
Acta Cybernetica 18 (2007) 213–221.

Independent Subspace Analysis can Cope with the

‘Curse of Dimensionality’

Zoltán Szabó∗ and András Lőrincz†

Abstract

We search for hidden independent components, in particular we consider
the independent subspace analysis (ISA) task. Earlier ISA procedures assume
that the dimensions of the components are known. Here we show a method
that enables the non-combinatorial estimation of the components. We make
use of a decomposition principle called the ISA separation theorem. According
to this separation theorem the ISA task can be reduced to the independent
component analysis (ICA) task that assumes one-dimensional components
and then to a grouping procedure that collects the respective non-independent
elements into independent groups. We show that non-combinatorial group-
ing is feasible by means of the non-linear f -correlation matrices between the
estimated components.
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1 Introduction

The technique called independent component analysis (ICA) and its independent
subspace analysis (ISA) extension are in the focus of research interest for signal
processing tasks. ICA applications include, among others: (i) feature extraction [4],
(ii) denoising [6], (iii) processing of financial [11] and neurobiological data, e.g.
fMRI, EEG, and MEG [12,26]. The ISA model is frequently applied for the analysis
of EEG-fMRI signals [1].

Originally, ICA is one-dimensional in the sense that all sources are assumed to
be independent real valued stochastic variables. The typical example of ICA is the
so-called cocktail-party problem, where there are D sound sources and D micro-
phones and the task is to separate the original sources from the observed mixed
signals. Clearly, applications where not all, but only certain groups of the sources
are independent may have high relevance in practice. In this case, independent
sources can be multidimensional. For example, there could be independent groups
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of people talking about independent topics at a conference or more than one group
of musicians may be playing at a party. This is the independent subspace analysis
(ISA) extension of ICA.1 Strenuous efforts have been made to develop ISA algo-
rithms [1,3,5,7–9,13–15,18,19,22,24,25,27], where the theoretical problems concern
mostly (i) the estimation of the entropy or of the mutual information, or (ii) joint
block diagonalization.

Earlier ISA methods were constrained by assuming that the dimensions of the
hidden components are known. Here, we show a non-combinatorial solution to
the estimation of the dimensions. In the ISA problem one assumes temporally i.i.d.
(independent and identically distributed) hidden sources. For the non i.i.d case, one
may try the autoregressive assumption (see, e.g., [16] and references therein). This
problem family is called independent process analysis (IPA). The method that we
present here can be extended to IPA tasks by applying the innovation trick of [17].

The paper is built as follows: Section 2 formulates the problem domain. The
estimation of the dimensions of the ISA components is described in Section 3. We
illustrate our method in Section 4. Conclusions are drawn in Section 5.

2 The ISA Model

First, we define the ISA model. Assume that we have M hidden independent
multidimensional and i.i.d random variables and that only the mixture of these M

components is available for observation:

x(t) = As(t), (1)

where s(t) :=
[

s1(t); . . . ; sM (t)
]

is the vector concatenated form of the components
sm ∈ R

dm . We assume that (i) for a given m, sm(t) is i.i.d. in time t, (ii) there
is at most a single Gaussian component amongst sms, and (iii) I(s1, . . . , sM ) = 0,
where I stands for the mutual information of the arguments. The total dimension
of the components is D :=

∑M

m=1
dm. A ∈ R

D×D is the so-called mixing matrix
that, according to our assumptions, is invertible. The goal of the ISA task is to
uncover hidden components sm (and the separation matrix W = A−1) using the
observations x(t) only. The ICA task is recovered when every components is of
one-dimensional, i.e., if dm = 1 (m = 1, . . . ,M).

In the ISA model, we can assume without any loss of generality, that both the
hidden source s and the observation x are white, that is, their expected values and
covariances are 0 and ID, respectively. Here ID denotes the D-dimensional identity
matrix. Then:

• The sm components are determined up to permutation and orthogonal trans-
formation [23].

1ISA is also called multidimensional independent component analysis (MICA) [5] and group
ICA [24] in the literature.
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• One may assume that the separation matrix W is orthogonal:
W ∈ OD := {W ∈ R

D×D|WW
′

= ID} where OD denotes orthogonal matri-
ces of size D × D and ′ stands for transposition.

3 Dimension Estimation of the Components in the

ISA Task

Here we put forth a non-combinatorial solution that can uncover the the dimensions
of the ISA components. We build our method onto (i) the ISA separation theorem
[21,22] and (ii) the ISA cost function introduced in [19].

The ISA separation theorem, which was conjectured by Jean-François Car-
doso [5], allows one to decompose the solution of the ISA problem, under certain
conditions, into 2 steps: In the first step, ICA estimation is executed. In the second
step, the ICA elements are grouped by finding an optimal permutation. Formally:

Theorem 1 (Separation Theorem for ISA). Let y = [y1; . . . ; yD] = Wx,
where W ∈ OD, x ∈ R

D is the whitened observation of the ISA model.
Let Sdm denote the surface of the dm-dimensional unit sphere, that is
Sdm := {w ∈ R

dm :
∑dm

i=1
w2

i = 1}. H is Shannon’s differential entropy.
Presume that the u := sm sources (m = 1, . . . ,M) of the ISA model satisfy

condition

H

(

dm
∑

i=1

wiui

)

≥

dm
∑

i=1

w2

i H (ui) ,∀w ∈ Sdm , (2)

and that the ICA cost function JICA(W) =
∑D

i=1
H(yi) has minimum over the

orthogonal matrices in WICA. Then it is sufficient to search for the solution of the
ISA task as a permutation of the solution of the ICA task. Using the concept of
separation matrices, it is sufficient to explore forms

WISA = PWICA,

where P ∈ R
D×D is a permutation matrix to be determined, and WISA is the ISA

separation matrix.

Sufficient conditions for Eq. (2) were eventually found by Szabó et al. (see [22]
and references therein). Further, one can group the ICA components and can find
the optimal permutation efficiently by means of the joint f -decorrelation (JFD)
technique introduced in [19]. Roughly speaking, the JFD technique performs decor-
relation over an F set of functions. In particular, the method aims the simultaneous
block-diagonalization of covariance matrices Cf (W) := cov (f [ŝ(W)] , f [ŝ(W)]) of
all functions f ∈ F, where blocks are dm-dimensional.

However, the hidden components can be determined without knowing their di-
mensions, provided that the separation theorem holds. In this case, the estimated
ICA elements correspond to the ISA components up to permutation. In other
words, matrices Cf are block-diagonal with block size dm apart from a common
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permutation. Thus, the coupled components can be found by the following proce-
dure. We say that two coordinates i and j are CF-‘connected’ (CF :=

∑

f∈F
|Cf |,

|·| denotes absolute values for all coordinates) if max(CF
ij , C

F
ji) > ǫ, where ǫ ≥ 0 and

in the ideal case ǫ = 0. Then we group the CF-‘connected’ coordinates into sepa-
rate subspaces as follows: (1) Choose an arbitrary coordinate i and group all j 6= i

coordinates to it which are CF-‘connected’ with it. (2) Choose an arbitrary and
not yet grouped coordinate. Find its connected coordinates. Group them together.
(3) Continue until all components are grouped. This is the gathering procedure and
it is fast. In the worst case, it is quadratic in the number of the coordinates.

4 Illustration

Here we illustrate how our method works. Test cases are introduced in Section 4.1.
The quality of the solutions will be measured by the normalized Amari-error, the
Amari-index (Section 4.2). Numerical results are presented in Section 4.3.

4.1 Databases

We define three databases to study our identification algorithm. The databases are
illustrated in Fig. 1. In the 3D-geom test sms were random variables uniformly
distributed on 3-dimensional geometric forms (d = 3). We chose 6 different com-
ponents (M = 6) and, as a result, the dimension of the hidden source s is D = 18.
The celebrities test has 2-dimensional source components generated from cartoons
of celebrities (d = 2).2 Sources sm were generated by sampling 2-dimensional co-
ordinates proportional to the corresponding pixel intensities. In other words, 2-
dimensional images of celebrities were considered as density functions. M = 10
was chosen (D = 20). In the ABC database, hidden sources sm were uniform dis-
tributions defined by 2-dimensional images (d = 2) of the English alphabet. The
number of components was M = 10, thus the dimension of the source D was 20.

4.2 Normalized Amari-error, the Amari-index

The optimal estimation provides matrix G := WA, a block-permutation matrix
made of d × d sized blocks. This block-permutation property can be measured by
the Amari-index. Namely, let matrix G ∈ R

D×D be decomposed into d× d blocks:
G =

[

Gij
]

i,j=1,...,M
. Let gi,j denote the sum of the absolute values of the elements

of matrix Gi,j ∈ R
d×d. Then the normalized version of the Amari-error [2] adapted

to the ISA task [24] is defined as [20]:

r(G) :=
1

2M(M − 1)





M
∑

i=1

(

∑M

j=1
gij

maxj gij
− 1

)

+

M
∑

j=1

(

∑M

i=1
gij

maxi gij
− 1

)



 .

2http://www.smileyworld.com
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(a) (c)

(b)

Figure 1: Illustration of the 3D-geom, celebrities and ABC databases. (a): database
3D-geom, 6 pieces of 3-dimensional components (M = 6, d = 3). Hidden sources
are uniformly distributed variables on 3-dimensional geometric objects. (b): data-
base celebrities. Density functions of the hidden sources are proportional to the
pixel intensities of the 2-dimensional images (d = 2). Number of hidden compo-
nents: M = 10. (c): database ABC. Here, the hidden sources sm are uniformly
distributed on images (d = 2) of letters. Number of components M was 10 (A-J).

We refer to the normalized Amari-error as the Amari-index. One can see that
0 ≤ r(G) ≤ 1 for any matrix G, and r(G) = 0 if and only if G is a block-
permutation matrix with d × d sized blocks.

4.3 Simulations

Results on databases 3D-geom, celebrities, and ABC are provided here. Our gauge
to measure the quality of the results is the Amari-index (Section 4.2) that we com-
puted by averaging over 50 random runs.3 These experimental studies concerned
the following problems:

1. The quality of the gathering procedure depends on the threshold parameter
ε. We studied the estimation error, the Amari-index, as a function of sample
number. The ε values were preset to reasonably good values.

2. We studied the optimal domain for the ε values. We looked for the dynamic
range, i.e., the ratio of the highest and lowest ‘good ε values’: We divided
interval [0, CF

max] (CF
max := maxi,j CF

ij) into 200 equal parts. For different
sample numbers in all databases at each division point we used the gathering
procedure to group the ICA elements. For each of the 50 random trials we
have computed the Amari-indices separately. For the smallest Amari-index,
we determined the corresponding interval of ε’s, these are the ‘good ε values’.
Then we took the ratio of the largest and smallest ε values in this set and
averaged the ratios over the 50 runs. The average is called the dynamic range.

In our simulations, sample number T of observations x(t) was varied between
1, 000 and 20, 000. Mixing matrix A was generated randomly from the orthogonal

3Random run means random choice of quantities A and s.
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Figure 2: Amari-index on log-log scale (a) and dynamic range (b) as a function of
sample number for the 3D-geom, celebrities, and ABC databases.

group. The fastICA [10] algorithm was chosen to perform the ICA computation. In
the JFD technique, we chose manifold F as F := {u 7→ cos(u),u 7→ cos(2u)}, where
the functions operated on the coordinates separately [19]. We computed correla-
tions for matrices Cf (f ∈ F) (instead of covariances) because it is normalized.

Our results are summarized in Fig. 2. According to Fig. 2(a), there are good
ε parameters for the CF-‘connectedness’ already for 1, 000 − 2, 000 samples: our
method can find the hidden components with high precision. Figure 2(a) also
shows that by increasing the sample number the Amari-index decreases. For 20, 000
samples, the Amari-index is 0.5% for the 3D-geom, 0.75% for the celebrities, and
0.75% for the ABC database, respectively on the average. The decline of the
Amari-index follows power law (r(T ) ∝ T−c (c > 0)) manifested by straight line on
log-log scale. Figure 2(b) demonstrates that for larger sample numbers threshold
parameter ε that determines the CF-‘connected’ property can be chosen from a
broader domain; the dynamic range grows. For the 3D-geom, the celebrities and
the ABC databases the measured dynamic ranges are 4.45, 5.09 and 2.05 for 20, 000
samples and for the different databases, respectively on the average.

Finally, we illustrate the quality and the working of our method in Fig. 3. The
figure depicts the 3D-geom test and we used T = 20, 000 samples. According to
this figure, the algorithm was able to uncover the hidden components up to the
ambiguities of the ISA task.

5 Conclusions

We have introduced a non-combinatorial solution to the estimation of the dimension
of the hidden components in the ISA task. We build our method onto the ISA
separation theorem and solve the ISA task in 2 steps. First, we perform ICA and
then we group the ICA components. The grouping step utilizes a set of non-linear
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(a) (b) (c)

(d) (e) (f)

Figure 3: Illustrations. (a): observed mixed signal x(t), (b) CF - the sum of
absolute values of the elements of the non-linear correlation matrices used for the
grouping of the ICA coordinates, (c): the product of the ICA separation matrix
and the mixing matrix, (d): estimated components s(t)–up to ambiguities of the
ISA problem–, based on (e): CF after grouping, (f) product of the estimated
ISA separation matrix and the mixing matrix: with high precision, it is a block-
permutation matrix made of 3 × 3 blocks.

correlations between the coordinates of the estimated components. Our simulations
indicate that the presently known sufficient conditions of the separation theorem
may be extended considerably. This remains to be shown.
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