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Abstract

In this paper we prove that if the congruence lattice of an automaton A is
finite then the endomorphism semigroup E(A) of A is finite. Moreover, if A is
commutative then A is A-finite. We prove that if 3 ≤ |A| then a commutative
automaton A is simple if and only if it is a cyclic permutation automaton of
prime order. We also give some results concerning cyclic, strongly connected
and strongly trap-connected automata.

1 Preliminaries

In this paper, by an automaton A = (A, X, δ) we mean always an automaton
without outputs, where A 6= ∅ is the state set and X 6= ∅ is the input set. Denote
|A| the cardinality of the set A. The automaton A is called A-finite if |A| < ∞.
If |A| = n then we say that n is the order of A and if n is a prime then A is
an automaton of prime order. The input monoid [semigroup] X∗ [X+] of A is
the free monoid [semigroup] over X . The transition function δ : A × X → A can
be extended in the usual way. If e ∈ X∗ is the empty word then let δ(a, e) = a
for every a ∈ A; if a ∈ A, p ∈ X∗ and x ∈ X then let δ(a, px) = δ(δ(a, p), x).
Sometimes, we shall use the notation ap instead of δ(a, p).

As known, every automaton can be considered as a unary algebra. Thus the
notions such as subautomaton, congruence, homomomorphism, isomorphism etc.
can be introduced in the following natural way.

An equivalence relation ρ of state set A of the automaton A is called a congru-
ence on A if

(a, b) ∈ ρ =⇒ (ax, bx) ∈ ρ,

for all a, b ∈ A and x ∈ X . The ρ-class of A containing the state a is denoted
by ρ[a]. Denote C(A) the congruence lattice of A. Let ιA [ωA] be the equality
[universal] relation on A. The automaton A is called simple if C(A) = {ιA, ωA}.
It is evident that if |A| ≤ 2 then A is simple.
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The automaton A′ = (A′, X, δ′) is a subautomaton of the automaton A =
(A, X, δ) if A′ ⊆ A and δ′ is the restriction of δ to A′ × X . The congruence

ρA′ = {(a, b) ∈ A2; a = b or a, b ∈ A′}

is called the Rees congruence of A induced by A′ ([2]). The set R(A) of Rees
congruences of A is a sublattice of C(A). It is called the Rees congruence lattice
of A.

Let A = (A, X, δ) and B = (B, X, δ′) be arbitrary automata. We say that a
mapping ϕ : A → B is a homomorphism of A into B if

ϕ(ax) = ϕ(a)x,

for all a ∈ A and x ∈ X . The kernel of ϕ is the congruence Kerϕ defined by
(a, b) ∈ Kerϕ if and only if ϕ(a) = ϕ(b) (a, b ∈ A). If A = B then ϕ is an
endomorphism of A. Furthermore, if ϕ is bijective then it is an automorphism of
A. The set E(A) [G(A)] of all endomorphisms [automorphisms] of A is a monoid
[group] under the usual multiplication of mappings. E(A) [G(A)] is called the
endomorphism semigroup [automorphism group] of A.

For notations and notions not defined here we refer to the books P.M. Cohn [5],
F. Gécseg [7], F. Gécseg, F. and I. Peák [8], K.H. Kim and F.W. Roush [10] and
G. Lallement [11].

2 Automata with finite congruence lattices

Let B be a nonempty subset of the state set A of an automaton A = (A, X, δ).
Denote [B] = ([B], X, δ′) the subautomaton of A generated by B, that is, [B] =
{bp; b ∈ B, p ∈ X∗}. Specially, denote [a] = ([a], X, δ′) the subautomaton generated
by a ∈ A. If A = [B] then B is called a generating set of A. If there exists a finite
generating set of A then we say that A is finitely generated. Specially, if there exists
a generating set containing only one element a then A is called a cyclic automaton
and we say that a is a generating element of A.

Lemma 1. If the congruence lattice of an automaton A is finite then A has finitely
many subautomata and the congruence lattices of its subautomata are also finite.

Proof. Assume that the congruence lattice C(A) of the automaton A = (A, X, δ)
is finite. Thus the Rees congruence lattice R(A) is finite. From this it follows that
A has finitely many subautomata.

If A′ = (A′, X, δ′) is a subautomaton of A and ρ ∈ C(A′) then ρ ∪ ιA ∈ C(A).
Furthermore, if ρ, ρ′ ∈ C(A′) and ρ 6= ρ′ then ρ ∪ ιA 6= ρ′ ∪ ιA. Thus C(A′) is also
finite.

Corollary 2. If the congruence lattice of an automaton is finite then the automaton
is finitely generated.
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Proof. If the congruence lattice of an automaton is finite then by Lemma 1, the
number of its subautomata and thus the number of its cyclic subautomata is finite.
Therefore, the automaton is finitely generated.

S. Radeleczki has prowed in [15] that if the congruence lattice of a unary algebra
is finite then its automorphism group is finite, too. The following theorem is a
generalization of this result.

Theorem 3. If the congruence lattice C(A) of an automaton A = (A, X, δ) is
finite then the endomorphism semigroup E(A) is finite.

Proof. First, we show that the automorphism group G(A) is finite. Assume that
the order of α ∈ G(A) is infinite. For every positive integer m, we define the binary
relation ραm on A, as follows. For a, b ∈ A, (a, b) ∈ ραm if and only if there is an
element c of A and there are integers i, k, l such that 0 ≤ i ≤ m − 1 and

a = αkm+i(c), b = αlm+i(c).

It can be easily verified that ραm is a congruence of A. Furthermore, if m 6= n
then ραm 6= ραn in a contradiction with our assumption that the congruence lattice
C(A) is finite. Thus the order of every α ∈ G(A) is finite.

Let r be the order of α ∈ G(A). Take the binary relation ρα on A for which
(a, b) ∈ ρα if and only if there are c ∈ A and integers 0 ≤ i, j ≤ r − 1 such that

a = αi(c), b = αj(c).

For every α ∈ G(A), the relation ρα is a congruence of A. Assume that

ρα = ρβ, β ∈ G(A).

By Corollary 2, the automaton A is finitely generated. If {c1, c2, . . . , ck} is a finite
generating set of A then

ρβ [c1] = ρα[c1], ρβ [c2] = ρα[c2], . . . , ρβ [ck] = ρα[ck],

that is,

β(c1) = αi1 (c1), β(c2) = αi2(c2), . . . , β(ck) = αik(ck)

(0 ≤ i1, i2, . . . , ik ≤ r − 1). This means that β = αij on [cj ] (j = 1, 2, . . . , k). From
this it follows that the number of such β is finite for arbitrary α ∈ G(A). Since
C(A) is finite, the number of different ρα’s is finite. From these results it follows
that G(A) is finite.

Now we show that the endomorphism semigroup E(A) is also finite. If α ∈ E(A)
then Aα = (α(A), X, δ′) is a subautomaton of A, where α(A) = {α(a); a ∈ A}. Let
β ∈ E(A) such that

Kerβ = Kerα and β(A) = α(A).
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Define the mapping ϕα,β : α(A) → β(A) such that

ϕα,β(α(a)) = β(a)

for every a ∈ A. This means that

ϕα,βα = β.

Since Kerβ = Kerα, ϕα,β is a bijective mapping. If a ∈ A and x ∈ X then

ϕα,β(α(a)x) = ϕα,βα(ax) = β(ax) = β(a)x = ϕα,β(α(a))x,

that is, ϕα,β ∈ G(Aα). By Lemma 1, C(Aα) is finite and thus, by the first part of
this proof, G(Aα) is finite. Furthermore, if

Kerβ = Kerβ′ = Kerα, β(A) = β′(A) = α(A)

and
ϕα,β = ϕα,β′ ,

then β = β′. Thus, for arbitrary α ∈ E(A), the number of β ∈ E(A) such that
Kerβ = Kerα and β(A) = α(A) is finite. Since the number of different Kerα’s and
different β(A)’s (α, β ∈ E(A)) is finite, E(A) is also finite.

For every a ∈ A, consider the binary relation ρA,a on X∗ defined as

(p, q) ∈ ρA,a ⇐⇒ ap = aq (p, q ∈ X∗).

It is clear that ρA,a (a ∈ A) is a right congruence on X∗. The relation
ρA = ∩a∈AρA,a is congruence on X∗. The characteristic semigroup S(A) of the
automaton A is the factor semigroup X∗/ρA.

R.H. Oehmke has shown in [13] the first part of the following lemma, that is,
for arbitrary cyclic automaton A = (A, X, δ), |E(A)| ≤ |A|. We have shown in our
paper [1] that |A| ≤ |S(A)|.

Lemma 4. For every cyclic automaton A = (A, X, δ),

|E(A)| ≤ |A| ≤ |S(A)|.

Proof. If a0 is a generating element of A and α(a0) = β(a0) (α, β ∈ E(A)) then,
for every p ∈ X∗,

α(a0p) = α(a0)p = β(a0)p = β(a0p),

that is, α = β. Thus the mapping ϕ : E(A) → A such that ϕ(α) = α(a0), for every
α ∈ E(A), is an injective mapping of E(A) into A. This means that |E(A)| ≤ |A|.

If a0p 6= a0q (p, q ∈ X∗) then ρA[p] 6= ρA[q]. From this it follows that |A| ≤
|S(A)|.

Lemma 5. If the relation ρA,a0
is a congruence on X∗, for a generating element

a0 of a cyclic automaton A = (A, X, δ), then E(A) ∼= S(A) and |E(A)| = |A|.
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Proof. If the relation ρA,a0
is a congruence on X∗ then ρA,a0

= ρA. Define the
mapping αp : A → A, for every p ∈ X∗, such that

αp(a0q) = a0pq (q ∈ X∗).

It can easily be shown that αp ∈ E(A). Furthermore, if α ∈ E(A) and α(a0) = a0r
(r ∈ X∗) then α = αr. The mapping ϕ : E(A) → S(A) such that

ϕ(αp) = ρA[p] (p ∈ X∗)

is an isomorphism of E(A) onto S(A). By Lemma, |E(A)| = |A|.

From Theorem 3, Lemma 4 and Lemma 5, we get the following corollary.

Corollary 6. Let the congruence lattice C(A) of the cyclic automaton A =
(A, X, δ) be finite. If the relation ρA,a0

is a congruence on X∗, for a generating
element a0, then A is A-finite.

The automaton A is commutative if apq = aqp for every a ∈ A and p, q ∈
X∗. It is immediate that every subautomaton of a commutative automaton is also
commutative. I. Peák proved in [14] that E(A) ∼= S(A) and |E(A)| = |A| for
arbitrary cyclic commutative automaton A. (See also F. Gécseg and I. Peák [8], Z.
Ésik and B. Imreh [6].) The statement of Lemma 5 is a generalization of this result.
A.P. Grillet showed in [9] that if the congruence lattice of a commutative semigroup
S is finite then S is finite. The following theorem generalizes this statement for
commutative automata.

Theorem 7. If the congruence lattice C(A) of a commutative automaton A =
(A, X, δ) is finite then the automaton A is A-finite.

Proof. By Corollary 2, A is finitely generated. Then, it is a union of commutative
cyclic subautomata Ai = (Ai, X, δi) (i = 1, 2, . . . , n). But, if ai ∈ Ai is a generating
element of Ai then ρAi,ai

is a congruence on X∗, since Ai (i = 1, 2, . . . , n) is
commutative. By Corollary 6, Ai (i = 1, 2, . . . , n) is A-finite and thus A is also
finite.

3 Simple automata

We discussed in our papers [3] and [4] the simple Mealy and Moore automata. In
this paper we investigate the simplicity of the automata A = (A, X, δ) without
outputs. In this case C(A) = {ιA, ωA}.

Let H 6= ∅ be a subset of the state set A and let Hp = {ap; a ∈ H} for every
p ∈ X∗. Define the binary relation τH on A as follows.

(a, b) ∈ τH if and only if (ap ∈ H ⇐⇒ bp ∈ H)

for every p ∈ X∗. τH is a congruence of A and H is a union of certain τH -
congruence classes. The state a ∈ A is called disjunctive, if τ{a} = ιA.
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The set H is called a separator of A if, for every p ∈ X∗,

Hp ⊆ H or Hp ∩ H = ∅.

The one-element subsets of A and itself A are separators of A. We say that these
separators are the trivial separators.

Lemma 8. The automaton A = (A, X, δ) is simple if and only if every separator
of A is trivial.

Proof. Assume that all separators of A are trivial. If ρ is a congruence of A then
every ρ-class is a separator of A. Therefore, ρ = ιA or ρ = ωA, that is, A is a
simple automaton.

Conversely, assume that A is simple. If H is a separator of A then τH is a
congruence of A such that H is a τH -class. But τH = ιA or τH = ωA. Thus
|H | = 1 or H = A therefore H is a trivial separator of A.

If every state of an automaton A = (A, X, δ) is a generating element of A then
we say that A is strongly connected. In other words, A is strongly connected if,
for arbitrary states a, b ∈ A, there exists a p ∈ X+ such that ap = b. If [c] = {c}
then the state c ∈ A is called a trap of A. The automaton A is called strongly
trap-connected if it has a trap c and for every state a ∈ A − {c} and b ∈ A, there
exists a p ∈ X∗ such that ap = b. It is known that the automaton A is strongly
connected if and only if it has no subautomaton A′ = (A′, X, δ) of A such that
A′ 6= A. Furthermore, if A strongly trap-connected then it has only one trap.

Corollary 9 (G. Thierrin [16]). Every simple automaton with at least three states
is strongly connected or strongly trap-connected.

Proof. If A′ = (A′, X, δ′) is a subautomaton of the automaton A = (A, X, δ) then
A′ is a separator of A. Thus A′ = A or |A′| = 1. If A is not strongly connected,
then it has only one subautomaton A′ = (A′, X, δ), namely |A′| = 1. In the latter
case if A′ = {c} then c is a trap of A. Hence if A is not strongly connected then it
is strongly trap-connected.

Theorem 10. The strongly trap-connected automaton A = (A, X, δ) with at least
three states is simple if and only if the trap of A is disjunctive.

Proof. Let c ∈ A be the trap of A. First, we show that if ρ is a congruence of
A and ρ 6= ωA then ρ[c] = {c}. Let a, b ∈ A be arbitrary states. Assume that
(a, c) ∈ ρ. If a 6= c then there exists a p ∈ X∗ such that ap = b. Thus

(b, c) = (ap, cp) ∈ ρ.

From this it follows that ρ = ωA. This is impossible. Thus we get that a = c and
ρ[c] = {c}.

Now assume that c is disjunctive, that is, τ{c} = ιA. Let ρ 6= ωA be a congruence
of A. Since ρ[c] = {c}, if a, b ∈ A − {c} and (a, b) ∈ ρ then (a, b) ∈ τ{c}, that is,
a = b. We get ρ = ιA and thus A is simple.
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Conversely, assume that A is simple. But A is strongly trap-connected au-
tomaton with at least three states, thus τ{c} 6= ωA. Therefore τ{c} = ιA and so c is
disjunctive.

4 Commutativity of simple automata

Theorem 11. If the strongly trap-connected automaton A = (A, X, δ) with at least
three states is simple then it is not commutative. Furthermore G(A) = {ιA} and
E(A) = {ιA, αc}, where c is the trap of A, and αc defined by αc(a) = c (a ∈ A).

Proof. Assume that A is commutative. Let a, b ∈ A − {c} and a 6= b. Since A is
strongly trap-connected, there are q, r ∈ X∗ such that aq = b and br = a. Thus,
for arbitrary p ∈ X∗,

bp = aqp = apq and ap = brp = bpr.

Then, ap = c if and only if bp = c. Thus (a, b) ∈ τ{c}, that is, a = b, which
contradicts the assumption. We get that A is not commutative.

It is evident that αc ∈ E(A). If α ∈ E(A) then, for every p ∈ X∗,

α(c)p = α(cp) = α(c),

and so α(c) is a trap of A, that is α(c) = c. If a ∈ A − {c} and α(a) = c then, for
every p ∈ X∗,

α(ap) = α(a)p = cp = c,

that is, α = αc. Assume that a, b ∈ A − {c}, a 6= b and α(a) = α(b). If, for every
p ∈ X∗, ap = c if and only if bp = c then (a, b) ∈ τ{c}. By Theorem 10, a = b. This
is a contradiction. Thus there exists a q ∈ X∗ such that for instance aq = c and
bq 6= c. Then

α(bq) = α(b)q = α(a)q = α(aq) = α(c) = c.

From this it follows that α = αc, thus G(A) = {ιA} and E(A) = {ιA, αc}.

Lemma 12. Every endomorphism of a strongly connected automaton is surjective.

Proof. Let A = (A, X, δ) be a strongly connected automaton. If α ∈ E(A) then
Aα = (α(A), X, δ′) is a subautomaton of A. Therefore, α(A) = A, that is, α is a
surjective mapping.

Theorem 13. Let the strongly connected automaton A = (A, X, δ) with at least
three states be simple. If E(A) = {ιA} then A is not commutative. If E(A) 6= {ιA}
then A is an A-finite commutative automaton, |E(A| = |A| and E(A) = G(A) is
a cyclic group of prime order.

Proof. First, we show that if the strongly connected automaton A with at least
three states is simple then E(A) = G(A) is a finite group. Since Kerα (α ∈ E(A))
is a congruence of A, Kerα = ιA or Kerα = ωA. By Lemma 12, α is surjective
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mapping. From this it follows that Kerα = ιA and thus α ∈ G(A). This means
that E(A) = G(A). By Theorem 3, E(A) is finite.

Assume that E(A) = {ιA} and A is commutative. Since A is strongly con-
nected, there are a0 ∈ A and p ∈ X+ such that a0 6= a0p. Define the mapping αp

in the same way as in the proof of Lemma 5. Since the relation ρA,a0
is a congruence

on X∗, αp ∈ E(A) and αp 6= ιA. This is impossible, and so A is not commutative.
Now assume that E(A) = G(A) 6= {ιA}. Let α ∈ G(A) and α 6= ιA. Consider

the congruence ρα defined in the proof of Theorem 3. Since A is simple, ρα = ιA
or ρα = ωA. If ρα = ιA then α = ιA. If ρα = ωA then, for arbitrary state d ∈ A,

A = {d, α(d), . . . , αr−1(d)}.

If β ∈ G(A) then there exists an integer 0 ≤ j ≤ r − 1 such that β(d) = αj(d).
Thus, for every p ∈ X∗, we have β(dp) = αj(dp), that is, β = αj . Then, G(A is a
cyclic group.

If r is not prime then r = ln (1 < l, n < r). Define the binary relation ρl,n on
A as follows. For a, b ∈ A (a, b) ∈ ρl,n if and only if there are integers 0 ≤ i ≤ l− 1
and 0 ≤ j, k ≤ n − 1 such that

a = αi+jl(d), b = αi+kl(d).

It is easy to show that ρl,n is a congruence of A and ρl,n 6= ιA, ωA. It is a contra-
diction. Hence r is a prime number.

We show that A is commutative. If p, q ∈ X∗ then let ap = αk(a) and aq = αl(a)
(0 ≤ k, l ≤ r − 1). Then, for arbitrary 0 ≤ i ≤ r − 1,

αi(a)pq = αi(ap)q = αiαk(a)q = αiαk(aq) =

= αiαkαl(a) = αiαlαk(a) =

= αiαl(ap) = αiαl(a)p = αi(aq)p = αi(a)qp,

that is, A is commutative.
By Theorem 7, the automaton A is A-finite. By Lemma 4 and Lemma 5,

|E(A| = |A|.

We note that W. Lex proved in [12], if A is a simple automaton then |G(A)| = 1
or G(A) is a cyclic group of prime order.

The automaton A = (A, X, δ) is called a permutation automaton if every input
sign x ∈ X is a permutation sign, that is, if ax = bx (a, b ∈ A) then a = b. Let
the automaton A be A-finite and |A| = r. The input sign x ∈ X is called cyclic
permutation sign if, for any a ∈ A,

A = {a, ax, ax2, . . . , axr−1} (axr = a).

The input sign x ∈ X is called identical permutation sign if ax = a for every a ∈ A.
The permutation automaton A is called a cyclic permutation automaton of order
r if there exists an x ∈ X cyclic permutation sign.

The congruence ρ of the automaton A = (A, X, δ) is called uniform if, for every
a, b ∈ A, |ρ[a]| = |ρ[b]|.
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Lemma 14. Every congruence of a strongly connected permutation automaton is
uniform.

Proof. Let A = (A, X, δ) be a strongly connected permutation automaton. Assume
that ρ is a congruence of A and a, b ∈ A arbitrary states. Since A is strongly
connected, there are p, q ∈ X∗ such that b = ap and a = bq. Then ρ[a]p ⊆ ρ[b] and
ρ[b]q ⊆ ρ[a]. As every input sign is a permutation sign, we get

|ρ[a]| = |ρ[a]p| ≤ |ρ[b]| = |ρ[b]q| ≤ |ρ[a]|,

that is, |ρ[a]| = |ρ[b]|.

From Lemma 14 it follows that every strongly connected permutation automa-
ton of prime order is simple. By the following example this is generally not true.

Example 15. If A = {1, 2, 3}, X = {x, y} and

1x = 2x = 3, 3x = 2, 1y = 2, 2y = 1, 3y = 1,

then the automaton A = (A, X, δ) is strongly connected of prime order, but not
simple.

By the following example, there is a simple strongly connected permutation
automaton whose order is not a prime number.

Example 16. A = {1, 2, 3, 4}, X = {x, y} and

1x = 2, 2x = 3, 3x = 4, 4x = 1, 1y = 1, 2y = 2, 3y = 4, 4y = 3.

The automaton A = (A, X, δ) is a cyclic permutation automaton.

Theorem 17. The commutative automaton A = (A, X, δ) with at least three states
is simple if and only if it is a cyclic permutation automaton of prime order.

Proof. Assume that the commutative automaton A is simple. By Theorem 13,
A is an A-finite automaton of prime order. By Corollary 9 and Theorem 11, A

is strongly connected. Let x ∈ X be an arbitrary input sign. Define the binary
relation ρx on A as follows.

(a, b) ∈ ρx if and only if ax = bx.

Using the commutativity of A, it is not difficult to seen that the relation ρx is a
congruence of A. If ρx = ωA then there is an element c ∈ A such that for every
a ∈ A ax = c. Hence c is a trap of A. It is impossible. Thus ρx = ιA, that is, x is
a permutation sign. We get that A is a permutation automaton. Since A strongly
connected and 3 ≤ |A|, there are a ∈ A and x ∈ X such that ax 6= a. But x is a
permutation sign. Therefore, if axi = axj (0 ≤ i < j) then a = axj−i and 2 ≤ j− i.
Let k be the smallest positive integer for which axk = a. Since ax 6= a, therefore
2 ≤ k. The set H = {a, ax, . . . , axk−1} is a separator of A. From this it follows
that H = A. Thus x is a cyclic permutation sign, that is, A is a cyclic permutation
automaton of prime order.

Conversely, if A is a cyclic permutation automaton of prime order then, by
Lemma 14, A is simple.
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If a commutative automaton is a cyclic permutation automaton of prime order
then every input sign is an identical permutation sign or a cyclic permutation sign.

We remark that in [16] G. Thierrin proved that if G(A) 6= {ιA}, for a simple
automaton A, then A is a permutation automaton, |G(A| = |A| and |G(A)| is a
prime number. By Theorem 13, every commutative simple automaton is A-finite.
By the following examples, it is generally not true.

Example 18. If A = {1, 2, . . . , n, . . . }, X = {x, y} and

1y = 1, 2y = 2, nx = n + 1, n = 1, 2, . . . ,

n1 = 2, ni+1 = ni + i, i = 1, 2, . . . ,

ni+1y = 1, (ni+1 + 1)y = (ni+1 + 2)y = · · · = (ni+1 + i)y = 2, i = 1, 2, . . . ,

then the infinite automaton A = (A, X, δ) is strongly connected, simple and not
commutative.

Example 19. If A = {0, 1, 2, . . . , n, . . . }, X = {x, y} and

0x = 0y = 1y = 0, nx = n + 1, n = 1, 2, . . . ,

n1 = 2, ni+1 = ni + i, i = 1, 2, . . . ,

niy = 1, (ni+1 + 1)y = (ni+1 + 2)y = · · · = (ni+1 + i)y = 2, i = 1, 2, . . . ,

then the infinite automaton A = (A, X, δ) is strongly trap-connected with the trap
0, simple and not commutative.
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