, Wn is not closed under inverse homomorphism.

Proof. For n = 1, let L = {akbk : k ≥ 1}, and let the homomorphism
h : {a, b, c}∗ → {a, b}∗ be defined as h(a) = a, h(b) = b, and h(c) = ε. Then,
L ∈ W1, but

L′ = h−1(L) ∩ c∗a∗b∗ = {c∗akbk : k ≥ 1} 6∈ W1.

Assume that L′ is in W1. Then, by Theorem 9, there is a 2-PRLG G =
(N1, N2, T, S, P ) such that L(G) = L′. Let k > |P | · max{|w| : X → wY ∈ P}.
Consider a derivation of ckakbk ∈ L′. The second component can generate only
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finitely many as; otherwise, it derives {akbn : k < n}, which is not regular. Anal-
ogously, the first component generates only finitely many bs. Therefore, the first
component generates any number of as, and the second component generates any
number of bs. Moreover, there is a derivation of the form X ⇒m X , for some
X ∈ N2, and m ≥ 1, used in the derivation in the second component. In the first
component, there is a derivation A ⇒l asA, for some A ∈ N1, and s, l ≥ 1. Then,
we can modify the derivation of ckakbk so that in the first component, we repeat
the cycle A ⇒l asA (m + 1)-times, and in the second component, we repeat the
cycle X ⇒m X (l + 1)-times. The derivations of both components have the same
length—the added cycles are of length ml, and the rest is of the same length as in
the derivation of ckakbk. Therefore, we have derived ckarbk, where r > k, which is
not in L′—a contradiction.

For n > 1, the proof is analogous and left to the reader.

Corollary 12. For all n ≥ 1, Wn is not closed under concatenation. Therefore, it

is not closed under Kleene closure either.

Proof. For n = 1, let L1 = {c}∗ and L2 = {akbk : k ≥ 1}. Then, L1L2 = {c∗akbk :
k ≥ 1}. Analogously, prove this corollary for n > 1.

4.2 n-Turn All-Move Self-Regulating Finite Automata

This section discusses n-turn all-move self-regulating finite automata. It proves
that the family of languages accepted by n-all-SFAs coincides with the family of
languages generated by n-RLSMGs.

Lemma 13. For every n-RLSMG, G = (N1, . . . , Nn, T, S, P ), there is an equivalent

n-RLSMG, G′, that satisfies:

1. if [S → X1 . . . Xn], then Xi does not occur on the right-hand side of any rule,

1 ≤ i ≤ n;

2. if [S → α], [S → β] ∈ P and α 6= β, then alph(α) ∩ alph(β) = ∅;

3. for any two matrices m1,m2 ∈ P , if m1[i] = m2[i], for some 1 ≤ i ≤ n, then

m1 = m2.

Proof. The first two conditions can be proved analogously to Lemma 6. Suppose
that there are matrices m and m′ such that m[i] = m′[i], for some 1 ≤ i ≤ n.
Let m = [X1 → x1, . . . , Xn → xn], m′ = [Y1 → y1, . . . , Yn → yn]. Replace
these matrices with matrices m1 = [X1 → X ′

1, . . . , Xn → X ′

n], m2 = [X ′

1 →
x1, . . . , X

′

n → xn], and m′

1 = [Y1 → Y ′′

1 , . . . , Yn → Y ′′

n ], m′

2 = [Y ′′

1 → y1, . . . , Y
′′

n →
yn], where X ′

i, Y
′′

i are new nonterminals for all i. These new matrices satisfy
condition 3. Repeat this replacement until the resulting grammar satisfies the
properties of G′ given in this lemma.

Lemma 14. Let G be an n-RLSMG. There is an (n − 1)-all-SFA, M , such that

L(G) = L(M).
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Proof. Without loss of generality, we assume that G = (N1, . . . , Nn, T, S, P )
is in the form described in Lemma 13. We construct (n − 1)-all-SFA M =
(Q, T, δ, q0, qt, F,R), where Q = {q0, . . . , qn} ∪ N , N = N1 ∪ · · · ∪ Nn,
{q0, q1, . . . , qn} ∩ N = ∅, F = {qn}, δ = {qi → Xi+1 : [S → X1 . . .Xn] ∈ P, 0 ≤
i < n} ∪ {Xiwi → Yi : [X1 → w1Y1, . . . , Xn → wnYn] ∈ P, 1 ≤ i ≤ n} ∪ {Xiwi →
qi : [X1 → w1, . . . , Xn → wn] ∈ P, wi ∈ T ∗, 1 ≤ i ≤ n}, qt = q1, Ψ = δ with the
identity map, and R = {(qi → Xi+1, qi+1 → Xi+2) : [S → X1 . . . Xn] ∈ P, 0 ≤ i ≤
n− 2} ∪ {(Xiwi → Yi, Xi+1wi+1 → Yi+1) : [X1 → w1Y1, . . . , Xn → wnYn] ∈ P, 1 ≤
i < n} ∪ {(Xiwi → qi, Xi+1wi+1 → qi+1) : [X1 → w1, . . . , Xn → wn] ∈ P, wi ∈
T ∗, 1 ≤ i < n}.

We next prove L(G) = L(M). The proof of L(G) ⊆ L(M) is very similar to the
proof of the same inclusion of Lemma 7, so it is left to the reader.

To prove L(M) ⊆ L(G), consider w ∈ L(M) and an acceptance of w in M .
As in Lemma 7, the derivation looks like the one depicted on the right-hand side
of Fig. 3. Next, we generate w in G as follows. By Lemma 13, there is matrix
[S → X1

1X
2
1 . . . X

n
1 ] in P . Moreover, if X i

jx
i
j → X i

j+1, 1 ≤ i ≤ n, then (X i
j →

xi
jX

i
j+1, X

i+1
j → xi+1

j X i+1
j+1) ∈ R, for 1 ≤ i < n, 1 ≤ j < k. We apply [X1

j →

x1
jX

1
j+1, . . . , X

n
j → xn

j X
n
j+1] from P . If X i

kx
i
k → qi, 1 ≤ i ≤ n, then (X i

k →

xi
k, X

i+1
k → xi+1

k ) ∈ R, for 1 ≤ i < n, and we apply [X1
k → x1

k, . . . , X
n
k → xn

k ] ∈ P .
Thus, w ∈ L(G).

Hence, Lemma 14 holds.

Lemma 15. Let M be an n-all-SFA. There is an (n + 1)-RLSMG, G, such that

L(G) = L(M).

Proof. Let M = (Q,Σ, δ, q0, qt, F,R). Consider G = (N0, . . . , Nn,Σ, S, P ), where
Ni = (QΣl ×Q× {i} ×Q) ∪ (Q× {i}×Q), l = max{|w| : qw → p ∈ δ}, 0 ≤ i ≤ n,
and

P = {[S → [q0x0, q
0, 0, qt][qtx1, q

1, 1, qi1 ] . . . [qin−1
xn, q

n, n, qin
]] :

r0.q0x0 → q0, r1.qtx1 → q1, . . . , rn.qin−1
xn → qn ∈ δ,

(r0, r1), . . . , (rn−1, rn) ∈ R, qin
∈ F}∪

{[[p0x0, q0, 0, r0] → x0[q0, 0, r0], . . . , [pnxn, qn, n, rn] → xn[qn, n, rn]]}∪

{[[q0, 0, q0] → ε, . . . , [qn, n, qn] → ε] : qi ∈ Q, 0 ≤ i ≤ n}∪

{[[q0, 0, p0] → w0[q
′

0, 0, p0], . . . , [qn, n, pn] → wn[q′n, n, pn]] : rj .qjwj → q′j ∈
δ, 0 ≤ j ≤ n, (ri, ri+1) ∈ R, 0 ≤ i < n}.

Next, we prove L(G) = L(M). To prove L(G) ⊆ L(M), consider a derivation
of w in G. Then, the derivation is of the form (1) and there are rules r0.q0x

0
0 →

q01 , r1.qtx
1
0 → q11 , . . . , rn.qin−1

xn
0 → qn

1 in δ such that (r0, r1), . . . , (rn−1, rn) ∈ R.

Moreover, (rl
j , r

l+1
j ) ∈ R, where rl

j .q
l
jx

l
j → ql

j+1 ∈ δ, and (rl
k, r

l+1
k ) ∈ R, where

rl
k.q

l
kx

l
k → qil

∈ δ, 0 ≤ l < n, 1 ≤ j < k, qi0 denotes qt, and qin
∈ F . Thus, M

accepts w with the list of rules µ of the form (2).
To prove L(M) ⊆ L(G), let µ be a list of rules used in an acceptance of

w = x0
0x

0
1 . . . x

0
kx

1
0x

1
1 . . . x

1
k . . . x

n
0x

n
1 . . . x

n
k
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in M of the form (2). Then, the derivation is of the form (1) because

[[q0j , 0, qt] → x0
j [q

0
j+1, 0, qt], . . . , [q

n
j , n, qin

] → xn
j [qn

j+1, n, qin
]] ∈ P,

for all qi
j ∈ Q, 1 ≤ i ≤ n, 1 ≤ j < k, and [[qt, 0, qt] → ε, . . . , [qin

, n, qin
] → ε] ∈ P .

Hence, Lemma 15 holds.

The second main result of this paper follows next.

Theorem 16. For all n ≥ 0, Sn = R[n+1].

Proof. This proof follows from Lemma 14 and 15.

Corollary 17. The following statements hold:

1. REG = S0 ⊂ S1 ⊂ S2 ⊂ · · · ⊂ CS.

2. S1 6⊆ CF .

3. CF 6⊆ Sn, for every n ≥ 0.

4. For all n ≥ 0, Sn is closed under union, concatenation, finite substitution,

homomorphism, intersection with a regular language, and right quotient with

a regular language.

5. For all n ≥ 1, Sn is not closed under intersection, complement, and Kleene

closure.

Proof. Recall the following statements proved in [28]:

• REG = R[1] ⊂ R[2] ⊂ R[3] ⊂ · · · ⊂ CS.

• For all n ≥ 1, R[n] is closed under union, finite substitution, homomorphism,
intersection with a regular language, and right quotient with a regular lan-
guage.

• For all n ≥ 2, R[n] is not closed under intersection and complement.

Furthermore, recall these statements proved in [23] and [24]:

• For all n ≥ 1, R[n] is closed under concatenation.

• For all n ≥ 2, R[n] is not closed under Kleene closure.

These statements and Theorem 16 imply statements 1, 4, and 5 of Corollary 17.
Moreover, observe that {ww : w ∈ {a, b}∗} ∈ S1 − CF (see Example 5), which
proves 2. Finally, let L = {wcwR : w ∈ {a, b}∗}. In [4, Theorem 1.5.2], there is a
proof that L 6∈ R[n], for any n ≥ 1. Thus, 3 follows from Theorem 16.

Theorem 18, given next, follows from Theorem 16 and from Corollary 3.3.3
in [24]. However, Corollary 3.3.3 in [24] is not proved effectively. We next prove
Theorem 18 effectively.

Theorem 18. Sn is closed under inverse homomorphism, for all n ≥ 0.



Self-Regulating Finite Automata 147

Proof. For n = 1, let M = (Q,Σ, δ, q0, qt, F,R) be a 1-all-SFA, and let h : ∆∗ → Σ∗

be a homomorphism. Next, we construct 1-all-SFA M ′ = (Q′,∆, δ′, q′0, q
′

t, {q
′

f}, R
′)

accepting h−1(L(M)) as follows. Denote k = max{|w| : qw → p ∈ δ}+max{|h(a)| :
a ∈ ∆}. Let Q′ = q′0 ∪ {[x, q, y] : x, y ∈ Σ∗, |x|, |y| ≤ k, q ∈ Q}. Initially, set δ′ and
R′ to ∅. Then, extend δ′ and R′ by performing 1 through 5:

1. For y ∈ Σ∗, |y| ≤ k, add
(q′0 → [ε, q0, y], q

′

t → [y, qt, ε]) to R′;

2. For A ∈ Q′, q 6= qt, add
([x, q, y]a→ [xh(a), q, y], A→ A) to R′;

3. For A ∈ Q′, add
(A→ A, [x, q, ε]a→ [xh(a), q, ε]) to R′;

4. For (qx→ p, q′x′ → p′) ∈ R, q 6= qt, add
([xw, q, y] → [w, p, y], [x′w′, q′, ε] → [w′, p′, ε]) to R′;

5. For qf ∈ F , add
([y, qt, y] → q′t, [ε, qf , ε] → q′f ) to R′.

In essence, M ′ simulates M in the following way. In a state of the form [x, q, y],
the three components have the following meaning:

• x = h(a1 . . . an), where a1 . . . an is the input string that M ′ has already read;

• q is the current state of M ;

• y is the suffix remaining as the first component of the state that M ′ enters
during a turn; y is thus obtained when M ′ reads the last symbol right before
the turn occurs in M ; M reads y after the turn.

More precisely, h(w) = w1yw2, where w is an input string, w1 is accepted by M

before making the turn, i.e. from q0 to qt, and yw2 is accepted by M after making
the turn, i.e. from qt to qf ∈ F . A rigorous version of this proof is left to the
reader.

For n > 1, the proof is analogous and left to the reader.

4.3 Language Families Accepted by n-first-SFAs and n-all-

SFAs

In this section, we compare the family of languages accepted by n-first-SFAs with
the family of languages accepted by n-all-SFAs.

Theorem 19. For all n ≥ 1, Wn ⊂ Sn.

Proof. In [21] and [28], it is proved that for all n > 1, Rn ⊂ R[n]. The proof of
Theorem 19 thus follows from Theorem 9 and 16.

Theorem 20. Wn 6⊆ Sn−1, n ≥ 1.
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Proof. It is easy to see that L = {ak
1a

k
2 . . . a

k
n+1 : k ≥ 1} ∈ Wn = Rn+1. However,

L 6∈ Sn−1 = R[n] (see Lemma 1.5.6 in [4]).

Lemma 21. For each regular language, L, language {wn : w ∈ L} ∈ Sn−1.

Proof. Let L = L(M), where M is a finite automaton. Make n copies of M .
Rename their states so all the sets of states are pairwise disjoint. In this way,
also rename the states in the rules of each of these n automata; however, keep the
labels of the rules unchanged. For each rule label r, include (r, r) into R. As a
result, we obtain an n-turn all-move self-regulating finite automaton that accepts
{wn : w ∈ L}. A rigorous version of this proof is left to the reader.

Theorem 22. Sn −W 6= ∅, for all n ≥ 1, where W =
⋃

∞

m=1Wm.

Proof. By induction on n ≥ 1, we prove that language L = {(cw)n+1 : w ∈
{a, b}∗} 6∈W . From Lemma 21, L ∈ Sn.

Basis: For n = 1, let G be an m-PRLG generating L, for some positive integer
m. Consider a sufficiently large string cw1cw2 ∈ L such that w1 = w2 = an1bn2 ,
n2 > n1 > 1. Then, there is a derivation of the form

S ⇒p

x1A1x2A2 . . . xmAm ⇒k x1y1A1x2y2A2 . . . xmymAm (3)

in G, where cycle (3) generates more than one a in w1. The derivation continues
as

x1y1A1 . . . xmymAm ⇒r

x1y1z1B1 . . . xmymzmBm ⇒l x1y1z1u1B1 . . . xmymzmumBm (4)

(cycle (4) generates no as) ⇒s cw1cw2.

Next, modify the left derivation, the derivation in components generating cw1, so
that the a-generating cycle (3) is repeated (l+1)-times. Similarly, modify the right
derivation, the derivation in the other components, so that the no-a-generating
cycle (4) is repeated (k + 1)-times. Thus, the modified left derivation is of length
p+ k(l+1)+ r+ l+ s = p+ k+ r+ l(k+1)+ s, which is the length of the modified
right derivation. Moreover, the modified left derivation generates more as in w1

than the right derivation in w2—a contradiction.

Induction step: Suppose that the theorem holds for all n ≤ k, for some k ≥ 1.
Consider n+1 and let {(cw)n+1 : w ∈ {a, b}∗} ∈Wl, for some l ≥ 1. As Wl is closed
under the right quotient with a regular language, and language {cw : w ∈ {a, b}∗}
is regular, we obtain {(cw)n : w ∈ {a, b}∗} ∈Wl ⊆W—a contradiction.

Fig. 4 summarizes the language families discussed in this paper.
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CF REG W1
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. . .Wn
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Figure 4: The hierarchy of languages.

5 Conclusion and Discussion

This paper has discussed self-regulating finite automata. As demonstrated next,
we can analogically introduce and discuss self-regulating pushdown automata.

Recall that a pushdown automaton (see [15]), M , is a septuple M = (Q,Σ,Γ, δ,
q0, Z0, F ), where Q, Σ, q0 ∈ Q, F are as in a finite automaton, Γ is a finite
pushdown alphabet, δ is a finite set of rules of the form Zqw → γp, q, p ∈ Q,
Z ∈ Γ, w ∈ Σ∗, γ ∈ Γ∗, and Z0 is an initial pushdown symbol. Again, let ψ denote
the bijection from δ to Ψ, and write r.Zqw → γp instead of ψ(Zqw → γp) = r.
A configuration of M is any word from Γ∗QΣ∗. For any configuration xAqwy,
where x ∈ Γ∗, y ∈ Σ∗, q ∈ Q, and any r.Aqw → γp ∈ δ, M makes a move from
xAqwy to xγpy according to r, written as xAqwy ⇒ xγpy [r]. As usual, we define
closure ⇒∗. If w ∈ Σ∗ and Z0q0w ⇒∗ f [µ], f ∈ F , then w is accepted by M

and Z0q0w ⇒∗ f [µ] is an acceptance of w in M . The language of M is defined as
L(M) = {w ∈ Σ∗ : Z0q0w ⇒∗ f [µ] is an acceptance of w}.

Definition 23. A self-regulating pushdown automaton, SPDA, M , is a nonuple

M = (Q,Σ,Γ, δ, q0, qt, Z0, F,R),

where

1. (Q,Σ,Γ, δ, q0, Z0, F ) is a pushdown automaton,

2. qt ∈ Q is a turn state, and

3. R ⊆ Ψ × Ψ is a finite relation, where Ψ is an alphabet of rule labels.
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Definition 24. Let n ≥ 0 and M = (Q,Σ,Γ, δ, q0, qt, Z0, F,R) be a self-regulating

pushdown automaton. M is said to be an n-turn first-move self-regulating push-
down automaton, n-first-SPDA, if M accepts w in the following way. There is an

acceptance Z0q0w ⇒∗ f [µ] such that

µ = r01 . . . r
0
kr

1
1 . . . r

1
k . . . r

n
1 . . . r

n
k ,

where k ∈ N, r0k is the first rule of the form Zqx → γqt, for some Z ∈ Γ, q ∈ Q,

x ∈ Σ∗, γ ∈ Γ∗, and

(rj
1, r

j+1
1 ) ∈ R

for all 0 ≤ j < n.

The family of languages accepted by n-first-SPDAs is denoted by L(n-first-

SPDA).

Definition 25. Let n ≥ 0 and M = (Q,Σ,Γ, δ, q0, qt, Z0, F,R) be a self-regulating

pushdown automaton. M is said to be an n-turn all-move self-regulating push-
down automaton, n-all-SPDA, if M accepts w in the following way. There is an

acceptance Z0q0w ⇒∗ f [µ] such that

µ = r01 . . . r
0
kr

1
1 . . . r

1
k . . . r

n
1 . . . r

n
k ,

where k ∈ N, r0k is the first rule of the form Zqx → γqt, for some Z ∈ Γ, q ∈ Q,

x ∈ Σ∗, γ ∈ Γ∗, and

(rj
i , r

j+1
i ) ∈ R

for all 1 ≤ i ≤ k, 0 ≤ j < n.

The family of languages accepted by n-all-SPDAs is denoted by L(n-all-SPDA).

5.1 n-Turn All-Move Self-Regulating Pushdown Automata

It is easy to see that an n-turn all-move self-regulating pushdown automaton with-
out any turn state is exactly a common pushdown automaton. Therefore, L(0-all-
SPDA) = CF . Moreover, if we consider 1-turn all-move self-regulating pushdown
automata, their power is that of the Turing machines.

Theorem 26. L(1-all-SPDA) = RE.

Proof. For any L ∈ RE, L ⊆ ∆∗, there are context-free languages L(G) and L(H)
and a homomorphism h : Σ∗ → ∆∗ such that L = h(L(G) ∩ L(H)) (see Theorem
1.12 in [14]). Suppose that G = (NG,Σ, PG, SG), H = (NH ,Σ, PH , SH) are in the
Greibach normal form, i.e. all rules are of the form A → aα, where A is a nonter-
minal, a is a terminal, and α is a (possibly empty) string of nonterminals. Let us
construct 1-all-SPDA M = ({q0, q, qt, p, f},∆,Σ∪NG ∪NH ∪{Z}, δ, q0, Z, {f}, R),
Z 6∈ Σ ∪NG ∪NH , with R made as follows:

1. add (Zq0 → ZSGq, Zqt → ZSHp) to R
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2. add (Aq → Bn . . . B1aq, Cp→ Dm . . . D1ap) to R if
A→ aB1 . . . Bn ∈ PG and
C → aD1 . . . Dm ∈ PH

3. add (aqh(a) → q, ap→ p) to R

4. add (Zq → Zqt, Zp→ f) to R

Moreover, δ contains only the rules from the definition of R.
Now, we prove w ∈ h(L(G) ∩ L(H)) if and only if w ∈ L(M).

Only if Part: Let w ∈ h(L(G) ∩ L(H)). There are a1, a2, . . . , an ∈ Σ such that
a1a2 . . . an ∈ L(G) ∩ L(H) and w = h(a1a2 . . . an), for some n ≥ 0. There are
leftmost derivations SG ⇒n a1a2 . . . an and SH ⇒n a1a2 . . . an of length n in G

and H , respectively, because in every derivation step exactly one terminal element
is derived. Thus, M accepts h(a1) . . . h(an) as

Zq0h(a1) . . . h(an) ⇒ ZSGqh(a1) . . . h(an), . . . , Zanqh(an) ⇒ Zq, Zq ⇒ Zqt,

Zqt ⇒ ZSHp, . . . , Zanp⇒ Zp, Zp⇒ f.

In state q, by using its pushdown, M simulates G’s derivation of a1 . . . an but reads
h(a1) . . . h(an) as the input. In p, M simulates H ’s derivation of a1a2 . . . an but
reads no input. As a1a2 . . . an can be derived in both G and H by making the same
number of steps, the automaton can successfully complete the acceptance of w.

If Part: Notice that in one step, M can read only h(a) ∈ ∆∗, for some a ∈ Σ.
Let w ∈ L(M), then w = h(a1) . . . h(an), for some a1, . . . , an ∈ Σ. Consider M ’s
acceptance of w

Zq0h(a1) . . . h(an) ⇒ ZSGqh(a1) . . . h(an), . . . , Zanqh(an) ⇒ Zq, Zq ⇒ Zqt,

Zqt ⇒ ZSHp, . . . , Zanp⇒ Zp, Zp⇒ f.

As stated above, in q, M simulates G’s derivation of a1a2 . . . an, and then in p, M
simulates H ’s derivation of a1a2 . . . an. It successfully completes the acceptance of
w only if a1a2 . . . an can be derived in both G and H . Hence, the if part holds,
too.

5.2 Open Problems

Although the fundamental results about self-regulating automata have been
achieved in this paper, there still remain several open problems concerning them.
Perhaps most importantly, these open problem areas include 1 through 3 given
next:

1. What is the language family accepted by n-turn first-move self-regulating
pushdown automata, when n ≥ 1 (see Definition 24)?

2. By analogy with the standard deterministic finite and pushdown automata
(see page 145 and page 437 in [15]), introduce the deterministic versions of
self-regulating automata. What is their power?
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3. Discuss the closure properties of other language operations, such as the re-
versal.
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