Self-Regulating Finite Automata

Alexander Meduna* and Tomás Masopust*

Abstract

This paper introduces and discusses self-regulating finite automata. In essence, these automata regulate the use of their rules by a sequence of rules applied during previous moves. A special attention is paid to turns defined as moves during which a self-regulating finite automaton starts a new selfregulating sequence of moves. Based on the number of turns, the present paper establishes two infinite hierarchies of language families resulting from two variants of these automata. In addition, it demonstrates that these hierarchies coincide with the hierarchies resulting from parallel right linear grammars and right linear simple matrix grammars, so the self-regulating finite automata can be viewed as the automaton counterparts to these grammars. Finally, this paper compares both infinite hierarchies. In addition, as an open problem area, it suggests the discussion of self-regulating pushdown automata and points out that they give rise to no infinite hierarchy analogical to the achieved hierarchies resulting from the self-regulating finite automata.

Keywords: regulated automata, self-regulation, infinite hierarchies of language families, parallel right linear grammars, right linear simple matrix grammars

1 Introduction

Over its history, automata theory has modified and restricted classical automata in many ways (see $[3,5,6,7,8,16,22,24,26]$). Recently, regulated automata have been introduced and studied in $[17,18]$. In essence, these automata regulate the use of their rules according to which they make moves by control languages. In this paper, we continue with this topic by defining and investigating self-regulating finite automata. Instead of prescribed control languages, however, the self-regulating finite automata restrict the selection of a rule according to which the current move is made by a rule according to which a previous move was made.

To give a more precise insight into self-regulating automata, consider a finite automaton, M, with a finite binary relation, R, over M 's rules. Furthermore, suppose that M makes a sequence of moves, ρ, that leads to the acceptance of a

[^0]word, so ρ can be expressed as a concatenation of $n+1$ consecutive subsequences, $\rho=\rho_{0} \rho_{1} \ldots \rho_{n},\left|\rho_{i}\right|=\left|\rho_{j}\right|, 0 \leq i, j \leq n$, in which r_{i}^{j} denote the rule according to which the i th move in ρ_{j} is made, for all $0 \leq j \leq n$ and $1 \leq i \leq\left|\rho_{j}\right|$ (as usual, $\left|\rho_{j}\right|$ denotes the length of $\left.\rho_{j}\right)$. If for all $0 \leq j<n,\left(r_{1}^{j}, r_{1}^{j+1}\right) \in R$, then M represents an n-turn first-move self-regulating finite automaton with respect to R. If for all $0 \leq j<n$ and all $1 \leq i \leq\left|\rho_{i}\right|,\left(r_{i}^{j}, r_{i}^{j+1}\right) \in R$, then M represents an n-turn all-move self-regulating finite automaton with respect to R.

Based on the number of turns, we establish two infinite hierarchies of language families that lie between the families of regular and context-sensitive languages. First, we demonstrate that n-turn first-move self-regulating finite automata give rise to an infinite hierarchy of language families coinciding with the hierarchy resulting from $(n+1)$-parallel right linear grammars (see [20, 21, 27, 28]). Recall that n-parallel right linear grammars generate a proper language subfamily of the language family generated by $(n+1)$-parallel right linear grammars (see Theorem 5 in [21]). As a result, n-turn first-move self-regulating finite automata accept a proper language subfamily of the language family accepted by $(n+1)$-turn firstmove self-regulating finite automata, for all $n \geq 0$. Similarly, we prove that n-turn all-move self-regulating finite automata give rise to an infinite hierarchy of language families coinciding with the hierarchy resulting from $(n+1)$-right linear simple matrix grammars (see [4, 10, 28]). As n-right linear simple matrix grammars generate a proper subfamily of the language family generated by $(n+1)$-right linear simple matrix grammars (see Theorem 1.5.4 in [4]), n-turn all-move self-regulating finite automata accept a proper language subfamily of the language family accepted by $(n+1)$-turn all-move self-regulating finite automata. Furthermore, since the families of right linear simple matrix languages coincide with the language families accepted by multitape nonwriting automata (see [5]) and by finite-turn checking automata (see [24]), the all-move self-regulating finite automata characterize these families, too. Finally, we summarize the results about both infinite hierarchies.

In the conclusion of this paper, as an open problem area, we suggest the discussion of self-regulating pushdown automata. Regarding self-regulating all-move pushdown automata, we prove that they do not give rise to any infinite hierarchy analogical to the achieved hierarchies resulting from the self-regulating finite automata. Indeed, zero-turn all-move self-regulating pushdown automata define the family of context-free languages while one-turn all-move self-regulating pushdown automata define the family of recursively enumerable languages. On the other hand, as far as self-regulating first-move pushdown automata are concerned, the question whether they define an infinite hierarchy or not is open.

2 Preliminaries

We assume that the reader is familiar with the theory of automata and formal languages (see $[1,2,9,11,12,13,15,19,25])$. For a set $Q,|Q|$ denotes the cardinality of $Q . \mathbb{N}=\{1,2,3, \ldots\}$ denotes the set of all natural numbers. For an alphabet V, V^{*} represents the free monoid generated by V under the operation of
concatenation. The identity of V^{*} is denoted by ε. Set $V^{+}=V^{*}-\{\varepsilon\}$; algebraically, V^{+}is thus the free semigroup generated by V under the operation of concatenation. For $w \in V^{*},|w|$ denotes the length of w. Let $w \in V^{*}$; then, $\operatorname{alph}(w)=\{a \in V: a$ appears in $w\}$. For every $L \subseteq V^{*}, \operatorname{alph}(L)=\bigcup_{w \in L} \operatorname{alph}(w)$.

A finite automaton, M, is a quintuple $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$, where Q is a finite set of states, Σ is a finite input alphabet, δ is a finite set of rules of the form $q w \rightarrow p$, $q, p \in Q, w \in \Sigma^{*}, q_{0} \in Q$ is an initial state, and F is a set of final states. Let Ψ be an alphabet of rule labels such that $|\Psi|=|\delta|$, and ψ be a bijection from δ to Ψ. For simplicity, to express that ψ maps a rule $q w \rightarrow p \in \delta$ to r, where $r \in \Psi$, we write $r . q w \rightarrow p \in \delta$; in other words, $r . q w \rightarrow p$ means $\psi(q w \rightarrow p)=r$. A configuration of M is any word from $Q \Sigma^{*}$. For any configuration $q w y$, where $y \in \Sigma^{*}, q \in Q$, and any $r . q w \rightarrow p \in \delta, M$ makes a move from configuration $q w y$ to configuration $p y$ according to r, written as $q w y \Rightarrow p y[r]$. Let χ be any configuration of $M . M$ makes zero moves from χ to χ according to ε, written as $\chi \Rightarrow^{0} \chi[\varepsilon]$. Let there exist a sequence of configurations $\chi_{0}, \chi_{1}, \ldots, \chi_{n}$, for some $n \geq 1$, such that $\chi_{i-1} \Rightarrow \chi_{i}\left[r_{i}\right]$, where $r_{i} \in \Psi, i=1, \ldots, n$. Then, M makes n moves from χ_{0} to χ_{n} according to r_{1}, \ldots, r_{n}, symbolically written as $\chi_{0} \Rightarrow^{n} \chi_{n}\left[r_{1} \ldots r_{n}\right]$. We write $\varphi \Rightarrow^{*} \kappa[\mu]$ if $\varphi \Rightarrow^{n} \kappa[\mu]$ for some $n \geq 0$. If $w \in \Sigma^{*}$ and $q_{0} w \Rightarrow^{*} f[\mu]$, for $f \in F$, then w is accepted by M and $q_{0} w \Rightarrow^{*} f[\mu]$ is an acceptance of w in M. The language of M is defined as $\mathcal{L}(M)=\left\{w \in \Sigma^{*}: q_{0} w \Rightarrow^{*} f[\mu]\right.$ is an acceptance of $\left.w\right\}$.

For $n \geq 1$, an n-parallel right linear grammar, n-PRLG, is an $(n+3)$-tuple $G=\left(N_{1}, \ldots, N_{n}, T, S, P\right)$, where $N_{i}, 1 \leq i \leq n$, are mutually disjoint nonterminal alphabets, T is a terminal alphabet, $S \notin N$ is an initial symbol, $N=N_{1} \cup \cdots \cup N_{n}$, and P is a finite set of rules that contains three kinds of rules:

$$
\begin{array}{ll}
\text { 1. } S \rightarrow X_{1} \ldots X_{n}, & X_{i} \in N_{i}, 1 \leq i \leq n ; \\
\text { 2. } X \rightarrow w Y, & X, Y \in N_{i} \text { for some } i, 1 \leq i \leq n, w \in T^{*} ; \\
\text { 3. } X \rightarrow w, & X \in N, w \in T^{*} .
\end{array}
$$

For $x, y \in(N \cup T \cup\{S\})^{*}, x \Rightarrow y$ if and only if

1. either $x=S$ and $S \rightarrow y \in P$,
2. or $x=y_{1} X_{1} \ldots y_{n} X_{n}, y=y_{1} x_{1} \ldots y_{n} x_{n}$, where $y_{i} \in T^{*}, x_{i} \in T^{*} N \cup T^{*}$, $X_{i} \in N_{i}$, and $X_{i} \rightarrow x_{i} \in P, 1 \leq i \leq n$.

If $x, y \in(N \cup T \cup\{S\})^{*}$ and $l>0$, then $x \Rightarrow^{l} y$ if and only if there exists a sequence $x_{0} \Rightarrow x_{1} \Rightarrow \cdots \Rightarrow x_{l}, x_{0}=x, x_{l}=y$. Then, we say $x \Rightarrow^{+} y$ if and only if there exists $l>0$ such that $x \Rightarrow^{l} y$, and $x \Rightarrow^{*} y$ if and only if $x=y$ or $x \Rightarrow^{+} y$. The language generated by an n-PRLG, G, is defined as $\mathcal{L}(G)=\left\{w \in T^{*}: S \Rightarrow^{+} w\right\}$. Language $L \subseteq T^{*}$ is an n-parallel right linear language, n-PRLL, if there is an n-PRLG, G, such that $L=\mathcal{L}(G)$. The family of n-PRLLs is denoted by R_{n}.

For $n \geq 1$, an n-right linear simple matrix grammar, n-RLSMG, is an $(n+$ 3)-tuple $G=\left(N_{1}, \ldots, N_{n}, T, S, P\right)$, where $N_{i}, 1 \leq i \leq n$, are mutually disjoint nonterminal alphabets, T is a terminal alphabet, $S \notin N$ is an initial symbol, $N=N_{1} \cup \cdots \cup N_{n}$, and P is a finite set of matrix rules. A matrix rule can be in one of the following three forms:

1. $\left[S \rightarrow X_{1} \ldots X_{n}\right]$,
$X_{i} \in N_{i}, 1 \leq i \leq n ;$
2. $\left[X_{1} \rightarrow w_{1} Y_{1}, \ldots, X_{n} \rightarrow w_{n} Y_{n}\right]$,
$w_{i} \in T^{*}, X_{i}, Y_{i} \in N_{i}, 1 \leq i \leq n ;$
3. $\left[X_{1} \rightarrow w_{1}, \ldots, X_{n} \rightarrow w_{n}\right]$,
$X_{i} \in N_{i}, w_{i} \in T^{*}, 1 \leq i \leq n$.

Let m be a matrix, then $m[i]$ denotes the i th rule of m. For $x, y \in(N \cup T \cup\{S\})^{*}$, $x \Rightarrow y$ if and only if

1. either $x=S$ and $[S \rightarrow y] \in P$,
2. or $x=y_{1} X_{1} \ldots y_{n} X_{n}, y=y_{1} x_{1} \ldots y_{n} x_{n}$, where $y_{i} \in T^{*}, x_{i} \in T^{*} N \cup T^{*}$, $X_{i} \in N_{i}, 1 \leq i \leq n$, and $\left[X_{1} \rightarrow x_{1}, \ldots, X_{n} \rightarrow x_{n}\right] \in P$.

We define $x \Rightarrow^{+} y$ and $x \Rightarrow^{*} y$ as above. The language generated by an n-RLSMG, G, is defined as $\mathcal{L}(G)=\left\{w \in T^{*}: S \Rightarrow^{+} w\right\}$. Language $L \subseteq T^{*}$ is an n-right linear simple matrix language, n-RLSML, if there is an n-RLSMG, G, such that $L=\mathcal{L}(G)$. The family of n-RLSMLs is denoted by $R_{[n]}$.

Let $G=\left(N_{1}, \ldots, N_{n}, T, S, P\right)$ be an n-PRLG, for some $n \geq 1$, and $1 \leq i \leq n$. By the i th component of G we understand a 1-PRLG $G=\left(N_{i}, T, S^{\prime}, P^{\prime}\right)$, where P^{\prime} contains rules of the following forms:

1. $S^{\prime} \rightarrow X_{i} \quad$ if $S \rightarrow X_{1} \ldots X_{n} \in P, X_{i} \in N_{i}$;
2. $X \rightarrow w Y \quad$ if $X \rightarrow w Y \in P$ and $X, Y \in N_{i}$;
3. $X \rightarrow w \quad$ if $X \rightarrow w \in P$ and $X \in N_{i}$.

The i th component of an n-RLSMG is defined analogously.
Finally, let $R E G, C F$, and $C S$ denote the families of regular, context-free, and context-sensitive languages, respectively.

3 Definitions and Examples

In this section, we define and illustrate n-turn first-move self-regulating finite automata and n-turn all-move self-regulating finite automata.

Definition 1. A self-regulating finite automaton, $S F A, M$, is a septuple

$$
M=\left(Q, \Sigma, \delta, q_{0}, q_{t}, F, R\right)
$$

where

1. $\left(Q, \Sigma, \delta, q_{0}, F\right)$ is a finite automaton,
2. $q_{t} \in Q$ is a turn state, and
3. $R \subseteq \Psi \times \Psi$ is a finite relation on the alphabet of rule labels.

In this paper, we consider two ways of self-regulation-first-move and all-move. According to these two types of self-regulation, two types of n-turn self-regulating finite automata are defined.

Definition 2. Let $n \geq 0$ and $M=\left(Q, \Sigma, \delta, q_{0}, q_{t}, F, R\right)$ be a self-regulating finite automaton. M is said to be an n-turn first-move self-regulating finite automaton, n-first-SFA, if M accepts w in the following way. There is an acceptance of the form $q_{0} w \Rightarrow^{*} f[\mu]$ such that

$$
\mu=r_{1}^{0} \ldots r_{k}^{0} r_{1}^{1} \ldots r_{k}^{1} \ldots r_{1}^{n} \ldots r_{k}^{n}
$$

where $k \in \mathbb{N}$, r_{k}^{0} is the first rule of the form $q x \rightarrow q_{t}$, for some $q \in Q, x \in \Sigma^{*}$, and

$$
\left(r_{1}^{j}, r_{1}^{j+1}\right) \in R
$$

for all $0 \leq j<n$.
The family of languages accepted by n-first-SFAs is denoted by W_{n}.
Example 3. Consider a 1-turn first-move self-regulating finite automaton, $M=$ $(\{s, t, f\},\{a, b\}, \delta, s, t,\{f\},\{(1,3)\})$, with δ containing rules $1 . s a \rightarrow s, 2 . s a \rightarrow t$, $3 . t b \rightarrow f$, and $4 . f b \rightarrow f$ (see Fig. 1).

Figure 1: 1-turn first-move self-regulating finite automaton M.
With aabb, M makes

$$
s a a b b \Rightarrow \operatorname{sabb}[1] \Rightarrow t b b[2] \Rightarrow f b[3] \Rightarrow f[4] .
$$

In brief, saabb $\Rightarrow^{*} f[1234]$. Observe that $\mathcal{L}(M)=\left\{a^{n} b^{n}: n \geq 1\right\}$, which belongs to $C F-R E G$.

Definition 4. Let $n \geq 0$ and $M=\left(Q, \Sigma, \delta, q_{0}, q_{t}, F, R\right)$ be a self-regulating finite automaton. M is said to be an n-turn all-move self-regulating finite automaton, n -all-SFA, if M accepts w in the following way. There is an acceptance $q_{0} w \Rightarrow^{*} f[\mu]$ such that

$$
\mu=r_{1}^{0} \ldots r_{k}^{0} r_{1}^{1} \ldots r_{k}^{1} \ldots r_{1}^{n} \ldots r_{k}^{n}
$$

where $k \in \mathbb{N}$, r_{k}^{0} is the first rule of the form $q x \rightarrow q_{t}$, for some $q \in Q, x \in \Sigma^{*}$, and

$$
\left(r_{i}^{j}, r_{i}^{j+1}\right) \in R
$$

for all $1 \leq i \leq k, 0 \leq j<n$.
The family of languages accepted by n-all-SFAs is denoted by S_{n}.

Figure 2: 1-turn all-move self-regulating finite automaton M.

Example 5. Consider a 1-turn all-move self-regulating finite automaton, $M=$ $(\{s, t, f\},\{a, b\}, \delta, s, t,\{f\},\{(1,4),(2,5),(3,6)\})$, with δ containing rules $1 . s a \rightarrow s$, $2 . s b \rightarrow s$, 3.s $\rightarrow t$, 4.ta $\rightarrow t$, 5.tb $\rightarrow t$, and $6 . t \rightarrow f$ (see Fig. 2).
With abab, M makes

$$
s a b a b \Rightarrow s b a b[1] \Rightarrow s a b[2] \Rightarrow t a b[3] \Rightarrow t b[4] \Rightarrow t[5] \Rightarrow f[6] .
$$

In brief, sabab $\Rightarrow^{*} f[123456]$. Observe that $\mathcal{L}(M)=\left\{w w: w \in\{a, b\}^{*}\right\}$, which belongs to $C S-C F$.

4 Results

We prove that the family of languages accepted by n-first-SFAs coincides with the family of languages generated by $(n+1)$-PRLGs. Furthermore, we demonstrate that the family of languages accepted by n-all-SFAs coincides with the family of languages generated by n-RLSMGs.

$4.1 \quad n$-Turn First-Move Self-Regulating Finite Automata

Section 4.1 establishes the identity between the family of languages accepted by n-first-SFAs and the family of languages generated by $(n+1)$-PRLGs. To do so, we need the following form of parallel right linear grammars.
Lemma 6. For every $n-P R L G G=\left(N_{1}, \ldots, N_{n}, T, S, P\right)$, there is an equivalent n-PRLG $G^{\prime}=\left(N_{1}^{\prime}, \ldots, N_{n}^{\prime}, T, S, P^{\prime}\right)$ that satisfies:

1. if $S \rightarrow X_{1} \ldots X_{n} \in P^{\prime}$, then X_{i} does not occur on the right-hand side of any rule, for $1 \leq i \leq n$;
2. if $S \rightarrow \alpha, S \rightarrow \beta \in P^{\prime}$ and $\alpha \neq \beta$, then $\operatorname{alph}(\alpha) \cap \operatorname{alph}(\beta)=\emptyset$.

Proof. If G does not satisfy conditions from the lemma, then we will construct a new n-PRLG $G^{\prime}=\left(N_{1}^{\prime}, \ldots, N_{n}^{\prime}, T, S, P^{\prime}\right)$, where P^{\prime} contains all rules of the form $X \rightarrow \beta \in P, X \neq S$, and $N_{j} \subseteq N_{j}^{\prime}, 1 \leq j \leq n$. For each rule $S \rightarrow X_{1} \ldots X_{n} \in P$, we add new nonterminals $Y_{j} \notin N_{j}^{\prime}$ into N_{j}^{\prime}, and rules include $S \rightarrow Y_{1} \ldots Y_{n}$ and $Y_{j} \rightarrow X_{j}$ in $P^{\prime}, 1 \leq j \leq n$. Clearly,

$$
S \Rightarrow_{G} X_{1} \ldots X_{n} \text { if and only if } S \Rightarrow_{G^{\prime}} Y_{1} \ldots Y_{n} \Rightarrow X_{1} \ldots X_{n}
$$

Thus, $\mathcal{L}(G)=\mathcal{L}\left(G^{\prime}\right)$.
Lemma 7. Let G be an $n-P R L G$. Then, there is an $(n-1)$-first-SFA, M, such that $\mathcal{L}(G)=\mathcal{L}(M)$.

Proof. Informally, M is divided into n parts (see Fig. 3). The i th part represents a finite automaton accepting the language of G 's i th component, and R also connects the i th part to the $(i+1)$ st part as depicted in Fig. 3.

Formally, without loss of generality, we assume $G=\left(N_{1}, \ldots, N_{n}, T, S, P\right)$ to be in the form from Lemma 6. We construct an $(n-1)$-first-SFA $M=$ $\left(Q, T, \delta, q_{0}, q_{t}, F, R\right)$, where $Q=\left\{q_{0}, \ldots, q_{n}\right\} \cup N, N=N_{1} \cup \cdots \cup N_{n}$, $\left\{q_{0}, q_{1}, \ldots, q_{n}\right\} \cap N=\emptyset, F=\left\{q_{n}\right\}, \delta=\left\{q_{i} \rightarrow X_{i+1}: S \rightarrow X_{1} \ldots X_{n} \in\right.$ $P, 0 \leq i<n\} \cup\{X w \rightarrow Y: X \rightarrow w Y \in P\} \cup\left\{X w \rightarrow q_{i}: X \rightarrow w \in\right.$ $\left.P, w \in T^{*}, X \in N_{i}, i \in\{1, \ldots, n\}\right\}, q_{t}=q_{1}, \Psi=\delta$ with the identity map, and $R=\left\{\left(q_{i} \rightarrow X_{i+1}, q_{i+1} \rightarrow X_{i+2}\right): S \rightarrow X_{1} \ldots X_{n} \in P, 0 \leq i \leq n-2\right\}$.

Next, we prove $\mathcal{L}(G)=\mathcal{L}(M)$. To prove $\mathcal{L}(G) \subseteq \mathcal{L}(M)$, consider a derivation of w in G and construct an acceptance of w in M depicted in Fig. 3. This figure clearly

$$
\begin{aligned}
& \begin{array}{ccccc}
& & & \\
& & & \\
X_{1}^{1} & X_{1}^{2} & & \ldots & X_{1}^{n} \\
x_{1}^{1} X_{2}^{1} & x_{1}^{2} X_{2}^{2} & & \ldots & x_{1}^{n} X_{2}^{n} \\
& & \Downarrow & & \\
& & \vdots & & \\
& & & &
\end{array} \\
& x_{1}^{1} \ldots x_{k-1}^{1} X_{k}^{1} \underset{x_{1}^{2}}{\stackrel{\Downarrow}{\Downarrow}} \underset{k}{\Downarrow} \ldots x_{1}^{n} \ldots X_{k}^{n} \\
& w=x_{1}^{1} \ldots x_{k}^{1} \quad x_{1}^{2} \ldots x_{k}^{2} \quad \ldots x_{1}^{n} \ldots x_{k}^{n}
\end{aligned}
$$

in G

Figure 3: A derivation of w in G and the corresponding acceptance of w in M.
demonstrates the fundamental idea behind this part of the proof; its complete and rigorous version is lengthy and left to the reader. Thus, for each derivation $S \Rightarrow^{*} w$, $w \in T^{*}$, there is an acceptance of w in M.

To prove $\mathcal{L}(M) \subseteq \mathcal{L}(G)$, let $w \in \mathcal{L}(M)$. Consider an acceptance of w in M. Observe that the acceptance is of the form depicted on the right-hand side of Fig. 3. It means that the number of steps M made from q_{i-1} to q_{i} is the same as from q_{i} to q_{i+1} since the only rule in the relation with $q_{i-1} \rightarrow X_{1}^{i}$ is the rule $q_{i} \rightarrow X_{1}^{i+1}$. Moreover, M can never come back to a state corresponding to a previous component. (By a component of M, we mean the finite automaton $M_{i}=$ $\left(Q, \Sigma, \delta, q_{i-1},\left\{q_{i}\right\}\right)$, for $1 \leq i \leq n$.) Now, construct a derivation of w in G. By Lemma 6, we have $\left|\left\{X:\left(q_{i} \rightarrow X_{1}^{i+1}, q_{i+1} \rightarrow X\right) \in R\right\}\right|=1$, for all $0 \leq i<$ $n-1$. Thus, $S \rightarrow X_{1}^{1} X_{1}^{2} \ldots X_{1}^{n} \in P$. Moreover, if $X_{j}^{i} x_{j}^{i} \rightarrow X_{j+1}^{i}$, we apply
$X_{j}^{i} \rightarrow x_{j}^{i} X_{j+1}^{i} \in P$, and if $X_{k}^{i} x_{k}^{i} \rightarrow q_{i}$, we apply $X_{k}^{i} \rightarrow x_{k}^{i} \in P, 1 \leq i \leq n$, $1 \leq j<k$.

Hence, Lemma 7 holds.
Lemma 8. Let M be an n-first-SFA. There is an $(n+1)-P R L G, G$, such that $\mathcal{L}(G)=\mathcal{L}(M)$.

Proof. Let $M=\left(Q, \Sigma, \delta, q_{0}, q_{t}, F, R\right)$. Consider $G=\left(N_{0}, \ldots, N_{n}, \Sigma, S, P\right)$, where $N_{i}=\left(Q \Sigma^{l} \times Q \times\{i\} \times Q\right) \cup(Q \times\{i\} \times Q), l=\max \{|w|: q w \rightarrow p \in \delta\}, 0 \leq i \leq n$, and

$$
\begin{aligned}
P= & \left\{S \rightarrow\left[q_{0} x_{0}, q^{0}, 0, q_{t}\right]\left[q_{t} x_{1}, q^{1}, 1, q_{i_{1}}\right]\left[q_{i_{1}} x_{2}, q^{2}, 2, q_{i_{2}}\right] \ldots\left[q_{i_{n-1}} x_{n}, q^{n}, n, q_{i_{n}}\right]:\right. \\
& r_{0} \cdot q_{0} x_{0} \rightarrow q^{0}, r_{1} \cdot q_{t} x_{1} \rightarrow q^{1}, r_{2} \cdot q_{i_{1} x_{2} \rightarrow q^{2}, \ldots, r_{n} \cdot q_{i_{n-1}} x_{n} \rightarrow q^{n} \in \delta,} \\
& \left.\left(r_{0}, r_{1}\right),\left(r_{1}, r_{2}\right), \ldots,\left(r_{n-1}, r_{n}\right) \in R, q_{i_{n}} \in F\right\} \cup \\
& \{[p x, q, i, r] \rightarrow x[q, i, r]\} \cup \\
& \{[q, i, q] \rightarrow \varepsilon: q \in Q\} \cup \\
& \left\{[q, i, p] \rightarrow w\left[q^{\prime}, i, p\right]: q w \rightarrow q^{\prime} \in \delta\right\} .
\end{aligned}
$$

Next, we prove $\mathcal{L}(G)=\mathcal{L}(M)$. To prove $\mathcal{L}(G) \subseteq \mathcal{L}(M)$, observe that we make $n+1$ copies of M and go through them similarly to Fig. 3. Consider a derivation of w in G. Then, in greater detail, this derivation is of the form

$$
\begin{align*}
S & \Rightarrow\left[q_{0} x_{0}^{0}, q_{1}^{0}, 0, q_{t}\right]\left[q_{t} x_{0}^{1}, q_{1}^{1}, 1, q_{i_{1}}\right] \ldots\left[q_{i_{n-1}} x_{0}^{n}, q_{1}^{n}, n, q_{i_{n}}\right] \\
& \Rightarrow x_{0}^{0}\left[q_{1}^{0}, 0, q_{t}\right] x_{0}^{1}\left[q_{1}^{1}, 1, q_{i_{1}}\right] \ldots x_{0}^{n}\left[q_{1}^{n}, n, q_{i_{n}}\right] \\
& \Rightarrow x_{0}^{0} x_{1}^{0}\left[q_{2}^{0}, 0, q_{t}\right] x_{0}^{1} x_{1}^{1}\left[q_{2}^{1}, 1, q_{i_{1}}\right] \ldots x_{0}^{n} x_{1}^{n}\left[q_{2}^{n}, n, q_{i_{n}}\right] \tag{1}\\
& \vdots \\
& \Rightarrow x_{0}^{0} x_{1}^{0} \ldots x_{k}^{0}\left[q_{t}, 0, q_{t}\right] x_{0}^{1} x_{1}^{1} \ldots x_{k}^{1}\left[q_{i_{1}}, 1, q_{i_{1}}\right] \ldots x_{0}^{n} x_{1}^{n} \ldots x_{k}^{n}\left[q_{i_{n}}, n, q_{i_{n}}\right] \\
& \Rightarrow x_{0}^{0} x_{1}^{0} \ldots x_{k}^{0} x_{0}^{1} x_{1}^{1} \ldots x_{k}^{1} \ldots x_{0}^{n} x_{1}^{n} \ldots x_{k}^{n}
\end{align*}
$$

and $r_{0} \cdot q_{0} x_{0}^{0} \rightarrow q_{1}^{0}, r_{1} \cdot q_{t} x_{0}^{1} \rightarrow q_{1}^{1}, r_{2} \cdot q_{i_{1}} x_{0}^{2} \rightarrow q_{1}^{2}, \ldots, r_{n} \cdot q_{i_{n-1}} x_{0}^{n} \rightarrow q_{1}^{n} \in \delta,\left(r_{0}, r_{1}\right)$, $\left(r_{1}, r_{2}\right), \ldots,\left(r_{n-1}, r_{n}\right) \in R$, and $q_{i_{n}} \in F$.

Thus, the list of rules used in the acceptance of w in M is

$$
\begin{align*}
\mu= & \left(q_{0} x_{0}^{0} \rightarrow q_{1}^{0}\right)\left(q_{1}^{0} x_{1}^{0} \rightarrow q_{2}^{0}\right) \ldots\left(q_{k}^{0} x_{k}^{0} \rightarrow q_{t}\right) \\
& \left(q_{t} x_{0}^{1} \rightarrow q_{1}^{1}\right)\left(q_{1}^{1} x_{1}^{1} \rightarrow q_{2}^{1}\right) \ldots\left(q_{k}^{1} x_{k}^{1} \rightarrow q_{i_{1}}\right) \\
& \left(q_{i_{1}} x_{0}^{2} \rightarrow q_{1}^{2}\right)\left(q_{1}^{2} x_{1}^{2} \rightarrow q_{2}^{2}\right) \ldots\left(q_{k}^{2} x_{k}^{2} \rightarrow q_{i_{2}}\right) \tag{2}\\
& \vdots \\
& \left(q_{i_{n-1}} x_{0}^{n} \rightarrow q_{1}^{n}\right)\left(q_{1}^{n} x_{1}^{n} \rightarrow q_{2}^{n}\right) \ldots\left(q_{k}^{n} x_{k}^{n} \rightarrow q_{i_{n}}\right) .
\end{align*}
$$

Now, we prove $\mathcal{L}(M) \subseteq \mathcal{L}(G)$. Informally, the acceptance is divided into $n+1$ parts of the same length. Grammar G generates the i th part by the i th component and records the state from which the next component starts.

Let μ be a list of rules used in an acceptance of w in M of the form (2), where $w=x_{0}^{0} x_{1}^{0} \ldots x_{k}^{0} x_{0}^{1} x_{1}^{1} \ldots x_{k}^{1} \ldots x_{0}^{n} x_{1}^{n} \ldots x_{k}^{n}$. Then, the derivation of the form (1) is the corresponding derivation of w in G since $\left[q_{j}^{i}, i, p\right] \rightarrow x_{j}^{i}\left[q_{j+1}^{i}, i, p\right] \in P$ and $[q, i, q] \rightarrow \varepsilon$, for all $0 \leq i \leq n, 1 \leq j<k$.

Hence, Lemma 8 holds.
The first main result of this paper follows next.
Theorem 9. For all $n \geq 0, W_{n}=R_{n+1}$.
Proof. This proof follows from Lemma 7 and 8.
Corollary 10. The following statements hold true.

1. $R E G=W_{0} \subset W_{1} \subset W_{2} \subset \cdots \subset C S$.
2. $W_{1} \subset C F$.
3. $W_{2} \nsubseteq C F$.
4. $C F \nsubseteq W_{n}$ for any $n \geq 0$.
5. For all $n \geq 0, W_{n}$ is closed under union, finite substitution, homomorphism, intersection with a regular language, and right quotient with a regular language.
6. For all $n \geq 1, W_{n}$ is not closed under intersection and complement.

Proof. Recall the following statements proved in [21]:

- $R E G=R_{1} \subset R_{2} \subset R_{3} \subset \cdots \subset C S$.
- $R_{2} \subset C F$.
- $C F \nsubseteq R_{n}, n \geq 1$.
- For all $n \geq 1, R_{n}$ is closed under union, finite substitution, homomorphism, intersection with a regular language, and right quotient with a regular language.
- For all $n \geq 2, R_{n}$ is not closed under intersection and complement.

These statements and Theorem 9 imply statements $1,2,4,5,6$ of Corollary 10. Moreover, observe that $\left\{a^{n} b^{n} c^{2 n}: n \geq 0\right\} \in W_{2}-C F$, which proves 3 .

Theorem 11. For all $n \geq 1, W_{n}$ is not closed under inverse homomorphism.
Proof. For $n=1$, let $L=\left\{a^{k} b^{k}: k \geq 1\right\}$, and let the homomorphism $h:\{a, b, c\}^{*} \rightarrow\{a, b\}^{*}$ be defined as $h(a)=a, h(b)=b$, and $h(c)=\varepsilon$. Then, $L \in W_{1}$, but

$$
L^{\prime}=h^{-1}(L) \cap c^{*} a^{*} b^{*}=\left\{c^{*} a^{k} b^{k}: k \geq 1\right\} \notin W_{1} .
$$

Assume that L^{\prime} is in W_{1}. Then, by Theorem 9, there is a 2-PRLG $G=$ $\left(N_{1}, N_{2}, T, S, P\right)$ such that $\mathcal{L}(G)=L^{\prime}$. Let $k>|P| \cdot \max \{|w|: X \rightarrow w Y \in P\}$. Consider a derivation of $c^{k} a^{k} b^{k} \in L^{\prime}$. The second component can generate only
finitely many as; otherwise, it derives $\left\{a^{k} b^{n}: k<n\right\}$, which is not regular. Analogously, the first component generates only finitely many $b s$. Therefore, the first component generates any number of a s, and the second component generates any number of $b \mathrm{~s}$. Moreover, there is a derivation of the form $X \Rightarrow^{m} X$, for some $X \in N_{2}$, and $m \geq 1$, used in the derivation in the second component. In the first component, there is a derivation $A \Rightarrow^{l} a^{s} A$, for some $A \in N_{1}$, and $s, l \geq 1$. Then, we can modify the derivation of $c^{k} a^{k} b^{k}$ so that in the first component, we repeat the cycle $A \Rightarrow^{l} a^{s} A(m+1)$-times, and in the second component, we repeat the cycle $X \Rightarrow{ }^{m} X(l+1)$-times. The derivations of both components have the same length - the added cycles are of length $m l$, and the rest is of the same length as in the derivation of $c^{k} a^{k} b^{k}$. Therefore, we have derived $c^{k} a^{r} b^{k}$, where $r>k$, which is not in L^{\prime}-a contradiction.

For $n>1$, the proof is analogous and left to the reader.
Corollary 12. For all $n \geq 1, W_{n}$ is not closed under concatenation. Therefore, it is not closed under Kleene closure either.

Proof. For $n=1$, let $L_{1}=\{c\}^{*}$ and $L_{2}=\left\{a^{k} b^{k}: k \geq 1\right\}$. Then, $L_{1} L_{2}=\left\{c^{*} a^{k} b^{k}:\right.$ $k \geq 1\}$. Analogously, prove this corollary for $n>1$.

$4.2 \quad n$-Turn All-Move Self-Regulating Finite Automata

This section discusses n-turn all-move self-regulating finite automata. It proves that the family of languages accepted by n-all-SFAs coincides with the family of languages generated by n-RLSMGs.

Lemma 13. For every $n-R L S M G, G=\left(N_{1}, \ldots, N_{n}, T, S, P\right)$, there is an equivalent $n-R L S M G, G^{\prime}$, that satisfies:

1. if $\left[S \rightarrow X_{1} \ldots X_{n}\right]$, then X_{i} does not occur on the right-hand side of any rule, $1 \leq i \leq n ;$
2. if $[S \rightarrow \alpha],[S \rightarrow \beta] \in P$ and $\alpha \neq \beta$, then alph $(\alpha) \cap \operatorname{alph}(\beta)=\emptyset$;
3. for any two matrices $m_{1}, m_{2} \in P$, if $m_{1}[i]=m_{2}[i]$, for some $1 \leq i \leq n$, then $m_{1}=m_{2}$.

Proof. The first two conditions can be proved analogously to Lemma 6. Suppose that there are matrices m and m^{\prime} such that $m[i]=m^{\prime}[i]$, for some $1 \leq i \leq n$. Let $m=\left[X_{1} \rightarrow x_{1}, \ldots, X_{n} \rightarrow x_{n}\right], m^{\prime}=\left[Y_{1} \rightarrow y_{1}, \ldots, Y_{n} \rightarrow y_{n}\right]$. Replace these matrices with matrices $m_{1}=\left[X_{1} \rightarrow X_{1}^{\prime}, \ldots, X_{n} \rightarrow X_{n}^{\prime}\right], m_{2}=\left[X_{1}^{\prime} \rightarrow\right.$ $\left.x_{1}, \ldots, X_{n}^{\prime} \rightarrow x_{n}\right]$, and $m_{1}^{\prime}=\left[Y_{1} \rightarrow Y_{1}^{\prime \prime}, \ldots, Y_{n} \rightarrow Y_{n}^{\prime \prime}\right], m_{2}^{\prime}=\left[Y_{1}^{\prime \prime} \rightarrow y_{1}, \ldots, Y_{n}^{\prime \prime} \rightarrow\right.$ y_{n}], where $X_{i}^{\prime}, Y_{i}^{\prime \prime}$ are new nonterminals for all i. These new matrices satisfy condition 3. Repeat this replacement until the resulting grammar satisfies the properties of G^{\prime} given in this lemma.

Lemma 14. Let G be an n-RLSMG. There is an $(n-1)$-all-SFA, M, such that $\mathcal{L}(G)=\mathcal{L}(M)$.

Proof. Without loss of generality, we assume that $G=\left(N_{1}, \ldots, N_{n}, T, S, P\right)$ is in the form described in Lemma 13. We construct $(n-1)$-all-SFA $M=$ $\left(Q, T, \delta, q_{0}, q_{t}, F, R\right)$, where $Q=\left\{q_{0}, \ldots, q_{n}\right\} \cup N, N=N_{1} \cup \cdots \cup N_{n}$, $\left\{q_{0}, q_{1}, \ldots, q_{n}\right\} \cap N=\emptyset, F=\left\{q_{n}\right\}, \delta=\left\{q_{i} \rightarrow X_{i+1}:\left[S \rightarrow X_{1} \ldots X_{n}\right] \in P, 0 \leq\right.$ $i<n\} \cup\left\{X_{i} w_{i} \rightarrow Y_{i}:\left[X_{1} \rightarrow w_{1} Y_{1}, \ldots, X_{n} \rightarrow w_{n} Y_{n}\right] \in P, 1 \leq i \leq n\right\} \cup\left\{X_{i} w_{i} \rightarrow\right.$ $\left.q_{i}:\left[X_{1} \rightarrow w_{1}, \ldots, X_{n} \rightarrow w_{n}\right] \in P, w_{i} \in T^{*}, 1 \leq i \leq n\right\}, q_{t}=q_{1}, \Psi=\delta$ with the identity map, and $R=\left\{\left(q_{i} \rightarrow X_{i+1}, q_{i+1} \rightarrow X_{i+2}\right):\left[S \rightarrow X_{1} \ldots X_{n}\right] \in P, 0 \leq i \leq\right.$ $n-2\} \cup\left\{\left(X_{i} w_{i} \rightarrow Y_{i}, X_{i+1} w_{i+1} \rightarrow Y_{i+1}\right):\left[X_{1} \rightarrow w_{1} Y_{1}, \ldots, X_{n} \rightarrow w_{n} Y_{n}\right] \in P, 1 \leq\right.$ $i<n\} \cup\left\{\left(X_{i} w_{i} \rightarrow q_{i}, X_{i+1} w_{i+1} \rightarrow q_{i+1}\right):\left[X_{1} \rightarrow w_{1}, \ldots, X_{n} \rightarrow w_{n}\right] \in P, w_{i} \in\right.$ $\left.T^{*}, 1 \leq i<n\right\}$.

We next prove $\mathcal{L}(G)=\mathcal{L}(M)$. The proof of $\mathcal{L}(G) \subseteq \mathcal{L}(M)$ is very similar to the proof of the same inclusion of Lemma 7, so it is left to the reader.

To prove $\mathcal{L}(M) \subseteq \mathcal{L}(G)$, consider $w \in \mathcal{L}(M)$ and an acceptance of w in M. As in Lemma 7, the derivation looks like the one depicted on the right-hand side of Fig. 3. Next, we generate w in G as follows. By Lemma 13, there is matrix $\left[S \rightarrow X_{1}^{1} X_{1}^{2} \ldots X_{1}^{n}\right]$ in P. Moreover, if $X_{j}^{i} x_{j}^{i} \rightarrow X_{j+1}^{i}, 1 \leq i \leq n$, then $\left(X_{j}^{i} \rightarrow\right.$ $\left.x_{j}^{i} X_{j+1}^{i}, X_{j}^{i+1} \rightarrow x_{j}^{i+1} X_{j+1}^{i+1}\right) \in R$, for $1 \leq i<n, 1 \leq j<k$. We apply $\left[X_{j}^{1} \rightarrow\right.$ $\left.x_{j}^{1} X_{j+1}^{1}, \ldots, X_{j}^{n} \rightarrow x_{j}^{n} X_{j+1}^{n}\right]$ from P. If $X_{k}^{i} x_{k}^{i} \rightarrow q_{i}, 1 \leq i \leq n$, then $\left(X_{k}^{i} \rightarrow\right.$ $\left.x_{k}^{i}, X_{k}^{i+1} \rightarrow x_{k}^{i+1}\right) \in R$, for $1 \leq i<n$, and we apply $\left[X_{k}^{1} \rightarrow x_{k}^{1}, \ldots, X_{k}^{n} \rightarrow x_{k}^{n}\right] \in P$. Thus, $w \in \mathcal{L}(G)$.

Hence, Lemma 14 holds.
Lemma 15. Let M be an n-all-SFA. There is an $(n+1)-R L S M G, G$, such that $\mathcal{L}(G)=\mathcal{L}(M)$.
Proof. Let $M=\left(Q, \Sigma, \delta, q_{0}, q_{t}, F, R\right)$. Consider $G=\left(N_{0}, \ldots, N_{n}, \Sigma, S, P\right)$, where $N_{i}=\left(Q \Sigma^{l} \times Q \times\{i\} \times Q\right) \cup(Q \times\{i\} \times Q), l=\max \{|w|: q w \rightarrow p \in \delta\}, 0 \leq i \leq n$, and

$$
\begin{aligned}
P= & \left\{\left[S \rightarrow\left[q_{0} x_{0}, q^{0}, 0, q_{t}\right]\left[q_{t} x_{1}, q^{1}, 1, q_{i_{1}}\right] \ldots\left[q_{i_{n-1}} x_{n}, q^{n}, n, q_{i_{n}}\right]\right]:\right. \\
& r_{0} \cdot q_{0} x_{0} \rightarrow q^{0}, r_{1} \cdot q_{t} x_{1} \rightarrow q^{1}, \ldots, r_{n} \cdot q_{i_{n-1}} x_{n} \rightarrow q^{n} \in \delta, \\
& \left.\left(r_{0}, r_{1}\right), \ldots,\left(r_{n-1}, r_{n}\right) \in R, q_{i_{n}} \in F\right\} \cup \\
& \left\{\left[\left[p_{0} x_{0}, q_{0}, 0, r_{0}\right] \rightarrow x_{0}\left[q_{0}, 0, r_{0}\right], \ldots,\left[p_{n} x_{n}, q_{n}, n, r_{n}\right] \rightarrow x_{n}\left[q_{n}, n, r_{n}\right]\right]\right\} \cup \\
& \left\{\left[\left[q_{0}, 0, q_{0}\right] \rightarrow \varepsilon, \ldots,\left[q_{n}, n, q_{n}\right] \rightarrow \varepsilon\right]: q_{i} \in Q, 0 \leq i \leq n\right\} \cup \\
& \left\{\left[\left[q_{0}, 0, p_{0}\right] \rightarrow w_{0}\left[q_{0}^{\prime}, 0, p_{0}\right], \ldots,\left[q_{n}, n, p_{n}\right] \rightarrow w_{n}\left[q_{n}^{\prime}, n, p_{n}\right]\right]: r_{j} \cdot q_{j} w_{j} \rightarrow q_{j}^{\prime} \in\right. \\
& \left.\delta, 0 \leq j \leq n,\left(r_{i}, r_{i+1}\right) \in R, 0 \leq i<n\right\} .
\end{aligned}
$$

Next, we prove $\mathcal{L}(G)=\mathcal{L}(M)$. To prove $\mathcal{L}(G) \subseteq \mathcal{L}(M)$, consider a derivation of w in G. Then, the derivation is of the form (1) and there are rules $r_{0} \cdot q_{0} x_{0}^{0} \rightarrow$ $q_{1}^{0}, r_{1} \cdot q_{t} x_{0}^{1} \rightarrow q_{1}^{1}, \ldots, r_{n} \cdot q_{i_{n-1}} x_{0}^{n} \rightarrow q_{1}^{n}$ in δ such that $\left(r_{0}, r_{1}\right), \ldots,\left(r_{n-1}, r_{n}\right) \in R$. Moreover, $\left(r_{j}^{l}, r_{j}^{l+1}\right) \in R$, where $r_{j}^{l} . q_{j}^{l} x_{j}^{l} \rightarrow q_{j+1}^{l} \in \delta$, and $\left(r_{k}^{l}, r_{k}^{l+1}\right) \in R$, where $r_{k}^{l} \cdot q_{k}^{l} x_{k}^{l} \rightarrow q_{i_{l}} \in \delta, 0 \leq l<n, 1 \leq j<k, q_{i_{0}}$ denotes q_{t}, and $q_{i_{n}} \in F$. Thus, M accepts w with the list of rules μ of the form (2).

To prove $\mathcal{L}(M) \subseteq \mathcal{L}(G)$, let μ be a list of rules used in an acceptance of

$$
w=x_{0}^{0} x_{1}^{0} \ldots x_{k}^{0} x_{0}^{1} x_{1}^{1} \ldots x_{k}^{1} \ldots x_{0}^{n} x_{1}^{n} \ldots x_{k}^{n}
$$

in M of the form (2). Then, the derivation is of the form (1) because

$$
\left[\left[q_{j}^{0}, 0, q_{t}\right] \rightarrow x_{j}^{0}\left[q_{j+1}^{0}, 0, q_{t}\right], \ldots,\left[q_{j}^{n}, n, q_{i_{n}}\right] \rightarrow x_{j}^{n}\left[q_{j+1}^{n}, n, q_{i_{n}}\right]\right] \in P
$$

for all $q_{j}^{i} \in Q, 1 \leq i \leq n, 1 \leq j<k$, and $\left[\left[q_{t}, 0, q_{t}\right] \rightarrow \varepsilon, \ldots,\left[q_{i_{n}}, n, q_{i_{n}}\right] \rightarrow \varepsilon\right] \in P$.
Hence, Lemma 15 holds.
The second main result of this paper follows next.
Theorem 16. For all $n \geq 0, S_{n}=R_{[n+1]}$.
Proof. This proof follows from Lemma 14 and 15.
Corollary 17. The following statements hold:

1. $R E G=S_{0} \subset S_{1} \subset S_{2} \subset \cdots \subset C S$.
2. $S_{1} \nsubseteq C F$.
3. $C F \nsubseteq S_{n}$, for every $n \geq 0$.
4. For all $n \geq 0, S_{n}$ is closed under union, concatenation, finite substitution, homomorphism, intersection with a regular language, and right quotient with a regular language.
5. For all $n \geq 1, S_{n}$ is not closed under intersection, complement, and Kleene closure.

Proof. Recall the following statements proved in [28]:

- $R E G=R_{[1]} \subset R_{[2]} \subset R_{[3]} \subset \cdots \subset C S$.
- For all $n \geq 1, R_{[n]}$ is closed under union, finite substitution, homomorphism, intersection with a regular language, and right quotient with a regular language.
- For all $n \geq 2, R_{[n]}$ is not closed under intersection and complement.

Furthermore, recall these statements proved in [23] and [24]:

- For all $n \geq 1, R_{[n]}$ is closed under concatenation.
- For all $n \geq 2, R_{[n]}$ is not closed under Kleene closure.

These statements and Theorem 16 imply statements 1,4 , and 5 of Corollary 17. Moreover, observe that $\left\{w w: w \in\{a, b\}^{*}\right\} \in S_{1}-C F$ (see Example 5), which proves 2. Finally, let $L=\left\{w c w^{R}: w \in\{a, b\}^{*}\right\}$. In [4, Theorem 1.5.2], there is a proof that $L \notin R_{[n]}$, for any $n \geq 1$. Thus, 3 follows from Theorem 16 .

Theorem 18, given next, follows from Theorem 16 and from Corollary 3.3.3 in [24]. However, Corollary 3.3.3 in [24] is not proved effectively. We next prove Theorem 18 effectively.

Theorem 18. S_{n} is closed under inverse homomorphism, for all $n \geq 0$.

Proof. For $n=1$, let $M=\left(Q, \Sigma, \delta, q_{0}, q_{t}, F, R\right)$ be a 1-all-SFA, and let $h: \Delta^{*} \rightarrow \Sigma^{*}$ be a homomorphism. Next, we construct 1-all-SFA $M^{\prime}=\left(Q^{\prime}, \Delta, \delta^{\prime}, q_{0}^{\prime}, q_{t}^{\prime},\left\{q_{f}^{\prime}\right\}, R^{\prime}\right)$ accepting $h^{-1}(\mathcal{L}(M))$ as follows. Denote $k=\max \{|w|: q w \rightarrow p \in \delta\}+\max \{|h(a)|$: $a \in \Delta\}$. Let $Q^{\prime}=q_{0}^{\prime} \cup\left\{[x, q, y]: x, y \in \Sigma^{*},|x|,|y| \leq k, q \in Q\right\}$. Initially, set δ^{\prime} and R^{\prime} to \emptyset. Then, extend δ^{\prime} and R^{\prime} by performing 1 through 5 :

1. For $y \in \Sigma^{*},|y| \leq k$, add $\left(q_{0}^{\prime} \rightarrow\left[\varepsilon, q_{0}, y\right], q_{t}^{\prime} \rightarrow\left[y, q_{t}, \varepsilon\right]\right)$ to $R^{\prime} ;$
2. For $A \in Q^{\prime}, q \neq q_{t}$, add $([x, q, y] a \rightarrow[x h(a), q, y], A \rightarrow A)$ to $R^{\prime} ;$
3. For $A \in Q^{\prime}$, add $(A \rightarrow A,[x, q, \varepsilon] a \rightarrow[x h(a), q, \varepsilon])$ to $R^{\prime} ;$
4. For $\left(q x \rightarrow p, q^{\prime} x^{\prime} \rightarrow p^{\prime}\right) \in R, q \neq q_{t}$, add $\left([x w, q, y] \rightarrow[w, p, y],\left[x^{\prime} w^{\prime}, q^{\prime}, \varepsilon\right] \rightarrow\left[w^{\prime}, p^{\prime}, \varepsilon\right]\right)$ to $R^{\prime} ;$
5. For $q_{f} \in F$, add
$\left(\left[y, q_{t}, y\right] \rightarrow q_{t}^{\prime},\left[\varepsilon, q_{f}, \varepsilon\right] \rightarrow q_{f}^{\prime}\right)$ to R^{\prime}.
In essence, M^{\prime} simulates M in the following way. In a state of the form $[x, q, y]$, the three components have the following meaning:

- $x=h\left(a_{1} \ldots a_{n}\right)$, where $a_{1} \ldots a_{n}$ is the input string that M^{\prime} has already read;
- q is the current state of M;
- y is the suffix remaining as the first component of the state that M^{\prime} enters during a turn; y is thus obtained when M^{\prime} reads the last symbol right before the turn occurs in $M ; M$ reads y after the turn.

More precisely, $h(w)=w_{1} y w_{2}$, where w is an input string, w_{1} is accepted by M before making the turn, i.e. from q_{0} to q_{t}, and $y w_{2}$ is accepted by M after making the turn, i.e. from q_{t} to $q_{f} \in F$. A rigorous version of this proof is left to the reader.

For $n>1$, the proof is analogous and left to the reader.

4.3 Language Families Accepted by n-first-SFAs and n-allSFAs

In this section, we compare the family of languages accepted by n-first-SFAs with the family of languages accepted by n-all-SFAs.
Theorem 19. For all $n \geq 1, W_{n} \subset S_{n}$.
Proof. In [21] and [28], it is proved that for all $n>1, R_{n} \subset R_{[n]}$. The proof of Theorem 19 thus follows from Theorem 9 and 16.

Theorem 20. $W_{n} \nsubseteq S_{n-1}, n \geq 1$.

Proof. It is easy to see that $L=\left\{a_{1}^{k} a_{2}^{k} \ldots a_{n+1}^{k}: k \geq 1\right\} \in W_{n}=R_{n+1}$. However, $L \notin S_{n-1}=R_{[n]}$ (see Lemma 1.5.6 in [4]).

Lemma 21. For each regular language, L, language $\left\{w^{n}: w \in L\right\} \in S_{n-1}$.
Proof. Let $L=\mathcal{L}(M)$, where M is a finite automaton. Make n copies of M. Rename their states so all the sets of states are pairwise disjoint. In this way, also rename the states in the rules of each of these n automata; however, keep the labels of the rules unchanged. For each rule label r, include (r, r) into R. As a result, we obtain an n-turn all-move self-regulating finite automaton that accepts $\left\{w^{n}: w \in L\right\}$. A rigorous version of this proof is left to the reader.

Theorem 22. $S_{n}-W \neq \emptyset$, for all $n \geq 1$, where $W=\bigcup_{m=1}^{\infty} W_{m}$.
Proof. By induction on $n \geq 1$, we prove that language $L=\left\{(c w)^{n+1}: w \in\right.$ $\left.\{a, b\}^{*}\right\} \notin W$. From Lemma 21, $L \in S_{n}$.

Basis: For $n=1$, let G be an m-PRLG generating L, for some positive integer m. Consider a sufficiently large string $c w_{1} c w_{2} \in L$ such that $w_{1}=w_{2}=a^{n_{1}} b^{n_{2}}$, $n_{2}>n_{1}>1$. Then, there is a derivation of the form

$$
\begin{align*}
S & \Rightarrow^{p} \\
x_{1} A_{1} x_{2} A_{2} \ldots x_{m} A_{m} & \Rightarrow^{k} \quad x_{1} y_{1} A_{1} x_{2} y_{2} A_{2} \ldots x_{m} y_{m} A_{m} \tag{3}
\end{align*}
$$

in G, where cycle (3) generates more than one a in w_{1}. The derivation continues as

$$
\begin{array}{rll}
x_{1} y_{1} A_{1} \ldots x_{m} y_{m} A_{m} & \Rightarrow^{r} \\
x_{1} y_{1} z_{1} B_{1} \ldots x_{m} y_{m} z_{m} B_{m} & \Rightarrow^{l} & x_{1} y_{1} z_{1} u_{1} B_{1} \ldots x_{m} y_{m} z_{m} u_{m} B_{m} \tag{4}\\
\text { (cycle (4) generates no } a \mathrm{~s} \text {) } & \Rightarrow^{s} & c w_{1} c w_{2} .
\end{array}
$$

Next, modify the left derivation, the derivation in components generating $c w_{1}$, so that the a-generating cycle (3) is repeated $(l+1)$-times. Similarly, modify the right derivation, the derivation in the other components, so that the no-a-generating cycle (4) is repeated $(k+1)$-times. Thus, the modified left derivation is of length $p+k(l+1)+r+l+s=p+k+r+l(k+1)+s$, which is the length of the modified right derivation. Moreover, the modified left derivation generates more as in w_{1} than the right derivation in w_{2}-a contradiction.

Induction step: Suppose that the theorem holds for all $n \leq k$, for some $k \geq 1$. Consider $n+1$ and let $\left\{(c w)^{n+1}: w \in\{a, b\}^{*}\right\} \in W_{l}$, for some $l \geq 1$. As W_{l} is closed under the right quotient with a regular language, and language $\left\{c w: w \in\{a, b\}^{*}\right\}$ is regular, we obtain $\left\{(c w)^{n}: w \in\{a, b\}^{*}\right\} \in W_{l} \subseteq W$-a contradiction.

Fig. 4 summarizes the language families discussed in this paper.

Figure 4: The hierarchy of languages.

5 Conclusion and Discussion

This paper has discussed self-regulating finite automata. As demonstrated next, we can analogically introduce and discuss self-regulating pushdown automata.

Recall that a pushdown automaton (see [15]), M, is a septuple $M=(Q, \Sigma, \Gamma, \delta$, $\left.q_{0}, Z_{0}, F\right)$, where $Q, \Sigma, q_{0} \in Q, F$ are as in a finite automaton, Γ is a finite pushdown alphabet, δ is a finite set of rules of the form $Z q w \rightarrow \gamma p, q, p \in Q$, $Z \in \Gamma, w \in \Sigma^{*}, \gamma \in \Gamma^{*}$, and Z_{0} is an initial pushdown symbol. Again, let ψ denote the bijection from δ to Ψ, and write $r . Z q w \rightarrow \gamma p$ instead of $\psi(Z q w \rightarrow \gamma p)=r$. A configuration of M is any word from $\Gamma^{*} Q \Sigma^{*}$. For any configuration x Aqwy, where $x \in \Gamma^{*}, y \in \Sigma^{*}, q \in Q$, and any $r . A q w \rightarrow \gamma p \in \delta, M$ makes a move from $x A q w y$ to $x \gamma p y$ according to r, written as $x A q w y \Rightarrow x \gamma p y[r]$. As usual, we define closure \Rightarrow^{*}. If $w \in \Sigma^{*}$ and $Z_{0} q_{0} w \Rightarrow^{*} f[\mu], f \in F$, then w is accepted by M and $Z_{0} q_{0} w \Rightarrow^{*} f[\mu]$ is an acceptance of w in M. The language of M is defined as $\mathcal{L}(M)=\left\{w \in \Sigma^{*}: Z_{0} q_{0} w \Rightarrow^{*} f[\mu]\right.$ is an acceptance of $\left.w\right\}$.

Definition 23. A self-regulating pushdown automaton, $S P D A, M$, is a nonuple

$$
M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{t}, Z_{0}, F, R\right)
$$

where

1. $\left(Q, \Sigma, \Gamma, \delta, q_{0}, Z_{0}, F\right)$ is a pushdown automaton,
2. $q_{t} \in Q$ is a turn state, and
3. $R \subseteq \Psi \times \Psi$ is a finite relation, where Ψ is an alphabet of rule labels.

Definition 24. Let $n \geq 0$ and $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{t}, Z_{0}, F, R\right)$ be a self-regulating pushdown automaton. M is said to be an n-turn first-move self-regulating pushdown automaton, n-first-SPDA, if M accepts w in the following way. There is an acceptance $Z_{0} q_{0} w \Rightarrow^{*} f[\mu]$ such that

$$
\mu=r_{1}^{0} \ldots r_{k}^{0} r_{1}^{1} \ldots r_{k}^{1} \ldots r_{1}^{n} \ldots r_{k}^{n}
$$

where $k \in \mathbb{N}$, r_{k}^{0} is the first rule of the form $Z q x \rightarrow \gamma q_{t}$, for some $Z \in \Gamma, q \in Q$, $x \in \Sigma^{*}, \gamma \in \Gamma^{*}$, and

$$
\left(r_{1}^{j}, r_{1}^{j+1}\right) \in R
$$

for all $0 \leq j<n$.
The family of languages accepted by n-first-SPDAs is denoted by $\mathcal{L}(n$-first$S P D A)$.

Definition 25. Let $n \geq 0$ and $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{t}, Z_{0}, F, R\right)$ be a self-regulating pushdown automaton. M is said to be an n-turn all-move self-regulating pushdown automaton, n-all-SPDA, if M accepts w in the following way. There is an acceptance $Z_{0} q_{0} w \Rightarrow{ }^{*} f[\mu]$ such that

$$
\mu=r_{1}^{0} \ldots r_{k}^{0} r_{1}^{1} \ldots r_{k}^{1} \ldots r_{1}^{n} \ldots r_{k}^{n}
$$

where $k \in \mathbb{N}$, r_{k}^{0} is the first rule of the form $Z q x \rightarrow \gamma q_{t}$, for some $Z \in \Gamma, q \in Q$, $x \in \Sigma^{*}, \gamma \in \Gamma^{*}$, and

$$
\left(r_{i}^{j}, r_{i}^{j+1}\right) \in R
$$

for all $1 \leq i \leq k, 0 \leq j<n$.
The family of languages accepted by n-all-SPDAs is denoted by $\mathcal{L}(n$-all-SPDA).

5.1 n-Turn All-Move Self-Regulating Pushdown Automata

It is easy to see that an n-turn all-move self-regulating pushdown automaton without any turn state is exactly a common pushdown automaton. Therefore, $\mathcal{L}(0$-all$\mathrm{SPDA})=C F$. Moreover, if we consider 1-turn all-move self-regulating pushdown automata, their power is that of the Turing machines.

Theorem 26. $\mathcal{L}(1-$ all-SPDA $)=R E$.
Proof. For any $L \in R E, L \subseteq \Delta^{*}$, there are context-free languages $\mathcal{L}(G)$ and $\mathcal{L}(H)$ and a homomorphism $h: \Sigma^{*} \rightarrow \Delta^{*}$ such that $L=h(\mathcal{L}(G) \cap \mathcal{L}(H)$) (see Theorem 1.12 in [14]). Suppose that $G=\left(N_{G}, \Sigma, P_{G}, S_{G}\right), H=\left(N_{H}, \Sigma, P_{H}, S_{H}\right)$ are in the Greibach normal form, i.e. all rules are of the form $A \rightarrow a \alpha$, where A is a nonterminal, a is a terminal, and α is a (possibly empty) string of nonterminals. Let us construct 1-all-SPDA $M=\left(\left\{q_{0}, q, q_{t}, p, f\right\}, \Delta, \Sigma \cup N_{G} \cup N_{H} \cup\{Z\}, \delta, q_{0}, Z,\{f\}, R\right)$, $Z \notin \Sigma \cup N_{G} \cup N_{H}$, with R made as follows:

1. add $\left(Z q_{0} \rightarrow Z S_{G} q, Z q_{t} \rightarrow Z S_{H} p\right)$ to R
2. add $\left(A q \rightarrow B_{n} \ldots B_{1} a q, C p \rightarrow D_{m} \ldots D_{1} a p\right)$ to R if

$$
\begin{aligned}
& A \rightarrow a B_{1} \ldots B_{n} \in P_{G} \text { and } \\
& C \rightarrow a D_{1} \ldots D_{m} \in P_{H}
\end{aligned}
$$

3. add $(a q h(a) \rightarrow q, a p \rightarrow p)$ to R
4. add $\left(Z q \rightarrow Z q_{t}, Z p \rightarrow f\right)$ to R

Moreover, δ contains only the rules from the definition of R.
Now, we prove $w \in h(\mathcal{L}(G) \cap \mathcal{L}(H))$ if and only if $w \in \mathcal{L}(M)$.
Only if Part: Let $w \in h(\mathcal{L}(G) \cap \mathcal{L}(H))$. There are $a_{1}, a_{2}, \ldots, a_{n} \in \Sigma$ such that $a_{1} a_{2} \ldots a_{n} \in \mathcal{L}(G) \cap \mathcal{L}(H)$ and $w=h\left(a_{1} a_{2} \ldots a_{n}\right)$, for some $n \geq 0$. There are leftmost derivations $S_{G} \Rightarrow^{n} a_{1} a_{2} \ldots a_{n}$ and $S_{H} \Rightarrow^{n} a_{1} a_{2} \ldots a_{n}$ of length n in G and H, respectively, because in every derivation step exactly one terminal element is derived. Thus, M accepts $h\left(a_{1}\right) \ldots h\left(a_{n}\right)$ as

$$
\begin{aligned}
Z q_{0} h\left(a_{1}\right) \ldots h\left(a_{n}\right) & \Rightarrow Z S_{G} q h\left(a_{1}\right) \ldots h\left(a_{n}\right), \ldots, Z a_{n} q h\left(a_{n}\right) \Rightarrow Z q, Z q \Rightarrow Z q_{t} \\
& Z q_{t} \Rightarrow Z S_{H} p, \ldots, Z a_{n} p \Rightarrow Z p, Z p \Rightarrow f
\end{aligned}
$$

In state q, by using its pushdown, M simulates G 's derivation of $a_{1} \ldots a_{n}$ but reads $h\left(a_{1}\right) \ldots h\left(a_{n}\right)$ as the input. In p, M simulates H 's derivation of $a_{1} a_{2} \ldots a_{n}$ but reads no input. As $a_{1} a_{2} \ldots a_{n}$ can be derived in both G and H by making the same number of steps, the automaton can successfully complete the acceptance of w.
If Part: Notice that in one step, M can read only $h(a) \in \Delta^{*}$, for some $a \in \Sigma$. Let $w \in \mathcal{L}(M)$, then $w=h\left(a_{1}\right) \ldots h\left(a_{n}\right)$, for some $a_{1}, \ldots, a_{n} \in \Sigma$. Consider M 's acceptance of w

$$
\begin{gathered}
Z q_{0} h\left(a_{1}\right) \ldots h\left(a_{n}\right) \\
\Rightarrow Z S_{G} q h\left(a_{1}\right) \ldots h\left(a_{n}\right), \ldots, Z a_{n} q h\left(a_{n}\right) \Rightarrow Z q, Z q \Rightarrow Z q_{t}, \\
Z q_{t} \Rightarrow Z S_{H} p, \ldots, Z a_{n} p \Rightarrow Z p, Z p \Rightarrow f
\end{gathered}
$$

As stated above, in q, M simulates G 's derivation of $a_{1} a_{2} \ldots a_{n}$, and then in p, M simulates H 's derivation of $a_{1} a_{2} \ldots a_{n}$. It successfully completes the acceptance of w only if $a_{1} a_{2} \ldots a_{n}$ can be derived in both G and H. Hence, the if part holds, too.

5.2 Open Problems

Although the fundamental results about self-regulating automata have been achieved in this paper, there still remain several open problems concerning them. Perhaps most importantly, these open problem areas include 1 through 3 given next:

1. What is the language family accepted by n-turn first-move self-regulating pushdown automata, when $n \geq 1$ (see Definition 24)?
2. By analogy with the standard deterministic finite and pushdown automata (see page 145 and page 437 in [15]), introduce the deterministic versions of self-regulating automata. What is their power?
3. Discuss the closure properties of other language operations, such as the reversal.

Acknowledgements

The authors would like to thank both anonymous referees for their suggestions. This work was supported by the GAČR 201/07/0005, 102/05/H050, and FR762/2007/G1 grants.

References

[1] A. V. Aho and J. D. Ullman. The Theory of Parsing, Translation and Compiling, Volume I: Parsing. Prentice Hall, Englewood Cliffs, New Jersey, 1972.
[2] J. M. Autebert, J. Berstel, and L. Boasson. Context-free languages and pushdown automata. In G. Rozenberg and A. Salomaa, editors, Handbook of Formal Languages, volume 1, Word Language Grammar, pages 111-174. SpringerVerlag, Berlin, 1997.
[3] B. Courcelle. On jump deterministic pushdown automata. Math. Systems Theory, 11:87-109, 1977.
[4] J. Dassow and Gh. Păun. Regulated Rewriting in Formal Language Theory. Springer-Verlag, Berlin, 1989.
[5] P. C. Fischer and A. L. Rosenberg. Multitape one-way nonwriting automata. J. Comput. System Sci., 2:38-101, 1968.
[6] S. Ginsburg, S. A. Greibach, and M. A. Harrison. One-way stack automata. J. ACM, 14:389-418, 1967.
[7] S. Ginsburg and E. Spanier. Finite-turn pushdown automata. SIAM J. Control, 4:429-453, 1968.
[8] S. A. Greibach. Checking automata and one-way stack languages. J. Comput. System Sci., 3:196-217, 1969.
[9] M. A. Harrison. Introduction to Formal Language Theory. Addison-Wesley, Reading, Massachusetts, 1978.
[10] O. H. Ibarra. Simple matrix languages. Inform. and Control, 17:359-394, 1970.
[11] M. Ito. Algebraic Theory of Automata and Languages. World Scientific, Singapore, 2004.
[12] H. R. Lewis and C. H. Papadimitriou. Elements of the Theory of Computation. Prentice-Hall, Englewood Cliffs, 1981.
[13] J. C. Martin. Introduction to Languages and the Theory of Computation. McGraw-Hill, New York, 1991.
[14] A. Mateescu and A. Salomaa. Aspects of classical language theory. In G. Rozenberg and A. Salomaa, editors, Handbook of formal languages, volume 1, Word Language Grammar, pages 175-251. Springer-Verlag, Berlin, 1997.
[15] A. Meduna. Automata and Languages: Theory and Applications. Springer, London, 2000.
[16] A. Meduna. Simultaneously one-turn two-pushdown automata. Int. J. Comp. Math., 80:679-687, 2003.
[17] A. Meduna and D. Kolář. Regulated pushdown automata. Acta Cybernet., 14:653-664, 2000.
[18] A. Meduna and D. Kolář. One-turn regulated pushdown automata and their reduction. Fund. Inform., 51:399-405, 2002.
[19] G. E. Revesz. Introduction to Formal Languages. McGraw-Hill, New York, 1983.
[20] R. D. Rosebrugh and D. Wood. A characterization theorem for n-parallel right linear languages. J. Comput. System Sci., 7:579-582, 1973.
[21] R. D. Rosebrugh and D. Wood. Restricted parallelism and right linear grammars. Util. Math., 7:151-186, 1975.
[22] J. Sakarovitch. Pushdown automata with terminating languages. Languages and Automata Symposium, RIMS 421, Kyoto University, pages 15-29, 1981.
[23] R. Siromoney. Studies in the Mathematical Theory of Grammars and its Applications. PhD thesis, University of Madras, Madras, India, 1969.
[24] R. Siromoney. Finite-turn checking automata. J. Comput. System Sci., 5:549559, 1971.
[25] T. A. Sudkamp. Languages and Machines. Addison-Wesley, Reading, Massachusetts, 1988.
[26] L. Valiant. The equivalence problem for deterministic finite turn pushdown automata. Inform. and Control, 81:265-279, 1989.
[27] D. Wood. Properties of n-parallel finite state languages. Technical report, McMaster University, 1973.
[28] D. Wood. m-parallel n-right linear simple matrix languages. Util. Math., 8:3-28, 1975.

[^0]: *Department of Information Systems, Faculty of Information Technology, Brno University of Technology, Božetěchova 2, Brno 61266, Czech Republic E-mail: meduna@fit.vutbr.cz, masopust@fit.vutbr.cz

